A Scoping Review of Approaches for the Detection and Management of Familial Hypercholesterolaemia in Primary Care

Authors – Abdullah Zafar Khan¹, Geoff McCombe¹, Sarah McErlean¹, Mark Ledwidge¹, Tom Brett², Walter Cullen¹, Joe Gallagher¹

¹ University College Dublin, Ireland

² The University of Notre Dame, Australia

Abstract

Background: Familial Hypercholesterolaemia (FH) is a genetic condition characterised by a lifelong elevation of low-density lipoprotein cholesterol (LDL-c). FH is one of the most common genetic diseases, with an estimated global prevalence of 1 in 250 individuals. However, it is both underdiagnosed and undertreated. Primary care can be a valuable asset for the opportunistic detection and management of FH.

Aim: To examine the employed strategies for improving the detection and management of FH in a primary care setting.

Method: Six electronic databases (PubMed, The Cochrane Central Register of Controlled Trials, Web of Science, CINAHL, ProQuest, and Scopus) were searched from May – June 2022 for papers published in English following Arksey and O'Malley's six-stage scoping review process.

Results: The initial search identified 1401 articles and a total of 30 studies were included in this review. A diverse range of methods have been studied for improving identification of FH. Three studies examined reduction in patient LDL-c levels from management in primary care. Two thirds of the studies with primary care management had a significant reduction in patient LDL-c levels.

Conclusion: The lack of consistency across the diagnostic criteria and the low number of studies addressing the reduction of patient LDL-c levels are major features of this review. Further research should be conducted to evaluate the effectiveness of the approaches for iNNFFoWing the descenterior conducted by participation with FHI in the print any called section is a section of the participation of the

Keywords: primary care, familial hypercholesterolaemia, scoping review, detection, management, general practice

Main text

Introduction

Familial hypercholesterolaemia (FH) is an autosomal dominant condition characterised by a severe and lifelong elevation of low-density lipoprotein cholesterol (LDL-c). FH has a prevalence of 1 in 250 in the general population, making FH the most common genetic lipid disorder ^{1, 2}. Patients with elevated levels of LDL-cholesterol have a significantly higher risk of atherosclerotic cardiovascular disease (ASCVD) due to the cumulative exposure to elevated LDL-cholesterol from birth, compared to those without FH¹⁻⁴.

The World Health Organisation (WHO) has considered FH a "public health priority" since 1998, and advocated for improved screening, early diagnosis and timely initiation of lipid-lowering medications ¹. FH also meets the WHO criteria for systematic screening and it is recognised as a tier 1 genetic disorder by the U.S Centre for Disease Control (CDC) ^{5, 6}. Although some countries have included genetic screening programs in children ⁷ there is still a major problem in the detection and management of FH in adults.

FH remains underdiagnosed and undertreated with approximately 90% of patients remaining undiagnosed globally ^{1, 8}. Furthermore, a significant proportion of treated patients do not attain guideline recommended LDL-cholesterol targets ⁹⁻¹¹. Early diagnosis with lifestyle changes and lipid-lowering therapy can have a significant impact on the reduction of total cholesterol and the early development of ASCVD ¹²⁻¹⁴.

Primary care physicians are ideally placed to assist in the detection and management of FH before it has a pathological manifestation ¹⁵⁻¹⁷. Less pathological or asymptomatic phenotypes of FH are more commonly seen in primary care compared to specialist care ¹⁸. Because of its ease of access and frequent patient contact, primary care can be a valuable asset for providing opportunistic screening, especially to those patients who have family history of early ASCVD ¹⁵.

FH is a global health priority and the existing gaps in healthcare need to be addressed to reduce the global burden of FH. The major gap in the healthcare of FH is its sub-optimal detection and management. To address this healthcare gap, we aim to examine the available literature on the strategies to improve the detection and management of FH in adult patients in a primary care setting.

Methods

A scoping review methodology was chosen to gain a comprehensive overview of the literature in relation to strategies which aim to improve the detection and management of FH in a primary care setting. The scoping review was conducted from May to June 2022, using the six-stage framework described by Arksey and O'Malley ¹⁹ to collate existing literature, identify key findings and outline current research gaps in this area.

Stage 1: Identifying the research question

FH is recognised as being common and treatable, but detecting and managing the condition can be challenging. Due to the significant role of primary care in the detection and management of FH in the community, strategies which could improve patient care have been widely researched. Therefore, the objective of this scoping review is to examine the literature for effective strategies which could be implemented to improve detection and management of FH in primary care. We formulated the following research question: "What strategies have been examined to improve the detection and management of familial hypercholesterolaemia in a primary care setting?"

Stage 2: Identifying relevant studies

A preliminary search of key databases was performed, using multiple search terms to create a reading list. From this, keywords were identified and medical subject heading (MeSH) terms were generated. The electronic databases used in the searches were "PubMed", the "Cochrane Central Register of Controlled Trials", "Web of Science", "CINAHL", "ProQuest", and the "Scopus" database (Includes Embase and MEDLINE). The search terms were grouped, with results requiring reference to one or more search term in the following categories: "Detection/Management", "Familial Hypercholesterolaemia", and "Primary Care" (Figure 1). Additional articles of relevance were identified by 'hand-searching' references that were found in the databases mentioned above.

((detection[Title/Abstract] OR management[Title/Abstract] OR screening[Title/Abstract] OR identification[Title/Abstract] OR case-finding[Title/Abstract] OR diagnosis[Title/Abstract])

AND	(familial	hypercholesterolaemia[Title/Abstract]	OR	familial
hyperchole	esterolemia[Title	/Abstract] OR FH patients[Title/Abstract]))		
AND (prin	mary care[Title/	Abstract] OR primary health care[Title/A	bstract]	OR general
practice[Ti	itle/Abstract] O	R GP[Title/Abstract] OR family medicine	e[Title/A	bstract] OR
community	y [Title/Abstract])		

Fig 1. Keywords included in our search strategy, formatted for PubMed

Stage 3: Study selection

The search identified a total of 1401 citations, of which 39 studies were identified as potentially eligible based on title and abstract screening. Following full-text screening, 30 studies were eligible for inclusion into the review. The 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)' flow diagram below (Figure 2) outlines the selection process.

We included any studies that aimed to systematically identify adults with probable or definite FH in a primary care setting. Studies with adult participants of any age from the general population were considered. Studies which included both adults and children were eligible for inclusion if the adult population was separately identified. Community and healthcare system studies that were conducted in a non-specialist setting were also eligible for inclusion. Studies were included if they were published in English and if the full article was available. Studies were excluded due to lack of relevance if they did not aim to systematically identify people with probable or definite FH in a non-specialist setting Findings were reviewed by two other reviewers, and a finalised list of studies was agreed.

Fig 2. PRISMA Flow diagram

Stage 4: Charting the data

Once all relevant articles were identified (n=30), to facilitate comparison and thematic analysis, the following data were charted from the articles (Table 1):

- First author & year of publication
- Study title
- Study population
- Journal/publication
- Study location
- Study aim/topic
- Strategy employed
- Study design
- Outcome measures
- Major findings

Stage 5: Collating, summarising and reporting results

An overview of the literature is detailed in Table 1 below, summarising and charting the results. This has been discussed further in the results section.

Stage 6: Consultation

In line with recommendations by Levac et al ²⁰, studies were also included and excluded according to advice received during consultation with experts in the field of familial hypercholesterolaemia research in primary care

Results

The initial database searches identified 1401 articles. After 592 duplicates were removed, reviewers screened the remaining 809 articles by title and abstract, during which 770 articles were excluded. 39 studies met the inclusion criteria and were selected for full-text review. Following full-text review, nine studies were excluded due to four studies being ongoing, three studies were incomplete, and two were made inaccessible by the authors. Data was extracted from the final selection consisting of 30 studies which met the eligibility criteria for the review. The search process, as guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), is summarised in Fig. 2. Data was extracted from the final selection consisting of 30 studies which met the review.

Description of included studies

From the 30 included studies, 13 were cross-sectional studies, nine were non-randomised, noncontrolled intervention studies, four were non-randomised, non-controlled, pre- and postintervention studies, three were case-control studies and one was a cohort study. The majority of studies were conducted in Australia (n=10) and the UK (n=8). The other countries with more than a single study were, Italy (n=2), Denmark (n=2) and the USA (n=2).

Study populations and settings

Study populations were most commonly individuals that had a measurement of their total cholesterol or LDL-c registered in a clinical or laboratory database (n=15). Other populations included patients from primary care databases (n=10), individuals from a multi-database search (n=2), a community-based population (n=1), individuals in a healthcare fund (n=1), and individuals that attended a health screening programme (n=1). All of these studies took place in a primary care or community setting (n=30).

Diagnostic criteria

For most of the studies, the Dutch Lipid Clinic Network Criteria (DLCNC) was used to identify possible or definite cases of FH (n=14). The Simon-Broome criteria (n=4) and the MED-PED criteria (n=2) were also used. LDL-c and total cholesterol thresholds were also successfully implemented in some studies (n=9). Genetic testing was used to confirm the FH diagnosis or to identify the FH-causing mutation (n=12).

Strategies employed

An intervention that was studied in the UK was a one-hour educational session ^{21, 22}, which aimed to educate primary care physicians on the identification of FH using the Simon-Broome criteria (n=2). Both of these studies included computer-based reminder messages that prompted the primary care physician to opportunistically assess eligible patients for FH during consultation. TARB-Ex was an electronic extraction tool that specifically screened for FH, accounting for two Australian studies ^{23, 24}.

Emphasis on the direct involvement of community laboratories was given importance in many studies (n=7). Two of these studies were based on FH interpretive comments systems $^{25, 26}$. Some strategies included specialist nurse (n=2) and specialist lipidologist (n=3) involvement in the review process. Specialist nurses triaged potential FH cases for genetic testing and also independently screened for FH index cases $^{27, 28}$.

FH prevalence

FH prevalence was estimated with application of the DLCNC (n=4), the MED-PED (n=1), LDL-c thresholds (n=2) and one study used a combination of DLCNC, the MED-PED criteria and LDL-c thresholds ²⁹. In all four of the studies that used the DLCNC, the estimated prevalence of probable or definite FH was between 1:100 and 1:137. The study that used the MED-PED criteria estimated the prevalence of probable or definite to be 1:285. Studies that estimated the prevalence of probable or definite FH using the LDL-c threshold of \geq 250 mg/dL estimated a prevalence between 1:398 and 1:734. While the FAMCAT algorithm estimated the prevalence of FH to be between 1:250 and 1:500 in a London population ³⁰.

FH diagnosis

The educational session/computer-reminder study conducted by Weng *et al.* ²² and the electronic audit/nurse-led clinic model by Green et al. ²⁷, both demonstrated an improvement of FH diagnosis when compared to baseline data of usual care. Prevalence studies, electronic extraction tools/searches, the FAMCAT algorithm, and FH alert/comment systems were the other employed strategies that increased FH diagnosis.

Importantly, the novel FAMCAT2 algorithm had a higher detection rate and a higher sensitivity when compared to the FAMCAT1 algorithm, the DLCNC, the Simon-Broome criteria and recommended cholesterol thresholds ³¹.

Lipid management

There were three studies that included lipid management in a primary care setting. The interpretive comment study produced a significant reduction (-23%, p<0.005) in the LDL-c levels of patients when compared with controls ²⁵. The TARB-Ex study by Brett *et al.* also demonstrated significant mean reductions in both plasma cholesterol (-9%, p<0.01) and LDL-cholesterol (-16%, p<0.01) when compared to baseline ²⁴. In the computer-reminder study conducted by Weng *et al.* there were many significant clinical improvements including the examination of clinical features, family history assessment and statin prescription ²². However, there were non-significant reductions in both plasma cholesterol (-2%) and LDL-cholesterol (-3%).

Discussion

Summary

This review aimed to map the literature concerning the detection and management of FH in primary care. Research to date has predominantly been focused on strategies that aim to increase the identification of individuals with probable or definite FH. However, increased identification of probable or definite FH does not imply an improvement in clinical outcomes.

Bell *et al.* found that GP assessment of FH was comparable to specialist assessment 16 . However, management of FH in the included studies was more commonly with specialist care rather than primary care alone. Twelve of the studies in this review included individual referral to a specialist service. Although specialist care was more favoured than primary care, two thirds of the studies with primary care management of patient LDL-c levels demonstrated a significant reduction when compared with baseline. A minority of studies in this review included baseline data of usual care (n=6).

The computer-reminder study by Weng *et al.* and the interpretive comment study by Bell *et al.* provided two examples of the positive impact that FH alert/comment systems could have on improving clinical practice and reducing patient LDL-c levels ^{22, 25}. These systems could be effective supplements for assisting primary care physicians in the detection and management of FH patients. However, these systems should be studied further.

Strengths and limitations

This review utilised the Arksey and O'Malley's scoping review framework, and identified significantly more studies than previous reviews. Although we aimed to be comprehensive in our approach, there is a possibility that not all publications relevant to the subject area were identified by the search strategy. In addition, scoping reviews do not include an assessment of study quality as the focus is on covering the whole range of relevant literature. Furthermore, only articles published in English were considered for inclusion into our review, which could have resulted in the exclusion of relevant literature published in other languages. We did not include paediatric screening studies, including genetic screening, as these are not part of routine primary care but these are increasing as population and public health measures.

Comparison with existing literature

There have been two previous systematic reviews that focused on this topic. In the first review, the authors assessed 30 studies for eligibility and none were included ³². In the second review, the authors assessed 29 studies for eligibility and included three into their review ³³. Both systematic reviews concluded that there was insufficient evidence to determine the most effective method of systematically identifying FH in non-specialist settings. Our scoping review included significantly more articles and a diverse range of methods for FH diagnosis. We presented key information about the included studies in Table 1.

Implications for research and practice

There were many studies that aimed to systematically identify individuals with FH. However, few studies had baseline data and there was a lack of studies that validated their methods of identification using genetic confirmation (n=12). There was also a lack of consistency between the diagnostic criteria. As a result, there is currently insufficient evidence to inform the most effective approach for the detection and management of FH in primary care. More research needs to be conducted to evaluate the impact that these models can have on the reduction of clinical events. The role of genetic testing in primary care is also evolving and will likely be significant in the future of FH detection and management.

Conclusion

FH is a common genetic condition, but timely detection and management has significant potential to reduce morbidity and mortality in families. Primary care is ideally placed to undertake this work given its close relationship with families and its success in general cardiovascular disease prevention. Therefore, it is not surprising that a number of models of FH case-finding have been developed and studied. The lack of consistency across the diagnostic criteria and the low number of studies addressing the reduction of patient LDL-c levels are major features of this review. Genetic testing is becoming more accessible and its integration into primary care will require further evaluation. Conditions such as polygenic hypercholesterolaemia can represent a large proportion of possible FH cases and its genetic implications should be studied further ³⁴. Further research should be conducted to evaluate the effectiveness of the approaches for improving the detection and management of adult patients with FH in a primary care setting.

Primary ca	rimary care-based studies for the improved identification of FH w/o direct involvement of a community laboratory											
Author, year	Study title	Study population	Journal/ publication	Location	Study aim/ topic	Strategy employed	Study design	Outcome measures	Major findings			
Steyn <i>et</i> <i>al.</i> 1998 ³⁵	Detection and measurement of hypercholesterola emia in South Africans attending general practitioners in private practice— The cholesterol monitor	Patients seen by 200 private general practitioners in South Africa on two survey periods in 1993 and 1994 (n= 12,842)	South African Medical Journal (1998), Vol. 88, Issue 12	South Africa	Report data on the detection and management of hypercholesterolae mia in patients attending general practitioners in private practice in South Africa	The frequency of cholesterol testing and the level at which active therapeutic intervention occurred at medical practices were monitored over two 5-day monitoring periods in 1993 and 1994	Cross- sectional survey	Patients identified with possible or definite FH using a medical survey	12,842 patients were seen by the 200 private practice GPs. Only 3.1% of the patients were reported to have familial hypercholesterolaemia (FH) and 12.8% were reported to have a family history of CHD. 5.4% of the FH patients had TC levels below 5.0 mmol/L, while only 24% of those patients who suffered from CHD had similarly controlled TC levels. Almost 20% of the FH patients had TC levels above 8.0 mmol/l			
Gray <i>et</i> <i>al.</i> 2008 ³⁶	Identifying patients with familial hypercholesterola emia in primary care: An informatics-based approach in one primary care centre	Patients from a single primary care centre in South London (n= 12,100)	Heart (2008), Vol. 94, Issue 6	London, UK	Assess the utility of combined computer- and notes-based searches in identifying index cases of FH in primary care, and to uncover the degree of case overlap with secondary care	Four computer-based search strategies were chosen. Selected information such as, highest-recorded cholesterol and physical stigmata, were reviewed by a general practitioner and consultant lipidologist to give a DLCNC score for the probability of FH	Non- randomised, non- controlled, intervention study	Patients identified with possible or definite FH using the DLCNC, Referral to specialist	402/12,100 (3.3%) patients had a Dutch score high enough to require a notes review. 12 cases of definite FH were found, of whom two were unknown to the practice. Eight probable cases were found, seven of whom were previously unknown. 216/402 (54%) patients scored as possible cases. After specialist review 47/216 (21.8%) patients would merit recalling for a detailed family history and xanthoma examination			

Table 1. Studies that aimed to systematically identify adult patients with familial hypercholesterolaemia in a primary care setting

Kirke <i>et</i> <i>al.</i> 2015 ³⁷	Systematic Detection of Familial Hypercholesterola emia in Primary Health Care: A Community Based Prospective Study of Three Methods	Patient records from multiple community databases between January 2010 and December 2012 (n= 94,379)	Heart, Lung and Circulation (2015), Vol. 24, Issue 3	Western Australia, Australia	Report a prospective study of three methods of case detection using pre-existing primary health care services in one community	Phase 1: Initial screening in primary healthcare settings. Phase 2: Case detection in a primary care setting by a research nurse and general practitioner. Phase 3: Specialist follow-up of high-risk cases	Non- randomised, non- controlled, pre- and post- intervention study	Patients identified with possible or definite FH using the DLCNC and genetic testing, Referral to specialist	1316 participants underwent detailed assessment for FH. The proportion of at risk people identified for further assessment was in decreasing order: GP (659/2494, 26.4%), workplace assessment (60/268, 22.4%) and pathology database (597/4517, 13.2%) p<0.001. Eighty-six (6.5%) were identified as clinical FH (DLCNCS>5) of which 59 had genetic testing and 11/59, 18.6%, were confirmed to have a mutation causing FH. Pathology database detected the greatest number of clinical FH (51/86, 59.3%) and mutation positive participants (8/ 11, 72.7%)
Green <i>et al.</i> 2016 ²⁷	Improving detection of familial hypercholesterola emia in primary care using electronic audit and nurse-led clinics	Patients from 56 general practices in the UK (n= 290,000)	Journal of Evaluation of Clinical Practice (2016) Vol. 22, Issue 3	UK	Assess whether a clinical decision support software in combination with nurse-led clinic can improve the detection of FH in primary care	The first stage was a systematic audit of electronic medical records within GP practices, identifying all patients diagnosed with FH or possible FH and adult patients with a recorded total cholesterol of >7.5 mmol/L or LDL-C ≥5.0 mmol/L. The second stage included a nurse- led clinic to screen more intensely for FH index cases	Non- randomised, non- controlled, pre- and post- intervention study	Possible or definite diagnosis of FH using the Simon-Broome criteria	The baseline prevalence of FH within the study population was 0.13% (1 in 750 persons). After 2 years, the recorded prevalence of diagnosed FH increased by 0.09% to 0.22% (1 in 450 persons). The nurse-led clinic ran for 9 months (October 2013-July 2014) and during this time, the recorded prevalence of patients diagnosed with FH increased to 0.28% (1 in 357 persons) and the prevalence of patients 'at risk and unscreened' reduced from 0.58% to 0.14%

Vickery et al. 2017 ³⁸	Increasing the Detection of Familial Hypercholesterola emia Using General Practice Electronic Databases	Active patients (≥1 consultation in last two years) from five general practices in Perth, Australia (n= 157,290)	Heart, Lung and Circulation (2017), Vol, 26, Issue 5	Perth, Australia	Determine whether a simple electronic extraction tool can increase detection of FH in general practice	An extraction tool applied to general practice electronic health records (EHR) to screen for FH, total cholesterol and low density lipoprotein cholesterol (LDL-c) levels in association with entered diagnostic criteria and demographic data	Cross- sectional study	Patients identified with possible or definite FH using LDL-c thresholds	Of 157,290 active patients examined, 0.7% (n=1081) had an LDL-c >5.0 mmol/L representing 1 in 146 of active patients. An additional 0.8% (n=1276) patients were at possible risk of FH. Of those with an LDL-c>5.0 mmol/L, 43.7% had no record of being prescribed statins
Casula <i>et al.</i> 2017 ²⁹	Detection of familial hypercholesterola emia in patients from a general practice database	Data was collected by more than 600 Italian GPs across 10 Italian regions of patients with measurement of LDL-c (n= 162,864)	Atheroscler osis Supplement s (2017), Vol. 29	Italy	Present a method to improve detection and to enhance awareness of FH in primary care using GP electronic health records	A partial assessment of the DLCNC score using the data that was available. Also determined the prevalence of possible FH based on age- specific LDL-cholesterol thresholds employed by the diagnostic criteria of MED-PED and the non-age adjusted cut- off point (LDL-C ≥190 mg/dL) adopted by the Italian Medicines Agency (AIFA)	Cross- sectional study	Identification of patients with possible or definite FH using the DLCNC, the MED-PED criteria and LDL-c thresholds	Data on LDL-c was available for 162,864 subjects. Mean LDL-C levels were 124.3 mg/dL for non-treated subjects and 106.4 mg/dL for statin- treated subjects. The cut-off of LDL-c ≥190 mg/dL yielded a prevalence of 1:34 among non-treated subjects and of 1:29 among statin-treated patients. Using the cut-off of ≥250 mg/dL, the prevalence was 1:1038 among non- treated subjects and 1:369 among statin-treated patients (average = 1:734). According to the stratification proposed by the MED-PED criteria for the general population, the age-specific LDL-cholesterol thresholds a prevalence of 1:1380 among non- treated subjects and 1:540 among statin-treated patients
Aref- Eshghi <i>et al.</i> 2017 ³⁹	Identification of Dyslipidemic Patients Attending Primary Care Clinics Using Electronic Medical Record	EMRs of patients ≥20 who had a complete lipid profile taken attending primary care clinics in a Canadian city	Journal of Medical Systems (2017), Vol. 41, Issue 3	St Johns, Canada	Define the optimal algorithm to identify patients with dyslipidaemia using electronic medical records (EMRs)	Application and comparison of six algorithms. Linear discriminate analysis, and bootstrapping were also performed	Non- randomised, non- controlled, intervention study	Patients identified with possible or definite dyslipidaemia, Sensitivity, negative predictive value,	3460 individuals (80.6%) were identified as having dyslipidaemia according to the 'gold standard'. Lipid levels showed the best results (sensitivity: 84.0%, NPV: 61.0%, Kappa: 0.67, AUC: 0.67). Among all algorithms, the combination of lipid levels with

	(EMR) Data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) Database	during 2009–2010 (n= 4382)						Kappa coefficient and the AUC were calculated for each algorithm	drug therapy (sensitivity: 100.0%, NPV: 98.0%, Kappa: 0.98, AUC: 1.00) and the combination of lipid levels with ICD codes (sensitivity: 94.0%, NPV: 79.0%, Kappa: 0.85, AUC: 0.97) reached the best results
Mülvers tedt et al. 2021 ⁴⁰	Screening for potential familial hypercholesterola emia in general practice: an observational study on prevalence and management	All patients from six general practice clinics and a hospital's cardiology department (n= 9652)	British Journal of General Practice (2021) Vol. 5, Issue 2	Copenhagen, Denmark	Provide knowledge of the prevalence and management of FH in Danish general practice	Individuals were considered in the group of the high LDL-c population (≥5.0 mmol/l) and in the group of individuals without secondary hypercholesterolaemia. These groups of individuals were then screened for FH using the DLCNC	Cross- sectional study	Individuals identified with possible or definite FH using the DLCNC	2382 individuals had a lipid measurement available, and 236 of those had an LDL-c ≥5.0 mmol/l. In total, 34 individuals were found to have probable or definite FH (DLCN score ≥5). Only three individuals had been diagnosed and treated with lipid- lowering therapy. Of 236 individuals with high LDL-c, only 25 individuals met their treatment target. 21 individuals were found to have probable or definite FH (1:114 individuals)
Studies th	at used the FAMCAT	algorithm		•					
Author, year	Study title	Study population	Journal/ publication	Location	Study aim/ topic	Strategy employed	Study design	Outcome measures	Major findings
Qureshi et al. 2021 ³⁴	Case-finding and genetic testing for familial hypercholesterola emia in primary care	Electronic health records of patients with cholesterol readings from 14 UK general practices (n= 86,219)	Heart (2021), Vol. 107, Issue 24	England, UK	Describe the genetic and lipid profile of patients found at increased risk of FH and the outcomes in those with positive genetic test results	The Familial Hypercholesterolaemia Case Ascertainment Tool, FAMCAT1 was applied to the patient electronic health records. A family history questionnaire was offered and a detailed review of their clinical data was	Cross- sectional study	Identification of patients with possible FH using FAMCAT and genetic testing, Referral to a specialist	From 86,219 patients with cholesterol readings, 3375 were identified as having an increased risk of FH. Genetic testing was completed by 283 patients, newly identifying 16 with genetically confirmed FH and 10 with variants of unknown significance. In a further 153 (54%) patients, the test suggested polygenic hypercholesterolaemia

conducted. After

						review, genetic testing was offered to those that were considered at risk			
Qureshi et al. 2021 ³¹	Comparing the performance of the novel FAMCAT algorithms and established case- finding criteria for familial hypercholesterola emia in primary care	Electronic health records of patients with cholesterol readings from 14 UK general practices (n= 86,219)	Open Heart (2021) Vol, 8, Issue 2	England, UK	Evaluate the performance of two different algorithms (FAMCAT1 and FAMCAT2) at 95% specificity, to detect genetically confirmed FH in the general population	FAMCAT1 and FAMCAT2 were both used to screen for patients at risk of FH. As well as the DLCNC, the Simon-Broome criteria, and recommended cholesterol thresholds. Genetic testing was used as the reference of standard. Detection rate, sensitivity and specificity were examined for each case-finding criterion	Non- randomised, non- controlled, intervention study	Identification of patients with possible or definite FH, Detection rate, sensitivity and specificity of each method	At 95% specificity, FAMCAT 1 had a Detection Rate of 27.8% (95% Cl 12.5% to 50.9%) with sensitivity of 31.2% (95% Cl 11.0% to 58.7%); while FAMCAT 2 had a DR of 45.8% (95% Cl 27.9% to 64.9%) with sensitivity of 68.8% (95% Cl 41.3% to 89.0%). DLCN score ≥ 6 points yielded a DR of 35.3% (95% Cl 17.3% to 58.7%) and sensitivity of 37.5% (95% Cl 15.2% to 64.6%). Using recommended cholesterol thresholds resulted in DR of 28.0% (95% Cl 14.3% to 47.6%) with sensitivity of 43.8% (95% Cl 19.8% to 70.1%). Simon-Broome criteria had a lower DR of 11.3% (95% Cl 6.0% to 20.0%) and specificity 70.9% (95% Cl 64.8% to 76.5%) but higher sensitivity of 56.3% (95% Cl 29.9% to 80.2%)
Ingoe <i>et</i> <i>al.</i> 2021 ²⁸	Improving the identification of patients with a genetic diagnosis of familial hypercholesterola emia in primary care: A strategy to achieve the NHS long term plan	Patients from nine UK general practices were included for screening (n = 94,444)	Atheroscler osis (2021) Vol. 325	UK	Validate a nurse-led process using electronic health records to identify those at risk of familial hypercholesterolae mia (FH) for genetic diagnosis in primary care	Phase 1 of screening used the FAMCAT algorithm. Phase 2 of screening used a modified algorithm which was based on the NICE CG71 guidelines and the DLCN criteria. Patients identified as "very high risk" by both algorithms were triaged by FH specialist nurses for genetic testing	Non- randomised, non- controlled, intervention study	Patients identified as "very high risk" or definite FH using two phases of screening and genetic testing, Referral to specialist	572 patients (0.61%) were identified as being high risk for FH by both algorithms. 63 patients (53%) underwent genetic testing for FH. And 27 of these patients (43%) were positive for FH

Carvalh o et al. 2021 ³⁰	Application of a risk stratification tool for familial hypercholesterola emia in primary care: an observational cross-sectional study in an unselected urban population	All primary care patients aged 18– 65 years registered with general practitioners within three Clinical Commissioning Groups in East London (n= 777,128)	Heart (2021), Vol. 107	London, UK	Test application of the FAMCAT algorithm to describe risks of familial hypercholesterolae mia (FH) in a large unselected and ethnically diverse primary care cohort	Retrospectively applied the FAMCAT algorithm to routine primary care data and estimated the numbers of possible cases of FH and the potential service implications of subsequent investigation and management	Cross- sectional study	Identifies patients that have a risk of possible or definite diagnosis of FH using FAMCAT	Of the 777,128 patients studied, the FAMCAT score estimated between 11 736 and 23 798 (1.5%-3.1%) individuals were likely to have FH, depending on an assumed FH prevalence of 1 in 250 or 1 in 500, respectively. There was over-representation of individuals of South Asian ethnicity among those likely to have FH, with this cohort making up 41.9%-45.1% of the total estimated cases, a proportion which significantly exceeded their 26% representation in the study population
Education	al sessions with imple	ementation of a compu	iter-based remin	nder system					
Author, year	Study title	Study population	Journal/ publication	Location	Study aim/ topic	Strategy employed	Study design	Outcome measures	Major findings
Qureshi et al. 2016 ²¹	Feasibility of improving identification of familial hypercholesterola emia in general practice: Intervention development study	Patients from six UK general practices (n= 45,033)	BMJ Open (2016), Vol. 6, Issue 5	Nottinghamsh ire, UK	Assess the feasibility of improving identification of familial hypercholesterolae mia (FH) in primary care, and of collecting outcome measures to inform a future trial	There was a one-hour educational session at each recruited practice. Use of opportunistic computer reminders in consultations and postal invitation over 6 months to eligible patients invited to complete a family history questionnaire. Those fulfilling the Simon-Broome criteria for possible FH were invited for GP assessment and referred for specialist definitive diagnosis	Non- randomised, non- controlled, intervention study	Identification of patients with possible FH using the Simon- Broome criteria and genetic testing, Recruitment rate, Referral to specialist care	From 831 eligible patients, 127 (15.3%) were recruited and completed family history questionnaires: 86 (10.7%) through postal invitation and 41 (4.9%) opportunistically. Among the 127 patients, 32 (25.6%) had a possible diagnosis of FH in primary care. Within 6 months of completing recruitment, 7 patients had had specialist assessment confirming 2 patients with definite FH (28.6%), and 5 patients with possible FH (71.4%)

Weng et al. 2018 ²²	Improving identification and management of familial hypercholesterola emia in primary care: Pre- and post-intervention study	Patients from six UK general practices (n = 45,033) screening tool	Atheroscler osis (2018) Vol. 274	Nottingham, UK	Assess whether a proactive approach to identify possible FH in primary care improves best practice in accord with UK national guideline recommendations on identifying and managing FH	The intervention was a one-hour educational session with general practitioners and practice nurses on case- identification and assessment of FH using Simon-Broome diagnostic criteria recommended in the current NICE guidelines. There was also use of opportunistic computer reminders in consultations	Non- randomised, non- controlled, pre- and post- intervention study	Identification of possible FH using the Simon- Broome criteria, Cholesterol levels, Statins prescribed, Repeat cholesterol tests	The intervention improved best clinical practice in 118 patients consenting to assessment (of 831 eligible patients): repeat cholesterol test (+75.4%, 95% Cl 66.9-82.3); family history of heart disease assessed (+35.6%, 95% Cl 27.0-44.2); diagnosis of secondary causes (+7.7%, 95% Cl 4.1-13.9), examining clinical features (+6.0%, 95% Cl 2.9-11.7). For 32 patients diagnosed with possible FH using Simon-Broome criteria, statin prescription significantly improved (18.8%, 95% Cl 8.9-35.3), with non-significant mean reductions in cholesterol post-intervention in both total (-2%) and LDL-c (-3%)
		-							
Author, year	Study title	Study population	Journal/ publication	Location	Study aim/ topic	Strategy employed	Study design	Outcome measures	Major findings
Troeung et al. 2016 ²³	A new electronic screening tool for identifying risk of familial hypercholesterola emia in general practice	All active patients seen at a large general practice in Perth, Western Australia between 2012 and 2014 (n= 3708)	Heart (2016), Vol. 102, Issue 11	Perth, Australia	Evaluate the performance of a new electronic screening tool (TARB-Ex) in detecting general practice patients at potential risk of familial hypercholesterolae mia (FH)	Retrospective screening for potential FH risk using TARB-Ex. Electronic extracts of medical records for patients identified with potential FH risk (defined as DLCNC score ≥5) through TARB-Ex were reviewed by a general practitioner (GP) and lipid specialist. High-risk patients were recalled for clinical assessment	Non- randomised, non- controlled, intervention study	Identification of possible or definite FH using the DLCNC and genetic testing; Sensitivity, specificity, positive predictive value, and the negative predictive value were all examined, Screening time, Referral to specialist	32 patients with DLCNC score ≥5 were identified through electronic screening compared with 22 through GP manual review. Sensitivity was 95.5% (95% Cl 77.2% to 99.9%), specificity was 96.7% (95% Cl 94.3% to 98.3%), negative predictive accuracy was 99.7% (95% Cl 98.3% to 100%) and positive predictive accuracy was 65.6% (95% Cl 46.9% to 8%). Electronic screening was completed in 10 min compared with 60 h for GP manual review. 10/32 patients (31%) were considered high risk and recalled for clinical assessment. Six of seven patients (86%) who attended clinical assessment were diagnosed with phenotypic FH on examination

Brett <i>et</i> <i>al.</i> 2021 ²⁴	Improving detection and management of familial hypercholesterola emia in Australian general practice	Patients that attended 15 general practices (≥1) in the previous 2 years (n = 232,139)	Heart (2021), Vol. 107 Issue 15	Across 5 Australian states: Western Australia, New South Wales, Queensland, Victoria, Tasmania	Examine the feasibility of using an electronic screening tool (TARB-Ex) to identify and better manage primary care patients with FH	First stage was TARB-Ex screening, then came manual record review, clinical assessment and information from follow-up consultation	Non- randomised, non- controlled, pre- and post- intervention study	Individuals identified with possible or definite FH using the DLCNC, Cholesterol levels, Lipid-lowering treatment prescription	1843 patients were identified by TARB- Ex as at potential risk of FH (DLCNC score ≥5). After GP medical record review, 900 of these patients (49%) were confirmed with DLCNC score ≥5 and classified as high-risk of FH. After follow-up, there were significant reductions in plasma total cholesterol (-9%) and LDL-cholesterol (-16%) levels in patients with GP management compared with baseline (untreated LDL-c) (p<0.01)
Communi	ty and healthcare syste	em-based studies for t	the improved ide	entification of FH	w/o direct involvement	t of a community laboratory	,		
Author, year	Study title	Study population	Journal/ publication	Location	Study aim/ topic	Strategy employed	Study design	Outcome measures	Major findings
Benn <i>et</i> <i>al.</i> 2012 ⁴¹	Familial hypercholesterola emia in the Danish general population: Prevalence, coronary artery disease, and cholesterol- lowering medication	An unselected, community-based population from the Copenhagen General Population Study (n= 69,016)	The Journal of Clinical Endocrinolo gy and Metabolism (2012), Vol. 97, Issue 11	Copenhagen, Denmark	Investigate the prevalence of FH and the associations between FH and coronary artery disease and cholesterol- lowering medication in the Copenhagen General Population Study	The diagnostic criteria used was the Dutch Lipid Clinic Network Criteria. Information on coronary artery disease was collected. Plasma concentrations of cholesterol, high- density lipoprotein (HDL)-cholesterol, triglycerides, and glucose were measured	Cross- sectional study	Patients identified as having possible or definite FH using the DLCNC and genetic testing	The prevalence of FH was 0.73% (1:137). The prevalence of coronary artery disease among FH participants was 33%. Only 48% of subjects with FH admitted to taking cholesterol-lowering medication. The odds ratio for coronary artery disease off cholesterol- lowering medication was 13.2 (10.0- 17.4) in definite/probable FH compared with non-FH subjects. The corresponding odds ratio for coronary artery disease in FH subjects on cholesterol-lowering medication was 10.3 (7.8-13.8, 95% CI)
Safarov a <i>et al.</i> 2016 ⁴²	Rapid identification of familial hypercholesterola emia from electronic health	Individual lipid levels were extracted from structured laboratory databases from June 21, 1993, to	Journal of Clinical Lipidology (2016), Vol. 10, Issue 5	Minnesota, USA	Developed an electronic phenotyping algorithm for rapid identification of FH in electronic health records (EHRs) and	A modified numerical score system of the DLCN criteria. Several other variables that were incorporated in the SEARCH electronic phenotyping algorithm	Cohort study	Identification of possible or definite FH diagnosis using the SEARCH algorithm, Cholesterol levels	The SEARCH algorithm identified 32 definite and 391 probable cases with an overall FH prevalence of 0.32% (1:310). Only 55% of the FH cases had a diagnosis code relevant to FH. Mean LDL-c at the time of FH ascertainment was 237 mg/dL; at follow-up, 70% (298

	records: The SEARCH study	December 31, 2014. (n= 131,000)			deployed it in the Screening Employees And Residents in the Community for Hypercholesterole mia (SEARCH) study				of 423) of patients were on lipid- lowering treatment with 80% achieving an LDL-C ≤100 mg/dL. Of treated FH patients with premature CHD, only 22% (48/221) achieved an LDL-C ≤70 mg/dL
Zamora <i>et al.</i> 2017 ⁴³	Familial hypercholesterola emia in a European Mediterranean population— Prevalence and clinical data from 2.5 million primary care patients	Patient records from a Spanish patient information system aged ≥8 years, alive on December 2014, and with at least 1 low-density lipoprotein cholesterol (LDL- c) measurement between 2006 and 2014 (n= 2,554,644)	Journal of Clinical Lipidology (2017), Vol. 11, Issue 4	Spain	Estimate the prevalence of the FH phenotype (FH- P) and to describe its clinical characteristics in a Mediterranean population	Heterozygous FH-P and homozygous FH-P was defined as an untreated low-density lipoprotein cholesterol plasma concentration threshold. The presence of cardiovascular diseases and risk factors was defined by coded (ICD-9 and ICD- 10) medical records from primary care and hospital discharge databases	Cross- sectional study	Patients identified with possible FH using age- adjusted LDL-c thresholds	The age- and sex-standardized prevalence of heterozygous FH-P and homozygous FH-P were 1/192 individuals and 1/425,774 individuals, respectively. Among patients with FH-P aged >18 years, cardiovascular disease prevalence was 3.5 times higher than in general population, and CHD prevalence in those aged 35 to 59 years was 4.5 times higher than in those without FH-P. Lipid-lowering therapy was lacking in 13.5% of patients with FH-P, and only 31.6% of men and 22.7% of women were receiving high or very high-intensity lipid-lowering therapy
Elis <i>et</i> <i>al.</i> 2020 ⁴⁴	The characteristics of patients with possible familial hypercholesterole mia—screening a large payer/provider healthcare delivery system	Medical records from an Israeli healthcare fund between 31 December 2006 to 1 January 2018 (n=~4,500,000)	QJM (2020), Vol. 113, Issue 6	Israel	Applied standard laboratory criteria across a large electronic medical record database to describe cross- sectional population with possible FH	Individuals that met the MED-PED criteria were considered to have possible FH, excluding those with secondary causes. Demographic and clinical characteristics were described to estimate the burden of FH on healthcare	Cross- sectional study	Patients identified with possible FH using the MED- PED criteria	The study cohort included 12,494 subjects out of around 4.5 million. The estimated prevalence in Israel was found to be 1:285. These patients had a significant family history of cardiovascular disease. Most of the patient's LDL-c was not controlled and only 25% were medically treated
Chua et al. 2021 ⁴⁵	Familial Hypercholesterola emia in the	Participants attending a Health Screening	Journal of Atheroscler osis and	Malaysia	Report the first nation-wide investigation on the	Blood samples were collected for lipid profiles and glucose	Cross- sectional study	Identifies patients that have a possible or	Out of 5130 recruited community participants, 55 patients were clinically categorised as potential FH, making the

	Malaysian Community: Prevalence, Under-Detection and Under- Treatment	Programme across Malaysia from 2011 to 2019 (n= 5130)	Thrombosis (2021), Vol. 28, Issue 10		prevalence of FH in the Malaysian population, their detection rate, proportion on lipid- lowering treatment and control within the Malaysian community	analyses. Personal and family medical histories were collected by means of assisted questionnaire. Physical examination for tendon xanthomata and premature corneal arcus were conducted on-site. FH was clinically screened using the DLCNC		definite diagnosis of FH using the DLCNC	prevalence FH among the community 1:100. Based on current total population of Malaysia (32 million), the estimated number of FH patients in Malaysia is 320,000, while the detection rates are estimated as 0.5%. Lipid-lowering medications were prescribed to 54.5% and 30.5% of potential and possible FH patients, respectively, but none of them achieved the therapeutic LDL-c target
Eid <i>et</i> <i>al.</i> 2022 ⁴⁶	Improving Familial Hypercholesterol emia Diagnosis Using an EMR- based Hybrid Diagnostic Model	Patient electronic medical records (EMR) showing any lipid profile from a clinical encounter in a US healthcare system between January 1, 2009, and April 30, 2020 (n = 289,299)	The Journal of Clinical Endocrinolo gy and Metabolism (2022), Vol. 107 Issue 4	Kentucky, USA	Test the utility of a hybrid diagnostic model to determine FH prevalence and treatment characteristics in the study population	Dynamic EMR-based clinical decision support tool used in combination with the DLCNC or the AHA criteria for diagnosis of FH	Cross- sectional study	Identifies patients that have a possible or definite diagnosis of FH using the DLCNC and the AHA criteria, Referral to specialist	From 264,264 patient records, between 794 and 1571 patients were identified as having FH based on the hybrid diagnostic model, with a prevalence of 1:160 to 1:300. These patients had a higher prevalence of premature CAD (38-58%) than the general population (1.8%) and higher than those having a high CAD risk but no FH (10%). Although most patients were receiving lipid-lowering therapies (LLTs), only 50% were receiving guideline-recommended high-intensity LLT
Fasano <i>et al.</i> 2022 ⁴⁷	Search for familial hypercholesterole mia patients in an Italian community: A real-life retrospective study	Individuals in a laboratory database (n= 221,644) and patients with ASCVD (n= 583) who underwent percutaneous coronary angioplasty (PCTA)	Nutrition, Metabolism & Cardiovascu lar Diseases (2022), Vol. 32, Issue 3	Italy	Identify and genetically characterize potential FH patients referred to the Lipid Clinic and monitor attainment of treatment goals in identified patients	Monitored the lipid profiles of subjects with LDL-C ≥ 250 mg/dl identified by laboratory survey, PTCA patients and patients from the Lipid Clinic	Cross- sectional study	Identifies patients that have a possible or definite diagnosis of FH using the DLCNC and genetic testing, Referral to a specialist	The laboratory survey identified 1.46% of subjects with LDL-C \geq 190 mg/dl (1:68) and 0.08% with LDL-C \geq 250 mg/dl (1:125). Probable/definite FH was suspected in 3% of PTCA patients. Molecularly-confirmed FH was found in 44% of subjects with clinical suspicion of FH. The 50% LDL-c reduction target was achieved by 70.6% of subjects with clinical suspicion of FH Only 18.5% of PTCA patients reached the LDL-c < 55 mg/dl target

Studies the	Studies that directly involved community laboratories											
Author, year	Study title	Study population	Journal/ publication	Location	Study aim/ topic	Strategy employed	Study design	Outcome measures	Major findings			
Bell <i>et</i> <i>al.</i> 2012 ⁴⁸	Opportunistic screening for familial hypercholesterola emia via a community laboratory	Individuals with a cholesterol result from a private community laboratory in Western Australia between 1 st May 2010 to 30 th April 2011 (n= 84,823)	Annals of Clinical Biochemistr y (2012) Vol. 49, Issue 6	Western Australia, Australia	Determine the ability of a community laboratory to screen for individuals with potential FH	The prevalence of possible FH was based on LDL-cholesterol thresholds employed by the Make Early Diagnosis-Prevent Early Death (MED-PED), the Simon Broome Registry and the Dutch Lipid Clinic Network Criteria	Cross- sectional study	Possible or definite diagnosis of FH using LDL-c thresholds	During this period, 84,823 patients had 99,467 serum LDL-cholesterol measurements, with 91.8% requested by general practitioners. The prevalence of FH based on an LDL- cholesterol ≥250 mg/dL, the 99.75th percentile, was 1:398 in this sample population, only the MED-PED LDL- cholesterol criteria gave a similar prevalence of 1:482			
Bell <i>et</i> <i>al.</i> 2013 ²⁵	Impact of interpretative commenting on lipid profiles in people at high risk of familial hypercholesterola emia	Individuals with an LDL-c of ≥6.5 mmol/L on lipid profile requested by a GP between 23 rd June and 19 th October 2010	Clinica Chimica Acta (2013), Vol. 422	Western Australia, Australia	Investigate whether interpretative commenting on lipid profiles could improve FH detection and treatment	Interpretative comments were added to the lipid results with the assistance of an expert system, with all comments reviewed by a chemical pathologist	Case- historical control study	Identification of patients with possible FH using LDL-c thresholds, Cholesterol levels, Referral to a specialist	Interpretative commenting was associated with a significant additional LDL-c reduction (0.7mmol/L) compared with controls. A minority of individuals (3/26, 11.5%) received a specialist referral			
Bell <i>et</i> <i>al.</i> 2014 ¹⁶	Can Patients be Accurately Assessed for Familial Hypercholesterola emia in Primary Care?	Individuals at risk of FH were identified by either the laboratory highlighting individuals with elevated LDL-c, or by using an informatics tool to search general practice databases (n= 153)	Heart, Lung and Circulation (2014), Vol. 23, Issue 12	Western Australia, Australia	Investigate whether individuals with FH could be accurately identified in primary care	Individuals at risk of FH were identified by either the laboratory highlighting individuals with elevated LDL-c, or by using an informatics tool to search general practice databases. DLCNC scores assessed by GPs, were compared with the DLCNC assessed by specialists using primary care data in 153 individuals. 30	Non- randomised, non- controlled, intervention study	Identification of patients with possible or definite FH using the DLCNC and genetic testing, Referral to a specialist	GPs correctly classified 39 (86.7%) individuals with 'clinical FH', and 32 (94%) with 'unlikely FH' relative to specialists. Lin's concordance correlation coefficient was high (0.832 (0.783 - 0.881), p< 0.001) between specialist and GPs, with an overall agreement of 83.6%, 0.744 (0.642 - 0.831). After specialist review, 15 individuals (50%) were diagnosed with clinical FH, four (26.7%) had FH mutations. GPs correctly classified 12 (80%) of these individuals with clinical FH			

						individuals with DLCNC score ≥4 underwent specialist review and genetic testing			
Bell <i>et</i> <i>al.</i> 2014 ⁴⁹	Detecting familial hypercholesterola emia in the community: Impact of a telephone call from a chemical pathologist to the requesting general practitioner	Individuals that were having their LDL-cholesterol measured by a private community laboratory in Western Australia, at the request of a GP. The Intervention group consisted of the first 100 individuals whose GP's answered the call between 1 st November 2010 and 6 th October 2011 (n= 100)	Atheroscler osis (2014), Vol. 234, Issue 2	Western Australia, Australia	Determine whether a telephone call from a chemical pathologist to the requesting general practitioner (GP) of individuals at high risk of familial hypercholesterolae mia (FH) increases specialist referral and detection of FH	All laboratory reports (cases and controls) received interpretative comments highlighting FH. In addition, the cases' GPs received a telephone call from the chemical pathologist to highlight their patient's risk of FH and suggest specialist referral, the controls' GPs were not telephoned	Case- historical control study	Identification of patients with possible or definite FH using an LDL-c threshold and genetic testing, Referral to a specialist	After 12 months follow-up, 27 (27%) cases were referred to clinic compared with 4 (4%) controls (p < 0.0001). 25 cases were reviewed at clinic, 12 (48%) had definite FH and 18 (72%) had probable or definite FH according to the DLCNC, 2 cases did not attend their clinic appointments. Genetic testing was performed in 23 individuals: 7 (30%) had pathogenic FH mutations. Genotypic cascade screening of 4 kindreds from the intervention group detected an additional 7 individuals with FH and excluded 5 mutation- negative family members

Bell <i>et</i> <i>al.</i> 2015 ⁵⁰	The potential role of an expert computer system to augment the opportunistic detection of individuals with familial hypercholesterola emia from a community laboratory	Patients who had lipid profiles requested from a private community laboratory in Western Australia, between the 1st of May 2010 and the 30th of April 2011 (n= 84,823)	Clinica Chima Acta (2015), Vol. 448	Western Australia, Australia	Determine if an expert system (ES) at a community laboratory could identify information relevant for estimating an individual's likelihood of FH using the DLCNC	The ES was used to retrospectively search a database consisting of laboratory results and clinical details. The DLCNC was used to estimate an individual's risk of FH	Non- randomised, non- controlled, intervention study	Identify individuals at risk of FH using the DLCNC	84,823 individuals had ≥ 1 LDL- cholesterol request with data available on 84,083 (99.1%). Clinical details were provided on 71,282 (84.8%) individuals. History relevant to the DLCNC was present in 883 (1.1%) individuals, with premature CVD and non-cardiac vascular disease present in 177 and 64 individuals, respectively. Statin therapy was reported in 5118 individuals; 112 individuals with a current LDL- cholesterol of < 6.5 mmol/L had a previous LDL-cholesterol of ≥ 6.5 mmol/L
Bender <i>et al.</i> 2016 ²⁶	Interpretative comments specifically suggesting specialist referral increase the detection of familial hypercholesterola emia	Individuals referred by a GP who were found to have an LDL- cholesterol ≥6.5mmol/L measured at a private community laboratory in Western Australia, between 1 December 2012 and 1 December 2013 (n= 231)	Pathology (2016), Vol. 48, Issue 5	Western Australia, Australia	Determine whether specifically recommending referral to the regional Lipid Disorders Clinic (LDC) increased referral and FH detection rates	Interpretative comments were added to the lipid results with the assistance of an expert system with all comments reviewed by one of two chemical pathologists before being issued. All subjects received an interpretative comment that raised FH as a consideration. The cases received an additional recommendation for referral to a lipid specialist	Prospective case-control study	Identify individuals with possible FH using LDL-c thresholds and genetic testing, Referral to a specialist	There were 231 individuals with an LDL-cholesterol ≥6.5 mmol/L; 96 (42%) controls and 135 (58%) cases, of which 99 were fax-cases. Twenty-four (18%) cases were referred to clinic compared with eight (8%) controls (p = 0.035). After specialist review and genetic testing, four probable and four definite FH individuals were detected amongst controls, compared with seven possible, eight probable and nine definite FH amongst cases. Genetic testing was performed in 31 (94%) individuals, 13 (42%) had a causative mutation identified

Fath <i>et</i>	FH ALERT: efficacy	Patients aged 60	Scientific	Bavaria,	Assess whether	Participating physicians	Non-	Possible diagnosis	~5% of all tested samples triggered an
al.	of a novel	and below who	Reports	Germany	alerting physicians	received an alert letter	randomised,	of FH using an	FH alert which was triggered by 2846
2021 ⁵¹	approach to	were being	(2021) <i>,</i> Vol.		for the possibility of	(AL) once total	non-	LDL-c threshold	patients. 93 genetic test were sent and
	identify patients	evaluated for	11		FH impacted	cholesterol or LDL-c	controlled,	and genetic	26 genetic tests (28%) were returned, 5
	with familial	elevated LDL-C or			additional	levels exceeded	intervention	testing	patients (19%) tested positive for FH
	hypercholesterole	total cholesterol			diagnostic activity	predefined threshold	study		
	mia	(TC)				values. The ALs also			
		measurements				included scientific			
		between March				information about FH			
		15, 2018 and June				and the further			
		15, 2018				diagnostic options			
		(n = 60,812)				including genetic			
						testing			

Acknowledgements

No funding was provided for this research. The authors stated that they had no interests

which might be perceived as posing a conflict or bias.

References

1. Representatives of the Global Familial Hypercholesterolemia C, Wilemon KA, Patel J, et al. Reducing the Clinical and Public Health Burden of Familial Hypercholesterolemia: A Global Call to Action. *JAMA Cardiol*. Feb 1 2020;5(2):217-229.

doi:10.1001/jamacardio.2019.5173

2. Hu P, Dharmayat KI, Stevens CAT, et al. Prevalence of Familial Hypercholesterolemia Among the General Population and Patients With Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Analysis. *Circulation*. Jun 2 2020;141(22):1742-1759. doi:10.1161/circulationaha.119.044795

3. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. *Eur Heart J.* Jun 21 2020;41(24):2313-2330. doi:10.1093/eurheartj/ehz962

4. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. *European Heart Journal*. 2017;38(32):2459-2472. doi:10.1093/eurheartj/ehx144

5. Pang J, Sullivan DR, Brett T, Kostner KM, Hare DL, Watts GF. Familial Hypercholesterolaemia in 2020: A Leading Tier 1 Genomic Application. *Heart Lung Circ*. Apr 2020;29(4):619-633. doi:10.1016/j.hlc.2019.12.002

6. Andermann A, Blancquaert I, Beauchamp S, Déry V. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. *Bull World Health Organ*. Apr 2008;86(4):317-9. doi:10.2471/blt.07.050112

7. Gidding SS, Wiegman A, Groselj U, et al. Paediatric familial hypercholesterolaemia screening in Europe: public policy background and recommendations. *European Journal of Preventive Cardiology*. 2022;29(18):2301-2311. doi:10.1093/eurjpc/zwac200

8. Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease : Consensus Statement of the European Atherosclerosis Society. *European Heart Journal*. 2013;34(45):3478-3490. doi:10.1093/eurheartj/eht273

9. Hartgers ML, Besseling J, Stroes ES, et al. Achieved LDL cholesterol levels in patients with heterozygous familial hypercholesterolemia: A model that explores the efficacy of conventional and novel lipid-lowering therapy. *J Clin Lipidol*. Jul-Aug 2018;12(4):972-980.e1. doi:10.1016/j.jacl.2018.04.002

10. Perez de Isla L, Alonso R, Watts GF, et al. Attainment of LDL-Cholesterol Treatment Goals in Patients With Familial Hypercholesterolemia: 5-Year SAFEHEART Registry Follow-Up. *J Am Coll Cardiol*. Mar 22 2016;67(11):1278-85. doi:10.1016/j.jacc.2016.01.008 11. Iyen B, Akyea RK, Weng S, Kai J, Qureshi N. Statin treatment and LDL-cholesterol treatment goal attainment among individuals with familial hypercholesterolaemia in primary care. *Open Heart*. Oct 2021;8(2)doi:10.1136/openhrt-2021-001817

12. Ahmad ZS, Andersen RL, Andersen LH, et al. US physician practices for diagnosing familial hypercholesterolemia: data from the CASCADE-FH registry. *J Clin Lipidol*. Sep-Oct 2016;10(5):1223-9. doi:10.1016/j.jacl.2016.07.011

13. Vallejo-Vaz AJ, Robertson M, Catapano AL, et al. Low-Density Lipoprotein Cholesterol Lowering for the Primary Prevention of Cardiovascular Disease Among Men With Primary Elevations of Low-Density Lipoprotein Cholesterol Levels of 190 mg/dL or Above: Analyses From the WOSCOPS (West of Scotland Coronary Prevention Study) 5-Year Randomized Trial and 20-Year Observational Follow-Up. *Circulation*. Nov 14 2017;136(20):1878-1891. doi:10.1161/CIRCULATIONAHA.117.027966

14. Luirink IK, Wiegman A, Kusters DM, et al. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. *N Engl J Med*. Oct 17 2019;381(16):1547-1556. doi:10.1056/NEJMoa1816454

15. Brett T, Qureshi N, Gidding S, Watts GF. Screening for familial hypercholesterolaemia in primary care: Time for general practice to play its part. *Atherosclerosis*. Oct 2018;277:399-406. doi:10.1016/j.atherosclerosis.2018.08.019

16. Bell DA, Kirke AB, Barbour R, et al. Can patients be accurately assessed for familial hypercholesterolaemia in primary care? *Heart Lung Circ*. Dec 2014;23(12):1153-7. doi:10.1016/j.hlc.2014.06.015

17. Vickery AW, Bell D, Garton-Smith J, Kirke AB, Pang J, Watts GF. Optimising the detection and management of familial hypercholesterolaemia: central role of primary care and its integration with specialist services. *Heart Lung Circ.* Dec 2014;23(12):1158-64. doi:10.1016/j.hlc.2014.07.062

18. Alonso R, Perez de Isla L, Muñiz-Grijalvo O, Mata P. Barriers to Early Diagnosis and Treatment of Familial Hypercholesterolemia: Current Perspectives on Improving Patient Care. *Vasc Health Risk Manag.* 2020;16:11-25. doi:10.2147/vhrm.S192401

19. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. *International Journal of Social Research Methodology*. 2005/02/01 2005;8(1):19-32. doi:10.1080/1364557032000119616

20. Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. *Implementation Science*. 2010/09/20 2010;5(1):69. doi:10.1186/1748-5908-5-69

21. Qureshi N, Weng S, Tranter J, El-Kadiki A, Kai J. Feasibility of improving identification of familial hypercholesterolaemia in general practice: intervention development study. *BMJ Open*. May 26 2016;6(5):e011734. doi:10.1136/bmjopen-2016-011734

22. Weng S, Kai J, Tranter J, Leonardi-Bee J, Qureshi N. Improving identification and management of familial hypercholesterolaemia in primary care: Pre- and post-intervention study. *Atherosclerosis*. Jul 2018;274:54-60. doi:10.1016/j.atherosclerosis.2018.04.037

23. Troeung L, Arnold-Reed D, Chan She Ping-Delfos W, et al. A new electronic screening tool for identifying risk of familial hypercholesterolaemia in general practice. *Heart*. Jun 1 2016;102(11):855-61. doi:10.1136/heartjnl-2015-308824

24. Brett T, Chan DC, Radford J, et al. Improving detection and management of familial hypercholesterolaemia in Australian general practice. *Heart*. May 20 2021;107(15):1213-9. doi:10.1136/heartjnl-2020-318813

25. Bell DA, Bender R, Hooper AJ, et al. Impact of interpretative commenting on lipid profiles in people at high risk of familial hypercholesterolaemia. *Clin Chim Acta*. Jun 25 2013;422:21-5. doi:10.1016/j.cca.2013.03.027

26. Bender R, Edwards G, McMahon J, et al. Interpretative comments specifically suggesting specialist referral increase the detection of familial hypercholesterolaemia. *Pathology*. Aug 2016;48(5):463-6. doi:10.1016/j.pathol.2016.04.003

27. Green P, Neely D, Humphries SE. Improving detection of familial hypercholesterolaemia in primary care using electronic audit and nurse-led clinics. *J Eval Clin Pract*. Jun 2016;22(3):341-8. doi:10.1111/jep.12481

28. Ingoe L, Potter A, Musson S, et al. Improving the identification of patients with a genetic diagnosis of familial hypercholesterolaemia in primary care: A strategy to achieve the NHS long term plan. *Atherosclerosis*. May 2021;325:38-45.

doi:10.1016/j.atherosclerosis.2021.03.035

29. Casula M, Catapano AL, Rossi Bernardi L, Visconti M, Aronica A. Detection of familial hypercholesterolemia in patients from a general practice database. *Atheroscler Suppl*. Oct 2017;29:25-30. doi:10.1016/j.atherosclerosissup.2017.07.004

30. Carvalho C, Williams C, Raisi-Estabragh Z, et al. Application of a risk stratification tool for familial hypercholesterolaemia in primary care: an observational cross-sectional study in an unselected urban population. *Heart*. 2021;107(15):1220-1225. doi:10.1136/heartjnl-2020-318714

31. Qureshi N, Akyea RK, Dutton B, et al. Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care. *Open Heart*. 2021;8(2):e001752. doi:10.1136/openhrt-2021-001752

32. Qureshi N, Da Silva MLR, Abdul-Hamid H, Weng SF, Kai J, Leonardi-Bee J. Strategies for screening for familial hypercholesterolaemia in primary care and other community settings. *Cochrane Database Syst Rev.* Oct 7 2021;10(10):Cd012985.

doi:10.1002/14651858.CD012985.pub2

33. Silva L, Qureshi N, Abdul-Hamid H, Weng S, Kai J, Leonardi-Bee J. Systematic Identification of Familial Hypercholesterolaemia in Primary Care-A Systematic Review. *J Pers Med*. Apr 15 2021;11(4)doi:10.3390/jpm11040302

34. Qureshi N, Akyea RK, Dutton B, et al. Case-finding and genetic testing for familial hypercholesterolaemia in primary care. *Heart*. Dec 2021;107(24):1956-1961. doi:10.1136/heartjnl-2021-319742

36. Gray J, Jaiyeola A, Whiting M, Modell M, Wierzbicki AS. Identifying patients with familial hypercholesterolaemia in primary care: an informatics-based approach in one primary care centre. *Heart*. Jun 2008;94(6):754-8. doi:10.1136/hrt.2006.107391

37. Kirke AB, Barbour RA, Burrows S, et al. Systematic detection of familial hypercholesterolaemia in primary health care: a community based prospective study of three methods. *Heart Lung Circ*. Mar 2015;24(3):250-6. doi:10.1016/j.hlc.2014.09.011

38. Vickery AW, Ryan J, Pang J, Garton-Smith J, Watts GF. Increasing the Detection of Familial Hypercholesterolaemia Using General Practice Electronic Databases. *Heart Lung Circ*. May 2017;26(5):450-454. doi:10.1016/j.hlc.2016.09.012

39. Aref-Eshghi E, Oake J, Godwin M, et al. Identification of Dyslipidemic Patients Attending Primary Care Clinics Using Electronic Medical Record (EMR) Data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) Database. *J Med Syst*. Mar 2017;41(3):45. doi:10.1007/s10916-017-0694-7

40. Mülverstedt S, Hildebrandt PR, Prescott E, Heitmann M. Screening for potential familial hypercholesterolaemia in general practice: an observational study on prevalence and management. *BJGP Open*. Apr 2021;5(2)doi:10.3399/bjgpopen20X101142

41. Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. *J Clin Endocrinol Metab*. Nov 2012;97(11):3956-64. doi:10.1210/jc.2012-1563

42. Safarova MS, Liu H, Kullo IJ. Rapid identification of familial hypercholesterolemia from electronic health records: The SEARCH study. *J Clin Lipidol*. Sep-Oct 2016;10(5):1230-9. doi:10.1016/j.jacl.2016.08.001

43. Zamora A, Masana L, Comas-Cufí M, et al. Familial hypercholesterolemia in a European Mediterranean population-Prevalence and clinical data from 2.5 million primary care patients. *J Clin Lipidol*. Jul-Aug 2017;11(4):1013-1022. doi:10.1016/j.jacl.2017.05.012

44. Elis A, Leventer-Roberts M, Bachrach A, et al. The characteristics of patients with possible familial hypercholesterolemia-screening a large payer/provider healthcare delivery system. *Qjm*. Jun 1 2020;113(6):411-417. doi:10.1093/qjmed/hcz327

45. Chua YA, Razman AZ, Ramli AS, Mohd Kasim NA, Nawawi H. Familial Hypercholesterolaemia in the Malaysian Community: Prevalence, Under-Detection and Under-Treatment. *J Atheroscler Thromb*. Oct 1 2021;28(10):1095-1107. doi:10.5551/jat.57026

46. Eid WE, Sapp EH, Wendt A, Lumpp A, Miller C. Improving Familial Hypercholesterolemia Diagnosis Using an EMR-based Hybrid Diagnostic Model. *J Clin Endocrinol Metab*. Mar 24 2022;107(4):1078-1090. doi:10.1210/clinem/dgab873

47. Fasano T, Trenti C, Negri EA, et al. Search for familial hypercholesterolemia patients in an Italian community: A real-life retrospective study. *Nutr Metab Cardiovasc Dis*. Mar 2022;32(3):577-585. doi:10.1016/j.numecd.2021.12.024

48. Bell DA, Hooper AJ, Bender R, et al. Opportunistic screening for familial hypercholesterolaemia via a community laboratory. *Ann Clin Biochem*. Nov 2012;49(Pt 6):534-7. doi:10.1258/acb.2012.012002

49. Bell DA, Hooper AJ, Edwards G, et al. Detecting familial hypercholesterolaemia in the community: impact of a telephone call from a chemical pathologist to the requesting general practitioner. *Atherosclerosis*. Jun 2014;234(2):469-72.

doi:10.1016/j.atherosclerosis.2014.04.002

50. Bell DA, Edwards G, Hooper AJ, et al. The potential role of an expert computer system to augment the opportunistic detection of individuals with familial hypercholesterolaemia from a community laboratory. *Clin Chim Acta*. Aug 25 2015;448:18-21. doi:10.1016/j.cca.2015.06.004

51. Fath F, Bengeser A, Barresi M, et al. FH ALERT: efficacy of a novel approach to identify patients with familial hypercholesterolemia. *Sci Rep*. Oct 14 2021;11(1):20421. doi:10.1038/s41598-021-99961-y