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Anatomy-informed multimodal learning for
myocardial infarction prediction

Ivan-Daniel Sievering, Ortal Senouf, Thabo Mahendiran, David Nanchen, Stephane Fournier, Olivier Muller,
Pascal Frossard, Emmanuel Abbé and Dorina Thanou

Abstract—In patients with coronary artery disease the pre-
diction of future cardiac events such as myocardial infarction
(MI) remains a major challenge. In this work, we propose a
novel anatomy-informed multimodal deep learning framework
to predict future MI from clinical data and Invasive Coro-
nary Angiography (ICA) images. The images are analyzed by
Convolutional Neural Networks (CNNs) guided by anatomical
information, and the clinical data by an Artificial Neural Net-
work (ANN). Embeddings from both sources are then merged
to provide a patient-level prediction. The performance of our
framework on a clinical study of 445 patients admitted with
acute coronary syndromes confirms that multimodal learning
increases the predictive power and achieves good performance,
which outperforms the prediction obtained by each modality
independently as well as that of interventional cardiologists. To
the best of our knowledge, this is the first attempt towards
combining multimodal data through a deep learning framework
for future MI prediction.

Index Terms—Coronary Artery Disease; Myocardial Infarc-
tion; Invasive Coronary Angiography; Diameter Stenosis; Deep
Learning; Multimodal data; AI for cardiology

I. INTRODUCTION

Coronary artery disease (CAD), a leading cause of death
worldwide [1], refers to a disease of the coronary arteries
that supply blood to the heart muscle. The disease results,
primarily, from the development of plaques of atherosclerosis
in the arterial wall, which ultimately lead to narrowings
(stenoses) and reduced blood flow. In the acute setting, CAD
takes the form of an acute coronary syndrome (ACS), with the
most feared manifestation being a myocardial infarction (MI)
resulting from the rupture of a plaque of atherosclerosis and
the subsequent, abrupt interruption of coronary blood flow. The
resulting necrosis of the heart muscle can lead to numerous
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complications including a reduction in heart function (heart
failure), arrhythmia (including cardiac arrest), and death.

However, CAD is a complex pathological process with
numerous factors that drive its development, its progression,
and its risk of provoking an MI. At a local level, the diameter
of the stenosis does correlate with the risk of MI, but it
remains insufficient as a predictor of MI, as highlighted by the
influence of other local factors such the hemodynamic impact
of the stenosis [2]. At a patient level, important drivers of CAD
include cardiovascular risk factors (e.g., age, sex, hypertension,
diabetes, dyslipidemia), all of which can influence the risk
of MI. As a result, in clinical practice, future MI prediction
remains a challenge. This is highlighted by the fact that up
to 10% of patients with stenoses deemed non-significant (i.e.,
stenoses < 50% without a significant hemodynamic impact)
still present an MI or a need for urgent revascularization
(i.e., invasive treatment such as stenting) in the ensuing two
years [3]. Even among patients treated for an MI, the risk
of short- and long-term adverse outcomes remains significant.
Reinfarction represents a significant cause of poor outcomes
among MI patients, with rates as high as 4% at one year and
7% at three years [4].

In both acute and chronic settings, invasive coronary angiog-
raphy (ICA) remains the gold standard investigation for the
diagnosis and evaluation of CAD in clinics. ICA involves con-
tinuous X-ray (i.e., fluoroscopy) with simultaneous injection of
radiopaque contrast into the coronary arteries, thus permitting
the identification of coronary stenoses. In current clinical
practice, stenosis severity is still often only determined by
the physician’s estimation of percentage reduction in arterial
diameter. With this approach, a diameter stenosis ≥ 70%
is generally considered a strong indicator of a clinically
significant lesion, and thus a criterion for treatment (e.g.,
coronary stenting). New innovative approaches are thus needed
to drive progress in this field.

Recent advances in machine learning (ML), in combination
with the availability of multimodal data, show promise for cap-
turing and quantifying the complexity of CAD. Some works
have already focused on predicting MI in the next months from
patients’ clinical data using traditional ML algorithms such as
Logistic Regression, Random Forest, Gradient Boosting, (e.g.,
[5], [6]), with limited success. At the same time, convolutional
neural networks (CNNs) have been successfully applied in
detecting stenoses and inferring their severity directly from
ICA images [7], but without tackling the challenge of future
event prediction. First step towards future MI prediction from
ICA images was performed in [8] and [9], where a deep
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Fig. 1. Annotated ICA images of a patient; two views for each of three different arteries. The boxes indicate different anatomical segments and the red dots
that the segment is responsible of future MI.

learning framework was able to provide significant gains in
predicting future culprit lesions, i.e., lesions that lead to future
events. This study however was performed at a lesion level and
on patients with stable coronary disease. Given the complexity
of CAD and the numerous influencers of the risk of future
MI, a multimodal approach that extracts knowledge from all
available patient data appears crucial for predicting future
events.

In this work, we depart from the task of lesion-level MI
prediction from ICA images, instead tackling the challenge
of patient-level MI prediction using both ICA and clinical
information. In particular, we propose an anatomy-informed
deep learning framework that combines ICA imaging views
from the three different arteries of the coronary tree (see Fig. 1
for an example of the different arteries), cardiologist guidance
on significant anatomical regions, and clinical data in order
to predict the occurrence of future MI in patients presenting
with an acute coronary syndrome at baseline. The problem is
particularly challenging for ML settings not only due to the
systemic and biological complexity of the disease, but also
due to the frequency of the disease. Due to its invasive nature,
patients undergo ICA only if there is significant justification.
Moreover, out of all these patients, only a small percentage
will experience an MI in the future, limiting further the
number of MI events. This low and unbalanced data regime
is particularly challenging for ML algorithms.

To partially overcome these issues, we exploit our knowl-
edge of the coronary artery tree, and cast the problem as a
multi-objective learning framework, with the goal to predict
MI both at an artery (auxiliary task) and at a patient level
(main task). The MI prediction at an artery level is achieved
by learning discriminative features from the corresponding
artery views using anatomy-informed CNNs, combined with
learned representations of the clinical data, computed by an

ANN. These jointly learned artery-specific representations are
then concatenated to obtain a prediction at a patient level,
which is provided by another ANN. The results obtained in a
clinical cohort of 445 patients confirm that considering jointly
both image modalities and clinical data (AUC: 0.67± 0.04 &
F1-Score: 0.36± 0.12) provides significantly better predictive
power than learning from each modality independently (only
using ICA images: AUC: 0.64±0.04 & F1-Score: 0.30±0.11
and only using clinical data: AUC: 0.63 ± 0.04 & F1-Score:
0.28 ± 0.06). The multimodal learning scheme also outper-
forms the prediction of interventional cardiologists from the
ICA images (AUC: 0.54± 0.04 & F1-Score: 0.18± 0.04). To
the best of our knowledge, this is the first attempt towards
providing a global prediction score for future coronary artery
events by exploiting, in a data-driven manner, conjointly the
patients’ clinical data and their ICA images.

The rest of the paper is organized as follows. First, we
provide a description of the clinical study, the different
data modalities, and the cardiologist-guided annotation of
the anatomical segments of the coronary artery tree. Then,
we present our novel multi-objective learning approach for
predicting MI from multimodal data. Finally, we illustrate
the performance of our framework on the clinical study, and
compare it with different baselines that rely on learning from
a single modality or inferring from interventional cardiologist
expertise.

II. CLINICAL STUDY

The SPUM-ACS (Special Program University Medicine -
Acute Coronary Syndromes) registry is a cohort of consecutive
patients admitted with acute coronary syndromes (MI or
unstable angina) to four university hospitals in Switzerland
between 2009 and 2017. Further details of this registry have
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been reported previously [10]. For the present study, patients
hospitalised with ICA images available for analysis are in-
cluded. The clinical endpoint considered in this work is MI,
i.e., we consider patients who had an MI in the next five
years after the acute event (the acute coronary syndrome at
baseline). Our approach could be generalized to other datasets
that include enough ICA views and similar clinical information
about the patient.

A. ICA images

The dataset consists of clinical data and ICA images of 445
patients, out of which 47 experienced an MI during the follow-
up period. Six ICA images were extracted from the baseline
ICA of each patient: three arteries (left anterior descend-
ing (LAD), left circumflex (LCX) and right coronary artery
(RCA)) viewed from two angles with ≈30◦ of difference. An
illustrative example is shown in Fig. 1. Most of the ICA images
are 1524x1524 pixels in size. Those that have different sizes
are cropped or interpolated to this size. Only patients with
at least one view of each artery are considered. In order to
have a fixed number of views per patient, for patients with
only one view, we consider that view twice, while for patients
with more than two views, we randomly select two views per
patient. The initial number of patients in the dataset is 709,
but for 264 of them, the dataset does not contain at least one
view of each artery, or contain invalid values, and thus only
445 patients are considered.

B. Cardiology-guided annotation of anatomical segments

Each of the views is annotated by an interventional cardi-
ologist into anatomical segments as defined by the SYNTAX
system [11] (colored boxes in Fig. 1, with the color code being
consistent across patients). Each segment is then labeled as
being responsible for future MI or not (red dots in Fig. 1).
The anatomical segments will be used as attention masks in
order to guide the learning of the proposed algorithm towards
important regions of the coronary artery tree.

C. Clinical data

The clinical data consists of sex, age, body mass index, dia-
betes, smoking, hypertension, hypercholesterolaemia, previous
cardiovascular disease, Killip class, previous cardiac arrest and
kidney function, which are known to be cardiovascular risk
factors. The non-categorical data are normalised (mean sub-
tracted and divided by the standard deviation). Each missing
data is replaced by the median, if it belongs to a continuous
column (i.e., values of the column can take any value in a
given range), or by the most frequent value, if it belongs to
a categorical column (i.e., values of the column come from a
given set of possible values).

III. A MULTIMODAL LEARNING FRAMEWORK FOR MI
PREDICTION

A. Proposed model

We propose a novel, anatomy-informed learning framework
that predicts MI by combining coronary artery anatomical

information from ICA images with patient-level clinical data,
e.g., cardiovascular risk factors. Our approach takes the images
of the different ICA views of the artery as an input along
with the patient’s clinical data, permitting the prediction of
MI at an artery level. These artery-level predictions are then
combined in order to predict whether the patient will have
an MI. A summary of the architecture is illustrated in Fig. 3.
In what follows, we elaborate on each building block of the
architecture, and each data modality.

Imaging data: To extract predictive features from ICA
images, we adapt state-of-the-art image-based deep learning
architectures to the specificity of the coronary artery images.
For each main artery of the coronary tree, we propose a CNN-
based architecture, which receives as input the two views of the
artery as well as the corresponding attention masks that indi-
cate the bounding boxes drawn by the physicians. These masks
help the network focus on the main anatomical segments of
the coronary artery tree and not on the background, see Fig.
2. Given that both views represent a snapshot of the same
3D artery from different angles in the 2D space, we use this
anatomy-informed fact to process them jointly through two
siamese networks as we expect that similar features are present
in both pictures. The backbone is a ResNet-18 network [12],
which is a well-known state-of-the-art model. We then achieve
a global representation of the ICA images by concatenating the
representations of both views, followed by average pooling,
flattening and dropout, in order to reduce the dimension of
the embedded space and to diminish overfitting. Finally, this
global representation of the views is given as an input to a
classification layer, which is responsible for predicting MI in
each artery only from imaging data. This global representation
will be used for the multimodal prediction, jointly with the
embedding of the clinical data.

Clinical data: In parallel, clinical data are processed through
two hidden layers of 50 and 10 neurons (Fully connected (FC)
layer, batch normalisation, ReLU activation, dropout), inspired
by [13]. The feature representation extracted from this pipeline
defines the embedding of the clinical data. This embedding is
given as an input to a classification layer (FC, Sigmoid), which
is responsible for predicting patient level MI only from clinical
data, which provides another auxiliary loss. This embedding
will also be used for the multimodal prediction, jointly with
the images’ embedding.

Patient-level prediction (multimodal model): Once ICA and
clinical data have been processed independently, their rep-
resentations are combined in order to achieve a multimodal
embedding per artery. We follow a strategy similar to [14] and
[15], by concatenating the representations of the ICA images
and the clinical data, and further analysing them through a FC
layer activated by a Sigmoid function. This output is used to
compute the probability of an MI for a given artery. Finally,
the prediction at the patient level is defined as the worst-case
prediction of the three arteries, i.e., a single MI prediction
at an artery level is enough to predict MI at a patient level.
The independent prediction for each artery is motivated by
the anatomy-informed fact that MI is often a local event, i.e.,
information from an artery does not necessarily improve the
prediction in another one.
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Fig. 2. The annotated ICA images (left) are converted to a raw image (center) and a mask (right) that indicates the different anatomical segments. The mask
is created by generating Gaussian functions centered on the sections’ rectangle and using the same width and height.

Fig. 3. Anatomy-informed multimodal framework for MI prediction. The patient data is processed by the clinical data block and the two views of each artery
are processes by artery blocks. A prediction is provided for each artery and the prediction at patient level is the maximum of these three predictions. Note
that the decision at the artery level is influenced by the clinical data.

B. Training procedure

Our multimodal network is trained by minimizing a loss
function (l) that takes into account each of the building blocks
mentioned above. In particular, we aim to improve the overall
MI predictions by optimizing the artery level predictions from
multimodal embeddings (lpred(LAD/LCX/RCA)), the patient
level predictions from clinical data (lclinical), and the overall
patient level prediction from both clinical and artery level
embeddings (lpatient). In addition, for each artery view, we
define an auxiliary loss function that enforces similarity be-
tween views in the embedding space (lsimi(LAD/LCX/RCA)).
The loss will be zero if the views share the same information
(this loss helps the model to learn the features to detect as
we expect that both views mostly contain similar information).
This function is set to be the mean Euclidean distance between
the features extracted from the two pairs of views of the same
artery.

Thus, the complete loss that consists of the above mentioned
terms, can be defined as presented in Eq. 1. The weight of the
main loss (patient level prediction) is always fixed to one as
it is our main target and the others (w = [w1, w2, w3]) are
considered as hyperparameters (ranging from 0 to 1).

l = lpatient + laux, (1)

where

laux=w1∗lclinical+
[LAD,LCX,RCA]∑

n=artery

w2 ∗ lpred(n) + w3 ∗ lsimi(n).

(2)
Due to the imbalanced nature of our dataset (47 MI out of
445), the classification loss is defined as an AUC-specific
loss function ( [16], optimized by PESG [17]). To tackle the
imbalance, the MI samples of the dataset are oversampled
through data augmentation. Different image-based augmenta-
tion methods are applied to ICA images in the training set (no
data augmentation is applied to the clinical data). Each data
augmentation technique has a given probability of happening,
and is applied sequentially to the images in the following
order:

1) Random cropping (probability of happening: 20%): a
subimage is cropped on the image, which can have a
ratio between 75% and 125% of the original image and
between 80% and 99% of the size of the image. The
image is then resized to the input size;
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2) Random rotation (probability of happening: 20%): the
image is rotated between -30° and +30°;

3) Color (probability of happening: 20%): brightness is
altered between 80% and 120%, contrast between 80%
and 120%, saturation between 80% and 120% and hue
between -20% and 20%.

For the cropping and rotation, the same values are applied
to the raw image and its mask (otherwise, the mask does not
provide the correct insight). The parameters’ values have been
fixed heuristically.

The weights of the ResNet-18 backbones are initialized with
a pre-trained network on ImageNet [18] (it was found that
pre-trained models reach better performance, despite the fact
that our images are not “natural” images). The models are
trained using 5-fold cross-validation on the training set, with
similar number of MI patients in each fold. The multimodal
network is trained during 20 epochs with PESG (gamma:
595, margin: 0.99) and a batch size of 4. The weight decay
and the dropout are fixed to 0.003, and 31% respectively.
The learning rate is initially set to 0.077, and a scheduler
divides by 10 the learning at each plateau (3 consecutive
epochs without metric improvement). The weight of artery
loss, distance loss, and clinical data loss are set to 0.06, 0.007
and 0.006 respectively. All these hyperparameters have been
selected using grid search.

IV. RESULTS

In this section, we evaluate our multimodal frameworks for
MI prediction on the clinical study presented in Section II.
First, we introduce our baseline methods that are based on
predicting from each modality independently, as well as a
comparison with the prediction score achieved from the visual
inspections of interventional cardiologists. Next, the obtained
results are discussed.

A. Baselines

a) Single modality: ICA: We truncate the multimodal
model so that it uses only the ICA images, i.e., without the
“Clinical Data Block” in Fig. 3. We compute predictions per
artery and define the patient level prediction as the worst-
case scenario from each artery. The model is trained using the
AUC-loss (as for the multimodal).

The model is trained for 20 epochs with PESG optimizer
(gamma: 411, margin: 0.81) and a batch size of 4. The weight
decay is set to 0.007 and the dropout to 0.6%. The starting
learning rate is 0.03, divided by 10 after 3 epochs without
improvement. The weight of the artery loss is 0.002, and the
weight of the distance loss 0.0008.

b) Single modality: Clinical data: We use only the
“Clinical Data Block” from the multimodal model presented
in Fig. 3 and thus predict MI only based on clinical data.

The model is trained during 300 epochs with PESG
(gamma: 470, margin: 0.92) and a batch size of 32. A Kaiming
Normal [19] is used for initialisation. The weight decay is
0.0048, and the dropout is 49.76%. The starting learning rate
is 0.004, divided by 10 after 25 epochs without improvement.

TABLE I
DIFFERENT MODALITIES:

VALIDATION SCORES (MEAN±STD) OBTAINED FROM A 5-FOLD
CROSS-VALIDATION ON THE TRAINING SET.

Predictor F1-Score AUC-ROC Precision Recall
Naive 0.10 0.50 0.10 0.10
Interventional
Cardiologist 1

0.14 0.49 0.10 0.25

Interventional
Cardiologist 2

0.22 0.58 0.15 0.47

Cardiologists’
mean

0.18 0.54 0.13 0.36

Single modality:
Clinical data

0.28±0.06 0.63±0.04 0.18±0.04 0.72±0.17

Single modality:
ICA images

0.30±0.11 0.64±0.04 0.21±0.13 0.69±0.11

Multimodal
framework

0.36±0.12 0.67±0.04 0.36±0.18 0.44±0.10

TABLE II
PREDICTION PERFORMANCE ON A TEST SET.

Predictor F1-Score AUC-
ROC

Precision Recall Specificity

Interventional
Cardiologist 1

0.095 0.484 0.054 0.400 0.568

Interventional
Cardiologist 2

0.125 0.562 0.070 0.600 0.524

Cardiologists’
mean

0.110 0.523 0.062 0.500 0.546

Multimodal
framework

0.167 0.627 0.100 0.600 0.654

c) Visual inspection from interventional cardiologists:
The exact same set of patients is evaluated by two blinded
interventional cardiologists, who analysed the ICA views of
each patients and provided their patient-level prediction of MI.

d) Naive predictor: A naive strategy is applied: it clas-
sifies the sample as positive 10.6% of the time, and otherwise
as negative. This probability corresponds to distribution of MI
in the dataset (47 MI among 445 patients (10.6%)). Thus, this
benchmark shows the performance of random guesses.

B. Evaluation metrics

The dataset is split in training set and testing set. The
performances is computed i) by applying a 5-fold cross
validation procedure on the training set and recording the mean
and the standard deviation performances of the models on the
validation sets, and ii) by training the model on the whole
training set and testing it on the testing set.
Four evaluation metrics [20] are considered:

• AUC-ROC measures the balance between the True Posi-
tive Rate and the False Positive Rate;

• Precision measures the percentage of True Positive
among the samples classified as positive;

• Recall measures the percentage of positive correctly
classified;

• F1-Score is the harmonic mean of precision and recall.

C. Performance Analysis

In Table I, we compare the MI predictive performance of
the proposed multimodal framework, as well as the baselines
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mentioned above during the 5-fold cross validation procedure.
We observe that the performance of our multimodal framework
is better than learning from each modality independently,
highlighting the benefit of extracting predictive features from
both.

The performances obtained only from clinical data and only
from ICA are similar, highlighting the difficulty of learning
directly from ICA. This is most likely attributed to several
reasons with the main ones being the limited number of data
points, and in particular MI patients, and the important quan-
tity of uninformative background in ICA images. At the same
time, the multimodal approach outperforms learning from each
of the single modalities independently. These results confirm
our intuition that each modality contains different information
that, if combined properly, can provide a better predictive score
at a patient level. The low predictive performance achieved
from expert clinicians indicates the complexity of the task,
and the importance of building data-driven tools that could
assist clinical decision-making.

Table II shows the performances but by training on the
whole training set and testing on the testing dataset. These
results have to be considered with great care, the main reason
being that the testing dataset contains very few positive cases
(5 MI over 89 patients). Moreover, the results are outside of
the confidence intervals computed from the validation dataset.
However, these results lead to similar conclusions to the ones
presented previously.

D. Alternative models

a) Alternative single modality: ICA: Different variations
of the single modality ICA model are considered. First, two
losses are used for training, i.e., the AUC-loss (as for the
multimodal) and the Binary Cross Entropy (BCE) loss (op-
timized by Stochastic Gradient Descent (SGD)). Second, two
different ways for providing patients predictions are compared:
(i) Max analysis: We compute predictions per artery and define
the patient level prediction as the worst-case scenario from
each artery. (ii) Common: We concatenate the output of the
Siamese networks for all arteries and process the entire feature
representation to predict the MI at the patient level. It is
represented in Fig. 4. To improve the discriminative power, we
add some additional layers in the architecture. Those layers are
similar to the ones used in ResNet [12]: max pooling (to reduce
the size of the embedding space), a residual convolutional
block (two convolutional layers with batch normalization and
ReLU activation, connected by a residual connection), average
pooling, flattening, dropout, and finally a classification layer
activated by Sigmoid. We note that these additional layers
increase the total number of parameter of the second model:
the Common approach has five times more parameters than
the Max one.

In Table III, the different implementations of the single
modality models are compared. We notice that the Max
approaches for the ICA modality (taking the maximum of the
prediction of each artery) reaches the same performance as the
Common one (analyzing all the arteries together) while having
much less parameters. Overall, using the AUC loss is better or

TABLE III
DIFFERENT IMPLEMENTATIONS OF SINGLE MODALITY:

VALIDATION SCORES (MEAN±STD) OBTAINED FROM A 5-FOLD
CROSS-VALIDATION ON THE TRAINING SET.

Modality Implementation F1-Score AUC-ROC
ICA Max + AUC 0.30±0.11 0.67±0.04
ICA Max + BCE 0.28±0.09 0.63±0.06
ICA Common + AUC 0.30±0.12 0.66±0.07
ICA Common + BCE 0.31±0.07 0.65±0.03
Clinical data AUC 0.28±0.06 -
Clinical data BCE 0.25±0.05 -

Fig. 4. Single modality ICA framework for MI prediction. The two views
of each artery are processed separately before being concatenated together
into a bigger feature map. This new feature map is further processed through
convolutional layers and poolings to finally provide a patient level prediction.
The ResConvBlock is the set of convolutional blocks connected with skip
connections presented in the section IV-A.

similar than the BCE loss. For that reason, our solution uses a
Max architecture trained with AUC-loss. The hyperparameters
of those models can be found in Appendix A.

b) Alternative single modality: clinical data: Different
traditional ML classifiers have been considered to predict MI
from clinical data. Their performance is reported in Table
IV. We observe that overall all methods obtain comparable
performance. ANN slightly outperforms the others and is
more easily implementable in a Neural Network framework
but uses significantly more parameters. The ANN is trained
with AUC and BCE, and the obtained results are compared
in Table III. The hyperparameters of those ANNs can be
found in Appendix B. Overall, those results are close to
the ones obtained in [5] and [6]. The similarity between the
reported performance across different works that predict future
outcomes from clinical data, despite using different datasets
and models, could be a strong indicator that we may have
reached the limits of the predictive capacity of the clinical
data, making the use of ICA images on top of clinical data
necessary for better predictions.

V. DISCUSSION

To the best of our knowledge, there are no previous studies
that aim to predict a patient’s risk of future MI by combining
both image and patient data via a deep learning framework.
Thus this pilot study represents the first of its kind and
demonstrates the efficacy (albeit modest) of such an approach.
From the cardiology perspective, the importance of this spe-
cific prediction task cannot be understated. Cardiovascular
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disease remains the leading cause of the death worldwide [1],
despite significant advances in the prevention and treatment
of cardiovascular disease in recent years. Even with the
application of the best available predictors of cardiovascular
risk (e.g. degree of coronary stenosis, hemodynamic impact of
a stenosis, risk factors such as diabetes and hypertension), a
significant number of patients still go on to experience an MI.
This can likely be explained by the complex pathophysiology
of coronary artery disease. To tackle this complexity, we
propose an approach that integrates pertinent information from
different sources.

With regards to the performance of our approach, some
average quantitative comparisons can be performed with other
works that predict future MI in different settings. Compared
to [8], where a deep learning framework was able to predict
future culprit lesions from ICA with an F1-score of 0.57, our
performance is overall lower. This study was performed at a
lesion level and on patients with stable coronary disease. On
the one hand, working at a lesion level is a simplified problem
for deep learning, as it provides as input the exact lesion, as
opposed to the whole artery. At the same time, the clinical
cohort of [8] consists of a completely different population,
with stable coronary disease, all of which eventually had an
MI. In our setup, the cohort consists of patients with acute
coronary syndromes, with only 10% suffering from MI in the
follow up period. Thus our scenario is more representative of
real clinical practice where not all patients will have an MI
during follow-up, and the challenge is identifying the ones that
will. Compared to algorithms that predict only from clinical
data, our results are close to the ones obtained by [5] and [6].
However, while we consider the risk of MI within a follow
up period of 5 years using a relatively small dataset (≈500
patients) and only 11 clinical features, these works present
models developed with significantly larger datasets with many
more variables and predict the risk of MI within different
time intervals (shorter ones). More specifically, the work in
[5] reaches an F1-Score of 0.101 while predicting MI within
the next six months for 2 millions patients with 8’000 features.
The work of [6] reaches an AUC of 0.72 while predicting MI
within 12 months based on 7’000 patients and 192 features.
These comparisons suggest that the framework proposed in the
current study builds significantly on previous work and has the
potential to improve the accuracy of ML-driven predictions of
future MI significantly.

Importantly, we recognise that the generalisability of these
results to other clinical cohorts needs to be demonstrated
due to differing patient populations, as well as variance with
respect to the quality and nature of the clinical and imaging
data. As such, this study needs to be extended in future work.

VI. CONCLUSION

In this work, we proposed a multimodal framework based on
deep learning, which exploits the knowledge of the main arter-
ies of the coronary tree, and the ICA images corresponding to
each of those, as well as clinical patient data in order to predict
future MI in patients with acute coronary syndromes. The
ICA images are processed by anatomy-guided CNNs, and the

TABLE IV
DIFFERENT ML ALGORITHM FOR MI PREDICTION FROM CLINICAL DATA:

VALIDATION SCORES (MEAN±STD) OBTAINED FROM A 5-FOLD
CROSS-VALIDATION ON THE TRAINING SET.

Model F1-Score
(mean±std)

Accuracy (%)
(mean±std)

Decision Tree 0.23 ± 0.08 70.18 ± 0.08
Balanced Random Forest 0.21 ± 0.11 66.23 ± 19.97
Logistic Regression 0.24 ± 0.10 68.37 ± 5.03
Naive Bayes 0.24 ± 0.09 65.63 ± 5.03
Gradient Boosting 0.24 ± 0.06 71.36 ± 2.95
Artificial Neural Network 0.28 ± 0.06 81.12 ± 4.64

clinical patient data is analysed by an ANN. Embeddings from
both modalities are then combined to finally provide a patient-
level prediction. Experimental results confirmed the superior
performance of our method in comparison to learning from
each modality separately, but also in comparison to human-
based predictions from experienced interventional cardiolo-
gists. Although the numerical results of this study should
be considered with caution due to the small number of MI
patients, the non-trivial performance obtained with the current
data is promising. It indicates that the integration, via a well-
designed learning framework, of imaging, clinical variables,
and clinical expertise (including knowledge of the coronary
anatomy), has the potential to improve on current approaches
to the highly complex and challenging MI prediction task.
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Windecker S., Lüscher T., Mach F., Rodondi N. Quality of Care after
Acute Coronary Syndromes in a Prospective Cohort with Reasons, PloS
one, vol. 9, no 3. (2014).

[11] Neumann, F., Sousa-Uva, M., Ahlsson, A., Alfonso, F., Banning, A.,
Benedetto, U., Byrne, R., Collet, J., Falk, V., Head, S. and Others 2018
ESC/EACTS Guidelines on myocardial revascularization. European
Heart Journal. 40, 87-165 (2019).

[12] He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image
recognition. IEEE CVPR. 770-778 (2016)

[13] KOJURI, Javad, BOOSTANI, Reza, DEHGHANI, Pooyan, et al. Pre-
diction of acute myocardial infarction with artificial neural networks in
patients with nondiagnostic electrocardiogram. Journal of Cardiovascular
Disease Research, vol. 6, no 2 (2015).

[14] Thomas, S. Combining image features and patient metadata to enhance
transfer learning. IEEE EMBC, 2660-2663 (2021).

[15] Ellen, J., Graff, C. and Ohman, M. Improving plankton image classifi-
cation using context metadata. Limnology And Oceanography: Methods,
17, 439-461 (2019).

[16] Yuan, Z., Yan, Y., Sonka, M. and Yang, T. Large-scale robust deep auc
maximization: A new surrogate loss and empirical studies on medical
image classification. IEEE CVPR, 3040-3049 (2021).

[17] Guo, Z., Yuan, Z., Yan, Y. and Yang, T. Fast Objective and Duality
Gap Convergence for Nonconvex-Strongly-Concave Min-Max Problems,
ArXiv Preprint ArXiv:2006.06889, (2020).

[18] Deng, J., Dong, W., Socher, R., Li, L., Li, K. and Fei-Fei, L. ImageNet:
A large-scale hierarchical image database. IEEE CVPR, 248-255 (2009).

[19] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. IEEE
ICCV, 1026-1034 (2015).

[20] Manning, C., Raghavan, P. and Schütze, H. Introduction to Information
Retrieval. Cambridge University Press, (2008).

APPENDIX A
HYPERPARAMETERS OF ICA SINGLE MODALITY

In what follows, we document all the hyperparameters of the
ICA single modality models. All these parameters are found
by grid search.

A. ICA modality with AUC loss (Max of arteries)

The model was trained for 20 epochs with PESG (gamma:
411, margin: 0.81) and a batch size of 4. The weight decay was
set to 0.007 and the dropout to 0.6%. The starting learning rate
was 0.03, divided by 10 after 3 epochs without improvement.
The weight of the artery loss was 0.002, and the weight of the
distance loss 0.0008.

B. ICA modality with BCE loss (Max of arteries)

Training of the model was done in 20 epochs with SGD
(momentum: 0.9) and a batch size of 4. The weight decay was
set to 0.015 and the dropout to 0.3%. The starting learning rate
was 0.08, divided by 10 after 3 epochs without improvement.
The weight of the artery loss was 0.0008, and the weight of
the distance loss 0.013.

C. ICA modality with AUC loss (Common prediction)

The model was trained during 20 epochs with PESG
(gamma: 598, margin: 0.90) and a batch size of 4. The weight
decay was set to 0.005 and the dropout to 2.9%. The starting
learning rate was 0.047, divided by 10 after 3 epochs without
improvement. The weight of the artery loss was 0.056, and
the weight of the distance loss 0.0066.

D. ICA modality with BCE loss (Common prediction)

The model was trained during 20 epochs with SGD (mo-
mentum: 0.9) and a batch size of 4. The weight decay was set
to 0.096 and the dropout to 2.5%. The starting learning rate
was 0.01, divided by 10 after 3 epochs without improvement.
The weight of the artery loss was 0.057, and the weight of the
distance loss 0.096.

APPENDIX B
HYPERPARAMETERS OF CLINICAL DATA SINGLE MODALITY

In what follows, we document all the hyperparameters of
the clinical data single modality models. All these parameters
are found by grid search.

A. Clinical data modality with AUC loss

The model was trained during 300 epochs with PESG
(gamma: 470, margin: 0.92) and a batch size of 32. A
Kaiming Normal [19] was used for initialisation. The weight
decay was 0.0048, and the dropout was 49.76%. The starting
learning rate was 0.004, divided by 10 after 25 epochs without
improvement.

B. Clinical data modality with BCE loss

The model was trained during 300 epochs with SGD (mo-
mentum: 0.9) and a batch size of 32. A Kaiming Normal
initialised it. The weight decay was 0.0018, and the dropout
was 48.36%. The starting learning rate was 0.055, divided by
10 after 25 epochs without improvement.
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