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We propose TetraHer, a method for estimating the liability heritability of binary phenotypes. TetraHer has

five key features. Firstly, it can be applied to data from complex pedigrees, that contain multiple types of

relationships. Secondly, it can correct for ascertainment of cases or controls. Thirdly, it can accommodate

covariates. Fourthly, it can model the contribution of common environment. Fifthly, it produces a likelihood,

that can be used for significance testing. We first demonstrate the validity of TetraHer on simulated data. We

then use TetraHer to estimate liability heritability for 229 codes from the tenth International Classification of

Diseases (ICD-10). We identify 118 codes with significant heritability (P<0.05/229), which can be used in

future analyses for investigating the genetic architecture of human diseases.

INTRODUCTION

Estimates  of  heritability  are  of  great  value  in  statistical  genetics.  For  example,  they  indicate  the  value  of

performing a genetic association study, and provide an upper bound for the accuracy of genetic prediction

models.1,2 For a quantitative trait, heritability is defined as the proportion of phenotypic variation explained by

genetic factors.3 For a binary phenotype, the same definition is referred to as heritability on the observed scale.

An alternative is to assume a liability model, and then consider the proportion of liability variation explained by

genetic factors, referred to as heritability on the liability scale.4 Most methods for estimating heritability were

originally designed for quantitative traits. However, these methods are often applied to binary phenotypes via a

two-step approach; first the method is used to estimate heritability on the observed scale, then this estimate is

converted to the liability scale via a linear transformation.5,6 

In this paper, we focus on binary disease phenotypes, where each individual is recorded as either affected (a

case)  or  unaffected (a  control).  When analyzing diseases,  we generally  prefer  heritability  estimates  on the

liability scale, because these do not depend on the prevalence and ascertainment of the disease, and can be

readily compared across studies and traits.4,7
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We begin by using simulations to evaluate four existing methods for estimating liability heritability. The first

two methods, Pearson’s correlation and REML, use a two-step approach and tend to produce upwardly-biased

estimates.3,8 The bias is highest for diseases with substantial heritability and low prevalence. For example, for

diseases with prevalence 1%, the estimate can be more than twice the true value. We show that the bias arises

because the linear transformation from the observed to liability scale fails for close relatives. The third method,

PCGC, estimates liability heritability directly, but nonetheless exhibits biases similar to those of the two-step

approaches.9 By contrast, the fourth method, tetrachoric correlation, estimates liability heritability directly and

produces unbiased estimates.10

Our  simulation  results  motivate  us  to  develop  TetraHer,  which  addresses  five  limitations  of  tetrachoric

correlation.  Firstly,  TetraHer  can  be  applied  to  complex  pedigrees,  where  there  are  a  mix  of  different

relationships (including “non-standard” relationships inferred from SNP data). Secondly, TetraHer can correct

for ascertainment, and thus produce more accurate estimates of liability heritability when cases or controls have

been  over-sampled.  Thirdly,  TetraHer  can  accommodate  covariates.  Fourthly,  TetraHer  can  model  the

contribution of common environment. Fifthly, TetraHer reports a likelihood, which can be used to test whether

the estimated heritability (or contribution of common environment) is significant.

We use TetraHer to  estimate the heritability  of  229 ICD-10 codes  with prevalence at  least  2% in the UK

Biobank.11,12 We find that  118 of  the codes  have significant  heritability  (P<0.05/229),  spanning 12 disease

chapters. We then use these 118 codes to investigate the relationship between per-SNP heritability and minor

allele frequency (MAF).13–15
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Figure 1: Liability model and distribution of related pairs in the UK Biobank. (a) The liability model assumes

that  an  individual’s  disease  status  indicates  whether  their  liability  (an  unobserved,  standard  normally

distributed  random  variable)  is  above  (affected)  or  below  (unaffected)  a  threshold  (determined  by  the

prevalence of the disease). (b) The distribution of SNP-derived estimates of relatedness for the 32,710 white

British, related pairs in the UK Biobank.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.23292588doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.13.23292588
http://creativecommons.org/licenses/by/4.0/


METHODS

Here we summarize the methods and data used in this paper, with full details provided in  Supplementary

Notes 1, 2 & 3. Be aware that in the  mathematical details, we use square brackets to specify elements of a

vector or matrix (e.g., a1[b] denotes the bth element of a vector called a1). 

Notation. Suppose we have a sample of n individuals, and let the length-n vector Y record which are affected

(Y[i]=1) and unaffected (Y[i]=0) for a particular disease. Let A=mean(Y[i]) denote the ascertainment of the

disease (the proportion of cases in the sample), and let K denote the prevalence of the disease (the proportion of

cases in the population). Further, suppose we have p covariates, whose values are contained within the n x p

matrix Z. Throughout this paper, we assume a liability threshold model, as described in Figure 1a. If the length-

n vector L denotes the (unobserved) liabilities of individuals, then Y[i]= I(L[i]>T), where T=Φ-1(K) is the (1-

K)th quantile of a standard normal distribution (e.g., if K=0.01, then Y[i] indicates whether or not L[i] is greater

than 2.32).

Let R denote a symmetric n x n matrix such that R[i,j] records the genetic similarity between Individuals i and j.

Traditionally, R contained coefficients of relatedness, the expected proportions of genome sharing, derived from

pedigree information (e.g., full-siblings have R[i,j]=0.5, half-siblings have R[i,j]=0.25, etc). However, it is now

common for R to contain SNP-derived estimates of relatedness, which measure the actual proportion of genome

sharing (e.g.,  while  full-siblings are expected to share half  their  genome,  Figure 1b shows that  the actual

proportion shared typically ranges from 0.4 to 0.6).16–18

Heritability definitions. When modeling variation in the observed phenotypes, we assume Y = F + G + C + E,

where the independent, length-n vectors F, G, C and E denote the contributions of covariates, genetic factors,

common environment and environmental noise, respectively. We then define heritability on the observed scale

as h2
O=Var(G)/(Var(Y)-Var(F)). When modeling variation in the liabilities, we instead assume L= F + G + C +

E, and define heritability on the liability scale as h2
L=Var(G)/(Var(L)-Var(F)). Most existing heritability methods

are designed to estimate h2
O. However, it has been argued that these estimates can be converted to the liability

scale via the transformation

hL
2
=hO

2
×

K 2
(1−K )

2

A(1−A )ϕ(T )
2           Equation 1

where φ(T) is the density of a standard normal distribution evaluated at the threshold.4,6

Note that the above definitions of h2
O and h2

L have been referred to as “conditional”, because the denominators

denote the variance of the phenotype or liability after allowing for covariates.9 An alternative is to consider the
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“marginal” heritabilities Var(G)/Var(Y) and Var(G)/Var(L). We prefer conditional heritabilities, because in our

opinion, heritability is ideally defined with respect to a homogeneous population, and therefore we consider the

covariates nuisance parameters. However, for completeness, we also compute and report marginal heritabilities.

Analogous to the above definitions of heritability, we let h2
C=Var(C)/(Var(L)-Var(F)) denote the proportion of

liability variation explained by common environment.

Existing methods. We consider four existing methods for estimating liability heritability: Pearson’s correlation

and REML are two-step approaches (i.e., first obtain an estimate of h2
O, then use Equation 1 to convert this to an

estimate of h2
L), while PCGC and Tetrachoric correlation estimate h2

L directly.3,8–10 Here we briefly describe the

four methods, and for simplicity, we ignore covariates (fuller descriptions are provided in Supplementary Note

2). Pearson’s correlation estimates h2
O based on ρP, the Pearson’s correlation between phenotypes of related

pairs (e.g.,  its  estimate of h2
O from full-siblings would be 2ρP).  REML estimates h2

O by assuming Y ~N(0,

RVar(G) + IVar(E)),  where I  is  an n x n identity  matrix,  then finds Var(G) and Var(E) that  maximize the

(restricted) likelihood. PCGC constructs Y’, a standardized version of Y such that E(Y’[i]Y’[j]) ≈ R[i,j] h2
L, then

estimates h2
L by regressing the observed values of Y’[i]Y’[j]  on R[i,j]. Tetrachoric correlation estimates h2

L

directly based on ρT, the tetrachoric correlation between phenotypes of related pairs (e.g., its estimate of h2
L

from full-siblings would be 2ρT).

TetraHer. We first describe TetraHer assuming that the sample is not ascertained (i.e., A=K), and that there are

no contributions from either covariates or common environment (i.e., F=0 and C=0); we then relax each of

these conditions in turn. Suppose there are D related pairs (e.g., pairs with R[i,j]>0.05), and let the length-D

vectors S1 and S2 index the first and second individuals in each pair, respectively. So for example, if Individuals

1 & 2 are related, we could set S1[i]=1 and S2[i]=2 (note that the order is arbitrary, so it is equivalent to instead

set S1[i]=2 and S2[i]=1). In the following explanation, we use the vectors y1 and y2 to denote the phenotypes of

the first and second individuals in each pair (i.e., y1=Y[S1] and y2=Y[S2]), use the vectors l1 and l2 to denote

their liabilities (i.e., l1=L[S1] and y2=y[S2]), and use the vector r to denote their relatedness estimates (i.e., r[d] is

the estimated relatedness between the dth pair).

TetraHer estimates h2
L by finding the value that maximizes the likelihood of the pairs of observed phenotypes.

To construct a likelihood for the phenotype pair (y1[d], y2[d]), TetraHer assumes that the corresponding liability

pair (l1[d], l2[d]) is a draw from a bivariate standard normal distribution with correlation v[d]=r[d] h2
L. It is then

possible to compute P00[d], P10[d], P01[d] and P11[d], the probabilities of observing the phenotype pairs (0,0),

(1,0), (0,1) and (1,1), respectively. For example,

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.23292588doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.13.23292588
http://creativecommons.org/licenses/by/4.0/


P00[d ]=
1

2π√1−v [d ]
2∫−∞

T

∫
−∞

T
exp (−

a2
+b2

−2v [d ]ab
2(1−v [d ]

2
)

)da db

TetraHer computes a joint log likelihood by assuming the D pairs are independent

P( y1 , y2 |v )=∏d
P y1 [d ] y2 [d ][d ]

then  estimates  h2
L by  maximizing  the  log  likelihood  using  the  Newton-Raphson  Method.  It  estimates  the

variance of the estimate by inverting the second derivative of the log likelihood.

When the sample is ascertained (i.e., A≠K), TetraHer revises how it computes the probabilities of observing the

four different phenotype pairs. For example, it now computes

Poo [d ]=
1

s [d ]
×(

K (1−A)

A (1−K ))
2

×
1

2π√1−v [d ]
2∫−∞

T

∫
−∞

T
exp(−

a2
+b2

−2 v [d ]ab

2(1−v [d ]
2
)

)da db

where the scalar s[d] ensures that P00[d], P10[d], P01[d] and P11[d] sum to one. The ratio (K(1-A))/(A(1-K)) is the

relative probability that an unaffected individual is included in the sample (it will be less than one if A>K, and

vice versa).

When  allowing  for  covariates  (i.e.,  F≠0),  TetraHer  starts  by  obtaining  F’,  an  estimate  of  F.  Copying  the

approach of PCGC, TetraHer uses logistic regression to estimate the probabilities that individuals are affected

given their covariates, then converts these to an estimate of F in a way that allows for ascertainment. 9 If f1 and f2

contain the covariates estimates for the first and second individuals in each pair (i.e., f1=F’[S1] and f2=F’[S2]),

then TetraHer assumes that l1[d] - f1[d] and l2[d] - f2[d] are draws from a bivariate standard normal distribution

with correlation rd h2
L (i.e., replaces liabilities with their values after adjusting for covariates).

When allowing for common environment (i.e., C≠0), TetraHer assumes (l1[d]- f1[d], l2[d]- f2[d]) is a draw from a

bivariate standard normal distribution with correlation v[d] = r[d] h2
L + c[d] h2

C, where the length-D vector c

describes  the  degree  of  common environment  for  the  related  pairs.  Note that  it  is  only possible  to  obtain

(sensible) estimates of h2
C when r and c are not linearly dependent.

In addition to TetraHer,  we have also developed QuantHer,  which is  the analogous method for continuous

phenotypes (e.g., when assuming no contributions from either covariates or common environment, QuantHer

constructs  a  likelihood  by  assuming  the  phenotype  pair  (y1[d], y2[d])  is  a  draw  from  a  bivariate  normal

distribution, with correlation r[d] h2
O).
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Relationship  between  TetraHer  and  tetrachoric  correlation. We  consider  TetraHer  a  generalization  of

tetrachoric  correlation.  Specifically,  Supplementary Figure 1 shows that  if  we apply TetraHer to pairs  of

individuals with the same relationship (i.e., where rd=r1), and assume no ascertainment, nor contributions from

either covariates or common environment (i.e., assume A=K, F=0 and C=0), then the resulting estimates of h2
L

almost exactly equal ρT/r1 (where we obtain ρT using the R package polycor19,20).

Similarities between TetraHer and PCGC. TetraHer assumes the same model as PCGC, however, the two

methods differ in their solvers.9 Instead of computing the probabilities P00[d], P10[d], P01[d] and P11[d] exactly,

PCGC uses an approximation that relies on v[d] being small. PCGC is designed for analyzing unrelated pairs

(e.g., rd<0.05), in which case v[d] will tend to be very small, and the approximation is reasonable. However,

when applied to related pairs, v[d] will often be substantial, and this approximation performs poorly (leading to

the the biases observed below).

Similarities between TetraHer and structural equation modeling. In addition to the four existing methods

described above, it is also possible to estimate liability heritability via structural equation modeling (SEM).21  In

Supplementary Figure 2, we show that for the simplest analysis (i.e., when rd=r1, and assuming A=K, F=0 and

C=0) estimates of h2
L from SEM are almost identical to those from TetraHer. We believe that, in theory, many of

the features of TetraHer are possible within SEM. However,  we found that,  despite trying alternative SEM

software  (e.g.,  lavaan,22 OpenMx23 and  sem24),  it  was  challenging  to  incorporate  many  of  the  features  of

TetraHer (e.g., allowing for complex pedigrees or ascertainment). We provide further comparison of TetraHer

and SEM in the Discussion.

Data. In total, the UK Biobank contains approximately 487k individuals.11,12 We first restrict to the 397,987

individuals who self-identified as white British, and whom we inferred to have European ancestry (via principal

component analysis). We then used the software KING to infer family relationships.25 This identified 32,710

pairs of individuals within two degrees (142 identical twins, 18,176 full-siblings, 4,994 parent-child pairs, and

9,398 second-degree relatives), that span 56,602 unique individuals (Figure 1b). Each of these individuals is

recorded for 23 covariates: age, sex, Townsend Deprivation Index and 20 principal components.

We first  use  the  UK Biobank  data  for  simulations  (i.e.,  to  generate  phenotypes  where  we  know the  true

heritability), then to estimate the heritability of diseases defined by ICD-10 codes (field 41270). In total, there

are 19,133 ICD-10 codes, which are divided into 22 chapters (i.e., types of disease) and four levels (e.g., Level

3 codes are sub-categories of Level 2 codes). We restrict to the 229 codes in Chapters 1-15 with prevalence in

the UK Biobank of at least 2%, of which 65, 90 and 74 are in Levels 1, 2 and 3, respectively. Note that for 37 of

the codes, at least 80% of affected individuals were the same sex (females were predominantly affected for 29
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codes, while males were predominantly affected for 8 codes), so for these we exclude individuals of the less-

common sex in all analyses. 

When running REML, PCGC and TetraHer, we set R  based on the kinship estimates from KING (REML and

PCGC require Rij for all pairs of individuals, so we set Rij=0 for pairs that King does not infer to be related).

Pearson’s correlation and Tetrachoric correlation can only be applied to pairs of individuals with the same

relatedness. Therefore, we run each method twice for each phenotype, first using 23,170 pairs of full-siblings

and parent-children (Rij=0.5), then using 9,398 second-degree relatives (Rij=0.25). We then combine the two

estimates of h2
L into a single estimate via inverse-variance weighting.

Software. We  make  TetraHer  available  within  our  software  package  LDAK.18 Note  that  TetraHer  is

computationally efficient. For example, in the analyses below, we have approximately 30,000 pairs of related

individuals, and TetraHer completes in seconds, and this remains the case even with 100,000s of related pairs. 

Furthermore, we have designed TetraHer so it is easy to use. In particular, all analyses in this paper can be

performed using a one-line command, and we have ensured that, when possible, the TetraHer syntax matches

that used by the popular software PLINK26 (for example, phenotypes and covariates are specified using the flags

–pheno and –covar, respectively). We provide full instructions for running TetraHer (including test datasets) on

the LDAK website, with a summary in Supplementary Note 4.

RESULTS

Advantage of tetrachoric correlation and TetraHer over two-step methods. First we simulate diseases with

prevalence 1%, 10% or 50%, with h2
L equal to 0.2, 0.5 or 0.8, with no ascertainment, nor contributions from

either  covariates or common environment.  Figure 2a, 2b & 2c show that  estimates of h2
L from Pearson’s

correlation, REML and PCGC are upwardly biased, with the extent of the bias depending on the heritability and

prevalence. For example, for traits with prevalence 1% and heritability 0.5 or 0.8, the average estimate of h2
L is

over twice the true value. By contrast, tetrachoric correlation and TetraHer produce consistent estimates of h2
L.

For the above simulations,  the diseases are moderately polygenic (1000 causal SNPs),  and effect sizes are

sampled such that causal SNPs with lower MAF tend to explain less phenotypic variation (a tendency observed

for real human traits).27 However, Supplementary Figures 3 & 4 show that the results are almost identical if

we instead consider highly polygenic diseases (20,000 causal SNPs) or generate effect sizes so that all causal

SNPs are expected to explain equal phenotypic variation.
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Figure 2: Comparison of methods for estimating heritability of simulated phenotypes. For (a), (b) and (c), we

simulate disease phenotypes with prevalence 1%, 10% and 50%, respectively, then estimate liability heritability,

h2
L,  using Pearson’s correlation, REML, PCGC, Tetrachoric correlation and TetraHer; for (d), we simulate

quantitative phenotypes, then estimate observed heritability, h2
O, using Pearson’s correlation, REML, Haseman-

Elston regression and QuantHer. Boxes report estimates across 50 replicates (horizontal lines mark the 25 th,

50th and 75th percentiles). Dashed horizontal lines indicate the true heritability (0.2, 0.5 or 0.8, depending on

phenotype).

Figure 2d show that when applied to simulated quantitative traits, Pearson’s correlation, REML and Haseman-

Elston regression28 (the equivalent of PCGC for quantitative traits)  produce unbiased estimates of h2
0.  This

indicates that the inflation observed for binary phenotypes occurs when converting heritability estimates from

the observed to liability scale.10 Figure 3 shows that the inflation arises because Equation 1 is only a good

approximation when the correlations between pairwise liabilities (equal to r[d] h2
L+c[d] h2

C) tend to be small, or

when the prevalence of the disease is close to 50%.

Advantages of TetraHer over tetrachoric correlation.  TetraHer is able to analyze all pairs of individuals

together, whereas tetrachoric correlation can only analyze pairs with the same relatedness. This is primarily a

convenience (i.e., TetraHer can analyze all data in a single analysis, instead of multiple, and it can accommodate

non-standard estimates of relatedness). However this feature also leads to a slight increase in precision. For

example,  Figure 4a shows that for diseases with h2
L=0.5 and prevalence 1%, estimates from TetraHer have

standard deviations on average 10% smaller than those from tetrachoric correlation.
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Figure  3.  Relationship  between  correlations  on  the  observed  and  liability  scales. We  generate  pairs  of

liabilities with correlations ranging from 0.05 to 0.4, then convert these to pairs of binary phenotypes with

prevalences between 1% and 50%. The points show how the correlation between the binary phenotypes (y-axis)

depends on the correlation between the corresponding liabilities (x-axis) and the prevalence, while the lines

show the relationship predicted by Equation 1.

For  Figure 4b,  we introduce ascertainment, by either over-sampling or under-sampling cases. TetraHer can

allow  for  ascertainment,  and  so  continues  to  produce  accurate  estimates  of  h2
L.  By  contrast,  tetrachoric

correlation does not allow for ascertainment, and as a result tends to overestimate h2
L when cases are over-

sampled and underestimate h2
L when cases are under-sampled. For Figure 4c we simulate phenotypes where the

covariate age explains either 5 or 20% of liability variation. TetraHer is able to accommodate covariates, and

therefore continues to produce accurate estimates of h2
L. By contrast, tetrachoric correlation can not include

covariates, and as a result tends to underestimate h2
L. 

For Figure 4d, we simulate phenotypes where 20% of variation in liability is due to common environment (for

this we consider the simple case where c[d]=1 for all d, which corresponds to the assumption that all related

pairs share a common environment). TetraHer can model this contribution, and therefore continues to produce

accurate  estimates  of  h2
L.  By  contrast,  tetrachoric  correlation  can  not  model  the  contribution  of  common

environment, and as a result tends to overestimate h2
L.

The fifth advantage of TetraHer over tetrachoric correlation is that it reports a likelihood, which can be used to

perform likelihood ratio tests (i.e., to test whether a trait has significant h2
L and/or h2

C). Supplementary Figure

5 indicates that this likelihood is well-calibrated under the null hypothesis.
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Figure 4: Comparison of tetrachoric correlation and TetraHer on simulated diseases. (a) We first simulate 

disease phenotypes with h2
L=0.5 and prevalence 1%, 10% or 50%. Points compare the standard deviation of 

estimates of h2
L from tetrachoric correlation and TetraHer. We then modify the phenotypes in three ways: (b) so 

that the proportion of cases in the sample no longer matches the disease prevalence, (c) so that the covariate 

age explains either 5% of 20% of liability variation, (d) so that common environment explains either 0% or 

20% of liability variation. Boxes report estimates of h2
L across 50 replicates (horizontal lines mark the 25th, 50th 

and 75th percentiles).

Heritability of ICD-10 phenotypes. Table 1 and Supplementary Table 1 report estimates of h2
L for the 229

ICD-10 codes. For these estimates, we assume there is no ascertainment (i.e., that the prevalence in the UK

Biobank  sample  matches  the  population  prevalence),  we  include  covariates  (in  general,  all  23  covariates,

however, when analyzing the 37 single-sex codes, we exclude sex) and assume there is no contribution from

common environment. 118 of the codes have significant heritability (P<0.05/229 from a likelihood ratio test).

These 118 codes span 12 chapters, with 35, 48 and 35 in Levels 1, 2 and 3, respectively (Supplementary

Figure 6). Instructions on how to construct these phenotypes for UK Biobank individuals are provided on the

LDAK website with a summary in Supplementary Note 5.
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Code Description Sex Prevalence Estimate of h2
L SD

C44 Other malignant neoplasms of skin Both 0.047 0.409 0.050
C50 Malignant neoplasm of breast Females 0.063 0.413 0.069
C61 Malignant neoplasm of prostate Males 0.057 0.584 0.097
D12 Benign neoplasm of colon, rectum, anus and anal canal Both 0.055 0.313 0.047
D25 Leiomyoma of uterus Females 0.051 0.311 0.078
D50 Iron deficiency anaemia Both 0.037 0.263 0.057
E03 Other hypothyroidism Both 0.054 0.447 0.045
E11 Non-insulin-dependent diabetes mellitus Both 0.069 0.630 0.040
E66 Obesity Both 0.062 0.415 0.043
E78 Disorders of lipoprotein metabolism and other lipidaemias Both 0.138 0.351 0.031
F17 Mental and behavioural disorders due to use of tobacco Both 0.045 0.312 0.051
F32 Depressive episode Both 0.054 0.265 0.048
F41 Other anxiety disorders Both 0.038 0.322 0.058
G47 Sleep disorders Both 0.021 0.360 0.089
G56 Mononeuropathies of upper limb Both 0.033 0.361 0.058
H25 Senile cataract Both 0.053 0.283 0.051
H26 Other cataract Both 0.070 0.324 0.048
H40 Glaucoma Both 0.024 0.652 0.069
I10 Essential (primary) hypertension Both 0.278 0.406 0.023
I20 Angina pectoris Both 0.059 0.328 0.048
I25 Chronic ischaemic heart disease Both 0.090 0.383 0.040
I48 Atrial fibrillation and flutter Both 0.068 0.433 0.045
I50 Heart failure Both 0.029 0.332 0.074
I83 Varicose veins of lower extremities Both 0.033 0.424 0.057
J18 Pneumonia, organism unspecified Both 0.048 0.226 0.055
J44 Other chronic obstructive pulmonary disease Both 0.039 0.445 0.060
J45 Asthma Both 0.088 0.361 0.035
K20 Oesophagitis Both 0.030 0.275 0.063
K21 Gastro-oesophageal reflux disease Both 0.099 0.206 0.034
K22 Other diseases of oesophagus Both 0.038 0.253 0.059
K29 Gastritis and duodenitis Both 0.102 0.200 0.034
K40 Inguinal hernia Males 0.104 0.319 0.073
K44 Diaphragmatic hernia Both 0.099 0.202 0.035
K57 Diverticular disease of intestine Both 0.119 0.329 0.032
K63 Other diseases of intestine Both 0.063 0.268 0.044
K80 Cholelithiasis Both 0.050 0.248 0.049
M16 Coxarthrosis [arthrosis of hip] Both 0.048 0.287 0.054
M17 Gonarthrosis [arthrosis of knee] Both 0.074 0.369 0.040
M19 Other arthrosis Both 0.080 0.260 0.039
M20 Acquired deformities of fingers and toes Females 0.045 0.398 0.083
M23 Internal derangement of knee Both 0.043 0.243 0.056
M47 Spondylosis Both 0.035 0.251 0.062
M48 Other spondylopathies Both 0.020 0.344 0.087
M51 Other intervertebral disk disorders Both 0.028 0.326 0.068
M54 Dorsalgia Both 0.057 0.236 0.047
M79 Other soft tissue disorders, not elsewhere classified Both 0.048 0.254 0.053
N40 Hyperplasia of prostate Males 0.105 0.471 0.079
N81 Female genital prolapse Females 0.065 0.271 0.070

Table  1:  Significant  Level  2  ICD-10  codes. We  applied  TetraHer  to  229  ICD-10  codes,  assuming  no

ascertainment, including 23 covariates, and assuming no contribution from common environment. In total, we

identified 118 codes with significant h2
L (P<0.05/229); this table details the 48 significant Level 2 codes.
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Figure 5: Sensitivity analyses of 229 ICD-10 codes. Our main analysis  of  the ICD-10 codes assumed no

ascertainment, included 23 covariates, and assumed no contribution from common environment. (a) We repeat

the analysis assuming the population prevalence is twice the observed prevalence; points compare revised and

original estimates of h2
L. (b) Same as (a), except now points compare revised and original -log10 p-values from

testing whether h2
L=0 (note that values above 15 have been truncated). (c) We repeat the analysis excluding

covariates;  points  compare  revised  and original  estimates  of  h2
L.  (d)  We repeat  the  analysis  allowing for

common environment; points report -log10 p-values from testing whether h2
C=0. In all panels, red points mark

the  118  codes  with  significant  heritability  (P<0.05/229)  from  the  original  analysis,  while  horizontal  and

vertical lines correspond to P=0.05/229. 

We perform three sensitivity analyses. Firstly, we repeat the analysis assuming the population prevalence is

twice the sample prevalence, to allow for possible ascertainment due to “healthy volunteer bias”.  Figure 5a

shows that the revised estimates of h2
L are on average 11% higher than the original ones, while Figure 5b shows

there is limited change to which codes have significant heritability (three codes change from significant to non-

significant, while two change from non-significant to significant). Secondly, we repeat the analysis excluding

covariates. Figure 5c shows that the revised estimates of h2
L are similar to the original ones, reflecting that the

covariates tend to explain only a small proportion of liability variation (mean 8%, median 6%). Thirdly, we

repeat the analysis allowing for the contribution of common environment.  Figure 5d  shows that there is no

significant contribution from common environment for any of the 229 codes (the smallest p-value is 0.002,

which is not significant after correction for multiple testing). 
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Figure 6: Relationship between per-SNP heritability  and MAF. We model  the relationship via the power

parameter α (see main text). Points report estimates of α for the 118 ICD-10 codes with significant heritability.

The disease chapter is indicated by the point shape and color. The top horizontal solid line marks the inverse-

variance weighted average across all codes, while the bottom horizontal solid line reports the estimate of α for

height (dashed horizontal lines provide the corresponding 95% confidence intervals).

By  way  of  comparison,  we  also  analyze  the  quantitative  trait  height  (using  QuantHer).  As  shown  in

Supplementary Table 2,  we find a substantial  contribution from covariates (in total,  they explain 54% of

phenotypic variation, primarily driven by sex, and ignoring them reduces the estimate of h2
O from 0.83 to 0.63).

We also  find  a  significant  contribution  from common environment  (the  estimate  of  h2
C is  0.10,  with  the

likelihood ratio test P<1e-16).

Relationship between per-SNP heritability and MAF. We hope the 118 significantly heritable ICD-10 codes

will be a useful resource for investigating the genetic architecture of human diseases. To provide an example,

we use  SNP-based heritability  analysis  to  infer  the  relationship  between  per-SNP heritability  and MAF.13–

15 Specifically,  we  use  our  software  SumHer  to  estimate  the  power  parameter  α  in  the  model

E[h j
2
]∝[ p j(1−p j)]

1+α where E[h2
j] is the expected heritability contributed by SNP j, and pj is its MAF.15,29

Figure 6 and  Supplementary Table 3 report estimates of α for the 118 ICD-10 codes. The inverse-variance

weighted average estimate across all codes is -0.23 (SD 0.02), and this does not change much if we instead

restrict to the 35 Level 1 codes (estimate -0 .19, SD 0.04), the 48 Level 2 codes (estimate -0 .24, SD 0.03) or the

35 Level 3 codes (estimate -0 .26, SD 0.04). While negative α indicates that rarer causal variants tend to have a

larger effect size than more common causal variants, consistent with the action of negative selection, we note
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that the average estimate is higher than that for height (estimate -0.49, SD 0.01). Further, we find only weak

evidence that α varies with disease prevalence (weighted least-squares regression slope 0.50, p-value 0.06). 

DISCUSSION

We have developed TetraHer, a method for estimating liability heritability of binary phenotypes which has five

key features: it can be applied to complex pedigrees, it allows for ascertainment, it accommodates covariates, it

can model the contribution of common environment, and it produces a likelihood.

We first used simulated data to test the validity of TetraHer. We recognize that in our simulations, we had the

benefit of knowing the truth, and thus we were able to run TetraHer optimally. In particular, when simulating

ascertained  phenotypes,  we  knew  the  true  disease  prevalence,  while  when  simulating  phenotypes  where

covariates  (common environment)  explained  liability  variation,  we  knew which  covariates  to  include  (the

degree of environmental similarity between related pairs). For analyses of real phenotypes, these details are

often  not  available.  For  example,  when  analyzing  real  disease,  it  can  be  hard  to  estimate  the  population

prevalence, while if substantial liability variation is explained by a covariate that is not recorded, TetraHer will

be unable to adjust for its contribution.

We additionally used the simulated data to demonstrate the advantage of TetraHer over four existing methods, 

Pearson’s correlation, PCGC, REML and tetrachoric correlation. We also briefly considered SEM, showing that 

for the simplest analysis (i.e., where there is only one type of relationship, and ignoring ascertainment, 

covariates and common environment), estimates from SEM were almost identical to those TetraHer. We 

recognize that our comparison with SEM was far from comprehensive. This is because there are many 

implementations of SEM, most of which allow the user to specify a wide variety of models and choose from a 

range of solvers. In particular, while it is theoretically possible to implement all five features of Tetraher within 

an SEM framework, doing so would be complicated and require the user to have specialist knowledge. 

Moreover, we believe that the resulting analyses would be much slower than TetraHer (which always completed

within five seconds, even for the most advanced analyses).

We subsequently used TetraHer to identify heritable ICD-10 codes based on UK Biobank data. This analysis

demonstrated the advantage of being able to allow for ascertainment, as we could then investigate the potential

impact of healthy volunteer bias. Due to the large number of codes analyzed, and the difficulty of finding

prevalence  estimates  for  ICD-10  codes,  we  considered  only  two  scenarios  for  each  code:  A=K  (i.e.,  no

ascertainment) and K/A=2 (i.e., that the population prevalence was double the sample prevalence). The latter

was motivated by a previous study that estimated K/A for four ICD-10 codes with sample prevalence >2%
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(their estimates were 1.8, 1.8, 2.3 and 2.4), and we consider this a reasonable upper bound for K/A.30 While we

believe this assumption sufficed in terms of demonstrating estimates are reasonably robust to ascertainment

caused by healthy volunteer bias, we recognize that more accurate estimates of h2
L could be obtained by finding

individual estimates of prevalence for each code.

We found that when applying TetraHer to the ICD-10 codes, there was limited advantage including covariates

or modeling the contribution of common environment (because neither were estimated to explain a substantial

proportion of liability variation). Nonetheless, there are many phenotypes where these two features would be

more  beneficial  (our  analysis  of  height  provided  one  example).  Moreover,  we  expect  TetraHer  to  be

advantageous when applied to datasets where inbreeding is common (e.g., for animal and plant datasets), as

then there will be a wider spectrum of relatedness values, and therefore a larger benefit being able to use actual

relatedness instead of expected relatedness.

We have identified 118 heritable ICD-10 codes, spanning a wide range of disease types, that will be a useful

resource for better understanding human diseases. We have provided one example of how this information can

be used (to examine the relationship between per-SNP heritability and MAF). However, there are a wide range

of other possible applications, such as inferring the number of causal variants, identifying enriched pathways,

measuring the performance of prediction models, and estimating genetic correlation between diseases.
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