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Abstract

Background: Recent Marburg virus disease (MVD) outbreaks in Equatorial Guinea and
Tanzania highlighted the importance of better understanding this highly lethal infectious pathogen.
Past epidemics of Ebola, COVID-19, and other pathogens have re-emphasised the usefulness of
mathematical models in guiding public health responses during outbreaks.

Methods: We conducted a systematic review, registered with PROSPERO (CRD42023393345)
and reported according to PRISMA guidelines, of peer-reviewed papers reporting historical out-
breaks, modelling studies and epidemiological parameters focused on MVD, including contextual
information. We searched PubMed and Web of Science until 31st March 2023. Two reviewers eval-
uated all titles and abstracts, with consensus-based decision-making. To ensure agreement, 31%
(13/42) of studies were double-extracted and a custom-designed quality assessment questionnaire
was used to assess the risk of bias.

Findings: We present detailed outbreak, model and parameter information on 970 reported
cases and 818 deaths from MVD until 31 March 2023. Analysis of historical outbreaks and sero-
prevalence estimates suggests the possibility of undetected MVD outbreaks, asymptomatic trans-
mission and/or cross-reactivity with other pathogens. Only one study presented a mathematical
model of MVD transmission. We estimate an unadjusted, pooled total random e↵ect case fa-
tality ratio for MVD of 61.9% (95% CI: 38.8-80.6%, I2=93%). We identify key epidemiological
parameters relating to transmission and natural history for which there are few estimates.

Interpretation: This review provides a comprehensive overview of the epidemiology of MVD,
identifying key knowledge gaps about this pathogen. The extensive collection of knowledge gath-
ered here will be crucial in developing mathematical models for use in the early stages of future
outbreaks of MVD. All data are published alongside this article with functionality to easily update
the database as new data become available.

Funding: MRC Centre for Global Infectious Disease Analysis

Keywords: Marburg Virus Disease, MVD, mathematical modelling, epidemiological parameters, systematic
review, outbreak analysis
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Research in Context

• Evidence before this study

We searched Web of Science and PubMed up to 31 March 2023 using the search terms Marburg virus,
epidemiology, outbreaks, models, transmissibility, severity, delays, risk factors, mutation rates and sero-
prevalence. We found five systematic reviews, all of which considered MVD alongside Ebola virus disease
(EVD). One modelling study of Marburg virus disease (MVD) focused on animals, and not on computa-
tional models to understand past or project future disease transmission. One systematic review collated
risk factors for transmission based on four MVD studies, but did not report attack rates due to miss-
ing underlying MVD estimates; another systematic review pooled estimates of MVD case fatality ratios
(CFR): 53.8% (95% CI: 26.5–80.0%) and seroprevalence: 1.2% (95% CI: 0.5–2.0%). No systematic review
covered transmission models of MVD, and the impact of public health and social measures is unknown.

• Added value of this study

We provide a comprehensive summary of the available, peer-reviewed literature of historical outbreaks,
transmission models and parameters for MVD. Meta-analysis of existing estimates of CFRs, and our
original estimates based on historical outbreak information, illustrate the severity of MVD with our
pooled random e↵ect estimated CFR of 61.9% (95% CI: 38.8-80.6%, I2=93%). We demonstrate the
sparsity of evidence on MVD transmission and disease dynamics, particularly on transmissibility and
natural history, which are key input parameters for computational models supporting outbreak response.
Our work highlights key areas where further disease characterization is necessary.

• Implications of all the available evidence

Previous outbreaks of infectious pathogens emphasized the usefulness of computational modelling in
assessing epidemic trajectories and the impact of mitigation strategies. Our study provides necessary
information for using mathematical models in future outbreaks of MVD, identifies uncertainties and
knowledge gaps in MVD transmission and natural history, and highlights the severity of MVD.

1 Introduction

Infectious disease outbreaks pose a substantial threat to health and well-being globally [1, 2, 3]. Since the
emergence of SARS-CoV-2 at the end of 2019, there have been several other outbreaks of emerging or re-
emerging pathogens, including mpox ([4]), novel hepatitis in children ([5]), Ebola virus disease (EVD) ([6]), and
Marburg virus disease (MVD) ([7, 8]). These examples demonstrate that the world remains highly vulnerable
to infectious disease outbreaks and underscores the importance of developing a better understanding of high-
threat pathogens.

In 2018, the World Health Organization (WHO) published a list of nine known pathogens for research and devel-
opment (R&D) prioritisation, due to their epidemic and pandemic potential and the absence of licensed vaccines
or therapeutics [9]. Among these is Marburg virus (MV), a highly-lethal infectious Filoviridae single-stranded
RNA virus, first described in Germany and Serbia (formerly Yugoslavia) in 1967. Subsequent outbreaks of
MVD have primarily occurred in sub-Saharan Africa, including recent outbreaks in Equatorial Guinea and
Tanzania in 2023 [7, 8].

The host of MV is the fruit bat (Rousettus aegyptiacus), with human transmission occurring via direct contact
with an infected animal host or an infected human [10, 11]. Phylogenetic analyses have confirmed multi-
ple spillovers from bats to humans [12], but the first known human outbreak was associated with African
green monkeys (Cercopithecus aethiops) [13]. Clinical symptoms include, but are not limited to, fever, severe
headaches and malaise, which can progressively develop into severe hemorrhagic fever, including spontaneous
bleeding from one or more orifices [13], with a high risk of serious illness upon infection [12]. The European
Centre for Disease Prevention and Control MVD factsheet provides a more comprehensive overview [14].

Mathematical models of disease transmission and control are a key tool that can be deployed in response
to infectious disease outbreaks and are used to guide policy, for example by projecting plausible epidemic
trajectories and expected healthcare demand and assessing the potential impact of interventions [15, 16].
Epidemiological parameters are key inputs to such models, for example governing the rates at which individuals
move through disease states. However, gathering information on model structures and appropriate parameter
values can be time-consuming and may impede real-time modelling.

To address these issues, we have set out to systematically review the literature relevant to rapid design of
dynamic transmission models for priority pathogens. We aim to collate available information on outbreaks,
modelling studies, and epidemiological parameters related to transmissibility, severity, delays, risk factors,
mutation rates and seroprevalence for each of the nine aforementioned priority pathogens [9]. Our work will
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highlight knowledge gaps and provide a key resource for modelling future outbreaks of these or similar (known
or unknown) pathogens. This paper is the first in a series from this project, presenting results of our systematic
review of MVD.

2 Methods

PRISMA checklists for this review have been included in Tables S5 and S6.

Search strategy and study selection

We searched for published mathematical transmission models and articles reporting on MVD transmission,
evolution, natural history, severity, seroprevalence and size of previous outbreaks, published prior to 31 March
2023 (see Supplement A.1 for search strategy). Table S1 presents all inclusion and exclusion criteria. In
Covidence [17], two independent reviewers screened titles and abstracts then full texts to assess eligibility for
data extraction. Disagreements were resolved by consensus between reviewers.

Data extraction

Thirteen reviewers extracted data on article information (publication details, risk of bias), estimated parame-
ters (value, uncertainty range, distribution, context, risk factors), outbreaks (dates, location, case and death
numbers) and models (model type and structure, interventions modelled, transmission routes, assumptions)
from the included studies into a Microsoft Access database (Version 2305), with one reviewer per paper. Risk
of bias was assessed using a seven-question form addressing methodology, assumptions and data. For a ran-
domly selected 30% (13/43) of papers, extraction was performed by two independent reviewers. Consensus on
discordant results was established before single reviewer data extraction commenced. More details are provided
in Supplements S1, S3.

We only collated information from outbreaks that were reported to be complete.

We extracted parameter values, units, uncertainty intervals (capturing the precision of estimates), and ranges
(capturing heterogeneity in estimates across di↵erent population groups, time or space) for all parameters
except risk factors. Study context was also recorded, when reported. We extracted risk factors investigated in
the studies and whether they were statistically significant and/or adjusted. We chose not to extract odds ratio
estimates because varying stratifications and reference groups complicates comparison across studies.

Information extracted about previous outbreaks, namely cases and deaths, was further used to generate esti-
mates of the case fatality ratio (CFR).

Full details on data extraction, including descriptions of variables and predefined options for categorical vari-
ables, can be found in the Supplement S2,S3,S4,C .

R package

We designed an R package, epireview, where all curated data on epidemiological parameters, models and
outbreaks are publicly available [18]. A dedicated vignette explains how independent contributors may add
information to the package, so that it provides a live view of the latest knowledge on MVD. More details can
be found in Supplement C.

Data analysis

We use descriptive tables and figures to present the collated data. Unless otherwise specified, uncertainty
intervals in tables and figures (e.g. 95% confidence (CI) or credible intervals (CrI)) were extracted from the
papers or computed from reported central estimates and standard errors (A.3).

In the following, an “unadjusted CFR estimate” refers to an estimate where raw deaths are divided by raw
cases, with no weighting or controlling for other variables or cases with unknown outcome.

We conducted two meta-analyses for the case fatality ratio (CFR), using 1) CFR estimates extracted from
the studies, and 2) unadjusted CFRs that we computed from extracted outbreak data. Comparison between
the two sets of CFR estimates enabled to assess any bias due to outbreaks for which there was no or multiple
reported CFR estimates in the literature. For this analysis, we defined an ‘outbreak’ as one or more cases
identified in the same country and within the same date ranges. This included single cases, often related to
zoonotic spillover or importation events, and large outbreaks. We ensured that each case was counted only
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Figure 1: Study selection according to PRIMSA guidelines and criteria as described in Table S1.

once: if multiple studies reported the same outbreak, we chose the study covering the longest time period. We
estimated exact 95% binomial confidence intervals on individual outbreak estimates.

Meta-analyses were performed using the meta R package [19] providing a total common e↵ect and a total random
e↵ect pooled CFR estimate with 95% CI and statistics on heterogeneity in CFR across studies. Further details
and references are provided in Supplement A.4.

Overall quality assessment scores were calculated as a mean of the responses to the seven questions, excluding
non-applicable questions (that is, if the quality assessment question was not applicable to a study, it did not
contribute the the quality assessment score). A local polynomial regression fit using the R function loess was
used to analyse trends in quality assessment scores by publication year.

Analyses were conducted using R (version 4.2.2).

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or
writing of the report.

3 Results

Study Selection

The search returned 4410 studies (2305 from PubMed and 2105 from Web of Science) from which we removed
1256 duplicates. Of the remaining 3154 studies for which we screened abstracts, 221 were kept for full-text
review. Studies were further excluded for various reasons, including not reporting any parameter or original
parameter estimates, not being peer-reviewed, being duplicated, and being in a non-English language. 42
studies were included for data extraction. The PRISMA flowchart further describes the study selection (Figure
1).

Historical Outbreaks

We collated evidence from 13 studies reporting 23 observed MVD outbreaks. Based on timings and locations
reported in the studies, we identified seven distinct outbreaks (Table 1). This included the first identified
outbreak in Marburg, Germany, and the former Federal People’s Republic of Yugoslavia from which MVD was
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identified and named; an outbreak in the Democratic Republic of the Congo (DRC) from 1998 - 2000; a series
of cases from Johannesburg, South Africa in early 1975 (linked to prior travel to Zimbabwe); three outbreaks
in Uganda; and an outbreak in Angola in 2004 - 2005. In addition, we noted the reporting of individual MVD
cases in Kenya in 1980 and 1987 (likely caused by animal exposure); in the Russian Federation in 1988 and
1990 (both linked to a laboratory worker in a research facility); and in the Netherlands and the United States
of America in 2008, both linked to the 2007 Ugandan outbreak. At the time of the literature search, there
were no peer-reviewed studies on the 2023 MVD outbreaks in Equatorial Guinea and Tanzania.

Mathematical Models

Ajelli et al, 2012 was the only MVD transmission modelling study. The authors used a stochastic, individual-
based, SEIR model to examine the impact of behaviour change interventions on MVD cases and deaths [20].
Transmission in the model occurred via direct, non-sexual human contact, assuming homogeneous mixing;
transmission rates were heterogeneous over time, with temporal changes in viral load and hence transmissibility;
susceptibility was assumed to be age-dependent, and the latent and incubation periods were assumed to coincide
[20]. The potential impact of quarantine was simulated, though was not explicitly based on real-world data.
As detailed below, the authors provided estimates of generation time and basic reproduction number [20].

Epidemiological Parameters

We extracted 71 parameter estimates: see overview in Figure S1 and parameter definitions and details of the
extraction process in the accompanying R package epireview [18].

Seroprevalence estimates were the most frequently reported in the literature, followed by delays and severity.
Two studies reported on transmission parameters (e.g., attack rates and reproduction numbers), and four pro-
vided estimates of evolutionary mutation rates. We also extracted reported risk factors for di↵erent outcomes,
namely infection, severe disease, seropositivity, recovery, and death.

Transmission

Two studies reported reproduction number estimates [21, 20]. Ajelli et al. used a mathematical model (see
Section 3), to estimate the basic reproduction number, R0, for the 2005 Angola outbreak. They found that R0

= 1.59 (95% CI: 1.53–1.66), suggesting that in the absence of mitigation e↵orts, the virus would be expected
to propagate in a similar population [20]. They also provided the only estimate of doubling time, at 12.4 days
(95% CI: 11.3–13.6 days)[20].

Borchert et al. estimated the e↵ective reproduction number, Re, based on secondary attack rates derived from
seroprevalence in contacts of confirmed cases in DRC in 2002 [21]. This study also provided the only estimate
of attack rate, at 21% (Figure 3).
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Severity

Six CFR estimates were reported, corresponding to the outbreaks in Angola in 2005 [20], DRC in 1999 [12], the
original 1968 outbreak in Germany and Yugoslavia [22] and three estimates from the 2012 Uganda outbreak
[23] [24] (Figure S2A). Pooling these estimates gave a total common e↵ect CFR of 80.6% (95% CI: 77.3-83.6%,
I2=93%) and a total random e↵ect CFR of 61.9% (95% CI: 38.8-80.6%, I2=93%).

We additionally estimated an unadjusted, pooled CFR using the extracted historical outbreak data (Figure
S2B), combining data from 467 confirmed cases and 11 suspected cases across 13 distinct outbreaks with 385
reported deaths. The pooled common e↵ect CFR estimate from the extracted outbreak data was 80.5% (95%
CI: 76.7-83.8%, I2=82%) and the pooled random e↵ect CFR 63.8% (95% CI: 41.6-81.3%, I2=82%), both highly
consistent with the previous estimates based on CFR parameters reported in the literature.

Delays

We collated estimates of the generation time, incubation period, time in care, and time from symptom onset
to careseeking, death or other outcomes as summarised in Figure 3 and Table 2. The two generation time
estimates were based on viral load data from non-human primates under two distinct assumptions, namely
that infectiousness is directly proportional to viral load, and alternatively assuming that probability of death
is directly proportional to viral load [20, 25]. This study also estimated the time from symptom onset to death
using additional assumptions about these relationships [20]. The sole estimate of time in care was a median
of 14.3 days (range 4 - 22 days) that 6 survivors of the 2012 Uganda outbreak spent in care, with a median
duration in isolation of 22 days (16 - 30 days) [23]. The two incubation period estimates came from studies
from the 1970s only reporting ranges with little overlap [26, 22] (Figure 3). Central estimates of time from
symptom onset to careseeking across the 1975 South Africa, 1998 DRC, and 2012 Uganda outbreaks were
consistently under 5 days, although Bausch et al. showed a large range of delays from symptoms to seeking
medical care [12, 26, 23] for the 1998 DRC outbreak.

Risk Factors

15 risk factors for MVD infection and seropositivity were extracted from 4 studies and are presented in Table
3 [10, 12, 27, 23].

Having had contact with confirmed MVD cases, including through working in funeral and burial services,
was a statistically significant risk factor for infection. The ‘other’ classification encompassed a wide range
of factors, such as prevalence of infection in the host reservoir, subsistence activities and previous invasive
medical treatment, and as such are not directly comparable, although some constituted statistically significant
risk factors [10, 27, 23]. Sex was not significantly associated with MVD infection [23].

Although similar risk factors were explored to assess impact on seropositivity, the only significant risk identified
for this outcome was known hospitalisation with MVD.

Molecular evolutionary rates

Three studies reported molecular evolutionary rates of MV, two estimated using whole genome sequencing [28,
29] and one based on individual genes [30]. The three evolutionary rate estimates from whole genomes are
largely consistent with one another, whilst those based on individual genes tended to be lower (Figure 3C).
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Figure 2: Case Fatality Ratio (CFR) meta-analyses, using logit-transformed proportions and a gen-
eralized linear mixed-e↵ects model (GLMM) (full details in SI A.4). The forest plot displays studies
included in each meta-analyis: the red squares indicate study weight, and for each study, a 95% bino-
mial confidence interval is provided. To summarize, we display as black diamonds the total common
e↵ects, where all data are e↵ectively pooled and assumed to come from a single data-generating pro-
cess with one common CFR and total random e↵ect estimates, which allow the CFR to vary by study
and accordingly give di↵erent weights to each study when determining an overall estimate [19]. (A)
CFR estimates reported in the included studies. (B) CFR estimated from extracted outbreak data,
including only one observation per outbreak using the study with the longest duration of the outbreak
reported ensuring no case is double counted.
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Risk factor Adjusted Sample size (Significant) Sample size (Not significant)

Infection

Contact with animal Unknown Unknown
Gathering Unknown 128
Household contact Unknown 102
Occupation - Funeral and burial services Unknown 102
Other Unknown 102 26
Sex Unknown 26

Seropositivity

Contact with animal Adjusted 912
Contact with animal Unknown 300
Gathering Unknown 300
Hospitalisation Adjusted 915
Household contact Adjusted 912
Occupation - Funeral and burial services Adjusted 912

Table 3: Aggregated information on risk factors associated with MVD infection and seropositivity.
Risk factors were mapped onto our risk factor classification (see Supplement) by interpreting the
authors’ descriptions. Adjusted refers to whether estimates were adjusted (i.e. from a multivariate
analysis) or not (i.e. from a univariate analysis), with unknown showing that this information is not
clearly stated in the original study. Statistical significance was determined according to the original
authors’ statistical approaches when specified, or using a p-value of 0.05 otherwise. The numbers in
the significant and not significant columns represent the total sample size included in the analyses for
this risk factor and outcome category.

Seroprevalence

Twenty-one studies contained seroprevalence estimates across a 38-year period from 1980 - 2018 in 15 predom-
inantely Sub-Saharan African countries[31, 41, 44, 45, 46, 47, 27, 21, 48, 32, 33, 22, 34, 35, 36, 37, 38, 39, 40,
42, 43] (Table 4). Presence of antibodies were assessed using a range of assays: Indirect Fluorescent Antibody
assay (IFA) (6 studies [49, 44, 27, 32, 38, 36]); Hemagglutination Inhibition Assay (HAI/HI) (1 study [43]);
Immunoglobulin G (IgG) (7 studies [31, 48, 47, 21, 33, 42, 50]); Immunoglobulin M (IgM) (2 studies [39, 40]);
the remaining studies did not specify this information (3 studies [35, 22, 41]). IgG and IgM were used for
all recent studies (from 1995 onwards), highlighting recent developments in serology and the retiring of assays
testing for IFA and HAI/HI.

The studies included in this review demonstrated low levels of antibodies in surveyed populations, with approx-
imately one third of studies reporting a seroprevalence of 0% [27, 32, 46, 22, 35, 37, 42]. Among studies with
estimates above zero, seroprevalence ranged from 0.5% in the Republic of the Congo in 2011 [50], to 2.1% in
healthcare workers in DRC in 2001 - 2002 [48], to 4.5% in Uganda in 1984 [43]. Overall, the evidence gathered
here indicates high suspectibility to MVD among populations in the surveyed regions, including Tanzania,
where one of the subsequent 2023 MVD outbreaks occurred [40]. However, these seroprevalence estimates
must be interpreted in the context of the very small sample sizes of most studies.
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Figure 3: Overview of the reproduction numbers, delays and evolutionary rate estimates from the
included studies of MVD. Solid lines represent uncertainty intervals and ribbons indicate a parameter
range (e.g. across di↵erent populations or over time). (A) Estimates of the reproduction number.
The blue and red points correspond to estimates of the e↵ective reproduction number (Re) and basic
reproduction number (R0) respectively, with associated uncertainty shown by the solid lines where
available. The dashed vertical line presents the threshold for epidemic growth. (B) Delay parameters,
stratified into five categories: Generation Time, Incubation Period, Time in Care, Time from Symptom
to Careseeking and Time from Symptom to Outcome as indicated by di↵erent colours. (C) Evolu-
tionary rates. Colours indicate di↵erent genome types; points represent central estimates. Solid lines
represent an uncertainty interval associated with the point estimate while ribbons indicate a parameter
value +/- standard error with a minimum set to zero.
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Quality assessment

The results of the quality assessment are summarised in (Figure S3A). The number of non-applicable answers
are driven by more descriptive studies, such as seroprevalence studies, which did not use a model or statistical
analysis. Papers on transmission parameters had on average the highest quality assessment scores (reproduction
number paper score = 0.800, other transmission parameters papers score = 0.87, we note the small number
of papers in this category) and papers on seroprevalence the lowest score of 0.48. Scores improved over time
(Figure S3B) which may also explain the di↵erence in quality assessment score between types of parameters,
as seroprevalence papers tended to be published much earlier than other study types.

4 Discussion

This systematic review presents a comprehensive set of mathematical models, outbreaks, and epidemiological
parameters of MVD. This is the first of a series of systematic reviews covering the 9 WHO priority pathogens
listed in 2018.

Historic outbreaks and case reports in the peer-reviewed literature for MVD were rare and small in size, relative
to many other pathogens, including other viral hemorrhagic fevers such as Ebola virus disease (EVD), with
only 7 notable outbreaks reported (Table 1). Only two outbreaks had over 100 confirmed cases (DRC 1998:
154 cases, Angola 2005: 254 cases), with the remainder reporting 31 cases or fewer. For most parameters,
we were only able to obtain a small number of estimates, a substantial number of which were only reported
as point estimates with no uncertainty. Seroprevalence of MVD was the metric most widely reported across
a large number of locations in Sub-Saharan Africa (Table 4) and indicates that seroprevalance is generally
low. However, serosurveys suggest that some past MVD outbreaks may have gone undetected. Reported
seroprevalence in the Central African Republic (CAR) is relatively high (3.2%, range among subgroups: 1.0-
7.4%) despite having no recorded MVD outbreak, although these results may stem from cross-reactivity or low
assay specificity. Seroprevalence estimates of MVD and EVD are often reported together, with estimates for
MVD consistently lower than for EVD, e.g. [50, 31, 32, 40].

A basic reproduction number of 1.59 (95% CI: 1.53-1.66) was estimated for the largest known outbreak to date
in Angola [20]. However, Borchert et al. [21] estimated an e↵ective reproduction number, Re, of 0.93 for the
1998 DRC outbreak after the introduction of public health and social measures (PHSM), suggesting that such
interventions can e↵ectively mitigate MVD transmission.

The pooled CFR estimates for MVD provide several key insights. The pooled random e↵ects CFR of 61.9%
(95% CI: 38.8-80.6%, I2=93%) highlights the heterogeneity in CFR across outbreaks. In comparison, the
pooled common e↵ect CFR of 80.6% (95% CI: 77.3-83.6%, I2=93%) is skewed towards the two large outbreaks
in Angola and Uganda, which had very high CFRs, and presents a possibly misleadingly narrow uncertainty
interval but highlights that MVD outbreaks with higher transmissibility may also be associated with higher
severity. The results from the meta-analyses of reported CFR parameters and computed, unadjusted CFR
from outbreak data are consistent, and our estimates are in line with a previous systematic review [51]. All
CFR estimates, irrespective of the method, are extremely high, implying very high costs of human life in the
endemic countries, so far all located in Sub-Saharan Africa. Low seroprevalence estimates in these regions,
combined with high fatality and a basic reproduction number above one, clearly demonstrate the pandemic
potential of MVD.

The gaps in knowledge of MVD are substantial. Although we found some epidemiological estimates, a number of
them are from the previous century and based on poor-quality data; for example, most estimates of the CFR for
MVD reported in the literature were unadjusted estimates. Crucial model inputs, such as the generation time,
were estimated from primate studies and would benefit from confirmation from human outbreak data. Recent
outbreaks of MVD in Equatorial Guinea and Tanzania were controlled through basic measures such as Infection
Prevention and Control and Risk Communication and Community Engagement [52]. WHO declared the end of
the Equatorial Guinea outbreak on 8 June 2023 [53] (17 laboratory-confirmed cases, 12 deaths, and a further
23 probable cases, all of whom died) and the Ministry of Health of the United Republic of Tanzania confirmed
the end of the first MVD outbreak in Tanzania on 2 June 2023 [54] (8 laboratory-confirmed cases, 1 probable
case and 6 deaths). These are severe and traumatic events for the communities impacted but also opportunities
to gather higher-quality data. In particular, careful collection of patient information, documentation of disease
progression and regular follow-ups post-infection would enable the research community to better characterise
epidemiological delays and risk factors for infection and death.

The collection of parameters presented here, synthesising peer-reviewed information up to March 2023, will
enable researchers to construct and parameterise simple epidemiological models for MVD. Our accompanying
R package epireview [18] will facilitate this process and ensure that information from studies beyond March
2023 can be added to the package, thereby o↵ering a continuously updated repository of parameter estimates.
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The importance of this work is underlined by the scarcity of published MVD mathematical models, which
contrasts with the abudance of published models describing EVD [55].

Improved knowledge of parameters will enable more modelling analyses to explore the potential impact of
interventions such as PHSM, as has been done for EVD [56]. Although there is no vaccine approved for MVD,
phase 1 clinical trials have shown promising results [57]. Mathematical models could support the design of
vaccination strategies, as they did for EVD [58].

This review was challenging as it contained a wide variety of studies and parameters for which we could not
find a unique pre-existing, validated quality assessment tool. We therefore constructed a scoring system to
assess the validity of the methods, assumptions and data, tailored specifically to the broad range of information
we were collating. We observed an improvement in paper quality over time, which we attribute to increas-
ing transparency in models, assumptions and data (including publication of data and code), which enables
reproducibility of research.

Our findings are limited by our restriction to peer-reviewed articles in English; extending this work to include
non-English language articles and non-peer reviewed work is an interesting avenue, but would be challenging.

Although we excluded systematic reviews from our systematic search, we used them (e.g. Nyakarahuka et al
[51]) to validate our extracted data.

Lowering the hurdles for mathematical epidemic model design is important to enable timely generation of
evidence that can support epidemic response to future outbreaks. Here, we provide a comprehensive summary
of published mathematical models, outbreaks, and epidemiological parameters of MVD. Our work summarises
existing information on MVD dynamics and highlights key knowledge gaps which would benefit from further
elucidation. We publish the database of extracted models, parameters and outbreaks, thus enabling future
additions as more information becomes available from future studies. Information is synthesised in the R
package epireview [18], which also includes functionalities to visualise the latest information, thereby providing a
continuously up-to-date picture of MVD epidemiological knowledge. We intend to further expand the database
to other pathogens in the near future.
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