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Abstract 
 
Importance: Large language models (LLMs) are crucial for medical tasks. Ensuring their 
reliability is vital to avoid false results. Our study assesses two state-of-the-art LLMs (ChatGPT 
and LlaMA-2) for extracting clinical information, focusing on cognitive tests like MMSE and 
CDR. 
 
Objective: Evaluate ChatGPT and LlaMA-2 performance in extracting MMSE and CDR scores, 
including their associated dates. 
 
Methods: Our data consisted of 135,307 clinical notes (Jan 12th, 2010 to May 24th, 2023) 
mentioning MMSE, CDR, or MoCA. After applying inclusion criteria 34,465 notes remained, of 
which 765 underwent ChatGPT (GPT-4) and LlaMA-2, and 22 experts reviewed the responses. 
ChatGPT successfully extracted MMSE and CDR instances with dates from 742 notes. We 
used 20 notes for fine-tuning and training the reviewers. The remaining 722 were assigned to 
reviewers, with 309 each assigned to two reviewers simultaneously. Inter-rater-agreement 
(Fleiss' Kappa), precision, recall, true/false negative rates, and accuracy were calculated. Our 
study follows TRIPOD reporting guidelines for model validation. 
  
Results: For MMSE information extraction, ChatGPT (vs. LlaMA-2) achieved accuracy of 83% 
(vs. 66.4%), sensitivity of 89.7% (vs. 69.9%), true-negative rates of 96% (vs 60.0%), and 
precision of 82.7% (vs 62.2%). For CDR the results were lower overall, with accuracy of 87.1% 
(vs. 74.5%), sensitivity of 84.3% (vs. 39.7%), true-negative rates of 99.8% (98.4%), and 
precision of 48.3% (vs. 16.1%). We qualitatively evaluated the MMSE errors of ChatGPT and 
LlaMA-2 on double-reviewed notes.  LlaMA-2 errors included 27 cases of total hallucination, 19 
cases of reporting other scores instead of MMSE, 25 missed scores, and 23 cases of reporting 
only the wrong date. In comparison, ChatGPT’s errors included only 3 cases of total 
hallucination, 17 cases of wrong test reported instead of MMSE, and 19 cases of reporting a 
wrong date. 
 
Conclusions: In this diagnostic/prognostic study of ChatGPT and LlaMA-2 for extracting 
cognitive exam dates and scores from clinical notes, ChatGPT exhibited high accuracy, with 
better performance compared to LlaMA-2. The use of LLMs could benefit dementia research 
and clinical care, by identifying eligible patients for treatments initialization or clinical trial 
enrollments. Rigorous evaluation of LLMs is crucial to understanding their capabilities and 
limitations.  
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Introduction 
Large-scale language models (LLMs) [1–4] have emerged as powerful tools in natural language 
processing (NLP), capable of performing diverse tasks when prompted [5] [6]. These models 
have demonstrated impressive clinical reasoning abilities [7], successfully passing medical 
licensing exams [8] [9] [10] and generating medical advice on distinct subjects, including 
cardiovascular disease [11], breast cancer [12], colonoscopy [13], and general health inquiries 
[14], [6], [15] [16]. These models can produce clinical notes [16] and assist in writing research 
articles [16]. Medical journals have begun developing policies around use of LLMs in writing [17] 
[18] [19] [20] [21] [22] and reviewing. Examples of such LLMs include ChatGPT [2] [1], Med-
PALM-2 [3], LlaMA-2 [4], and open-source models actively produced by the community [23].  
 
In this study, we focus on evaluating information extraction abilities of Large Language Models 
from clinical notes, specifically focusing on proprietary ChatGPT (powered by GPT-4 [2]), and 
open source LlaMA-2 [4] LLMs. Information extraction involves the retrieval of specific bits of 
information from unstructured clinical notes, a task historically handled by rule-based systems 
[24,25] [26] [27] [28] [29] [30] or language models explicitly trained on datasets annotated by 
human experts [31] [32] [33] [34] [35] [36]. Rule-based systems lack a contextual understanding 
and struggle with complex sentence structures, ambiguous language, and long-distance 
dependencies, often leading to high false positive rates and low sensitivities [37] [38] [39] [40]. 
Additionally, training a new model for this task can be computationally demanding and require 
substantial human effort. In contrast, LLMs, such as ChatGPT or LlaMA-2, operate at “zero-
shot” capacity [41] [42] [43], i.e., only requiring a prompt describing the desired information to be 
extracted. 
 
Despite their promise, LLMs also have a potential limitation - the generation of factually 
incorrect yet highly convincing outputs, commonly known as “hallucination.” The massive 
architectures and complex training schemes of LLMs hamper “model explanation” and the ability 
to intrinsically guarantee behavior. This issue has been extensively discussed in the literature, 
emphasizing the need for cautious interpretation and validation of information generated by 
LLMs [44] [2] [45]. 
 
One area where LLMs may greatly benefit healthcare is in the identification of memory problems 
and other symptoms indicative of Alzheimer’s Disease and Alzheimer’s Disease Related 
Dementias (AD/ADRD) within clinical notes. AD/ADRD is commonly underdiagnosed or 
diagnosed later in the disease trajectory, particularly in racial and ethnic minoritized groups [46] 
[47] [48] [49] [50] [51]. The precise extraction of cognitive test scores holds significant 
importance in the development and clinical validation of tools that can facilitate early detection 
[52] of AD/ADRD in the clinic. Earlier identification can lead to a host of benefits, including 
assisting with advanced care planning, performing secondary cardiovascular disease 
prevention, which may reduce worsening of cognitive impairment [53] [54], identification for 
serving in research trials [55] [56,57], and with the rapid advancement in biologic therapeutics, 
the opportunity to receive potentially disease modifying drugs [57] [58]. Accurately extracting 
cognitive exam scores (often buried in clinical notes and not documented in any structured 
field), enables validation, training and fine-tuning of models at a much larger scale in a clinical 
setting for a much more racial/ethnically diverse patient population set compared to current 
research cohorts. 
 
The primary focus of this paper is therefore on the validation of two state-of-the-art LLMs 
(ChatGPT powered by GPT-4, and LlaMA-2), for information extraction related to cognitive 
tests, specifically the Mini-Mental State Examination (MMSE) [59] and Clinical Dementia Rating 
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(CDR) [60], from clinical notes of a racially and ethnically diverse patient population. Our 
objective is to accurately extract all instances of (the exam score, and the date when the exam 
was administered) using these LLMs.  
 
This study represents a large-scale formal evaluation of two state of the art LLMs (ChatGPT, 
and LlaMA-2) performance in information extraction from clinical notes. Going forward, we 
intend to employ this benchmark dataset to validate other (open or closed-source) LLMs. 
Furthermore, we plan to adopt a similar approach to validate LLMs for information extraction 
across various clinical use cases.  By prioritizing prompt engineering with ChatGPT and LlaMA-
2 for extracting clinical information, this research aims to enhance our understanding of the 
potential of LLMs in healthcare and facilitate the development of reliable and robust clinical 
information extraction tools. 

Methods 
This study is approved under IRB i20-01095, “Understanding and predicting Alzheimer’s 
Disease.” NYU DataCore services were utilized to prepare the data as described below. A 
HIPAA-compliant private instance of ChatGPT was utilized for this study. LlaMA-2 ( “Llama-2-
70b-chat” version) was evaluated on two A100 Nvidia GPUs on our local high performance 
computing servers. This Diagnostic/Prognostic study designed to validate the diagnostic 
accuracy of two LLMs (ChatGPT and LlaMA-2) in extracting cognitive exam dates and scores, 
follows the follows the TRIPOD Prediction Model Validation reporting guidelines. 
 
Dataset 
An original cohort of 135,307 clinical notes corresponding to inpatient, outpatient, and 
emergency department visits between January 12th 2010 and May 24th 2023, which included 
any of the following keywords (‘MMSE’, ‘CDR,’ or ‘MoCA’ case-insensitive) were identified (see 
Figure 1). MMSE stands for Mini Mental State Exam, CDR stands for Cognitive Dementia 
Rating, and MoCa stands for Montreal Cognitive Assessment [61]. These notes belonged to 
52,948 patients. From among these patients, 26,355 had a non-contrast brain Magnetic 
Resonance Imaging (MRI) in the system. Limiting the clinical notes to those who had an MRI in 
the system resulted in 77,547 notes. These notes were extracted. At this stage we further 
limited the notes to those including any mentions of MMSE and/or CDR (ignoring MoCA), which 
yielded 34,465 clinical notes for analysis.  
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Figure 1: Flowchart of clinical notes evaluated for inclusion in the final sample of GPT-
analyzed notes

 
The choice for requiring patients to have a brain MRI as well as MMSE and/or CDR enables us
to have a similar level of granularity as the Alzheimer’s Disease Neuro-Imaging Initiative (ADNI)
[62], which also uses MMSE and CDR for definition of mild cognitive impairment and dementia
stages. This further enables us to harmonize our clinical dataset with these large research
cohorts. To elucidate the impact of this choice (restriction of cohort to those with MRI) on the
racial breakdown of our study, we include a demographics comparison between the two sets
(original 52,948 patients, and the 26,355 with an MRI) in the supplementary section S1.

 

us 
I) 

tia 
ch 
he 
ts 
. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2023.07.10.23292373doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292373
http://creativecommons.org/licenses/by/4.0/


 6

Similarly, the choice to ignore MoCA was due to the lack of inclusion of MoCA in standard 
definition for stages of cognitive impairment in ADNI. The mild cognitive impairment and (mild, 
moderate or severe) dementia definition criteria utilized in ADNI are included in Supplementary 
Table S1. Data harmonization is beyond the scope of this paper, although information extraction 
plays a substantial role in enabling it.  
 
From among 34,465 notes that fit the inclusion criteria, a random selection of 765 notes was 
identified to undergo information extraction via ChatGPT and manual evaluation. 765 was the 
total number of the notes needed to satisfy two conditions: 1) Each reviewer not being assigned 
more than 50 notes to review, and 2) at least around 15 notes per reviewer being double-
reviewed by another random reviewer. From among these 765 notes, ChatGPT encountered 
application programming interface (API) errors in 23 cases (3%). These errors arose from 
“Azure content management violations'' [63] (17 cases), API timeouts (5 cases), and maximum 
length limit errors (1 case). Supplementary Table S2 includes a more detailed description of 
these errors. The remaining 742 were considered for assignment to domain expert reviewers, 
and underwent analysis by LlaMA-2. 
 
Generative AI, ChatGPT 
ChatGPT (GPT-4, API version “2023-03-15-preview”) was used on these 765 notes to extract all 
instances of the cognitive tests—MMSE and CDR—along with the dates at which the tests were 
mentioned to have been administered. Two examples of our task are provided in the 
supplementary section S2. Inference was successful for 742 notes. The complete API call, 
along with the exact prompt, the temperature, and other hyper-parameters are included in 
Supplementary Table S3.  The prompt included a request to return these results in a JSON 
format. ChatGPT’s response (full), as well as the JSON formatted dialogue response were 
recorded in one session on June 9th 2023. The notes sent to ChatGPT were text-only, stripped 
of the rich-text formatting (RTF) native to our EHR system (Epic Systems, Verona, WI). This 
reduced token count by approximately ten-fold, enabling notes to fit into the GPT4-8K input 
window and removing a substantial source of confusion for the LLM in prompt tuning. The date 
that the encounter was recorded in Epic was appended at the beginning of the note, proceeding 
with a column (“:”) then the note text. See Supplementary Table S3 for the API request, 
including the prompt. 
 
Generative AI, LlaMA-2 
We used LlaMA-2 (version “Llama-2-70b-chat") on all the notes which ChatGPT produced valid 
answer. All pre-processing steps on the notes were similar to that of ChatGPT. The context 
window was limited to the first 3696 tokens. The complete API call, along with the exact prompt, 
the temperature, and other hyper-parameters are included in Supplementary Table S4. 
 
Hyper-parameter and Prompt Tuning 
For both ChatGPT and LlaMA-2, we assigned 20 notes out of the 742 as our hyper-parameter 
and prompt tuning set. For ChatGPT, an interactive cloud-based environment (i.e playground) 
was utilized initially to fine-tune the prompt. After initial exploratory analysis using these 20 
notes, they were scored via the API using the best prompt and hyper-parameter found in the 
interactive mode. For LlaMA-2, the exploration was performed locally, on the same 20 notes. All 
human expert reviewers (detailed below) were instructed to first review the ChatGPT results of 
the 20 cases in a RedCap survey. The goal of this step was to train the reviewers, refine the 
information presented in RedCap, improve clarification of the questions, and potentially refine 
the prompt. These 20 notes were then excluded from any additional analysis.  
 
Human Expert Reviewers 
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Our team included 22 medically trained expert reviewers who volunteered and were trained to 
review an (HTML formatted) note, provide ground truth, and judge the correctness and 
completeness of ChatGPT answers for each cognitive test. Fully (HTML) formatted notes were 
pulled using an Epic web service, and were fed into the RedCap survey. Redcap survey 
rendered the note’s HTML formatting, to ensure notes could be displayed to users in the same 
format as the readers are accustomed to seeing them clinically, rather than the text-only, 
computer-friendly format provided to GPT. For 21 of these reviewers, each reviewer was 
assigned approximately 50 clinical notes to evaluate. From among each reviewer’s 50 assigned 
notes, about 15 notes were assigned to another random reviewer. The assignment algorithm 
randomly selected a pair of reviewers for each of our 309 double-reviewed notes and assigned 
the remaining notes to a randomly selected reviewer until each reviewer reached 50 notes or we 
fully assigned all notes. This random assignment was a necessary step for ensuring correctness 
of Fleiss’ Kappa [64] metric for inter-rater-agreement. As a result, there was a slight variation in 
the total number of assigned notes for each reviewer.  
 
Overall, 722 notes were assigned to these 21 reviewers, of which 309 were double-reviewed 
and 413 were solo-reviewed. The double-reviewed 309 notes were utilized in reporting inter-
rater-agreement metrics. After the review, 69 out of 309 notes had at least one disagreement 
between the two reviewers based on one of the four questions: Whether ChatGPT's response 
on MMSE was correct; whether ChatGPT's response on MMSE included all instances of MMSE 
found in the clinical note; whether ChatGPT's response on CDR was correct; and whether 
ChatGPT's response on CDR included all instances of CDR found in the clinical note. A 22nd 
reviewer was then tasked to review these 69 notes again to provide a third review. Majority vote 
was then employed to identify the final answer and the ground truth provided by the reviewer 
whose answer was in the majority vote was used to calculate detailed precision/recall metrics. 
When both reviewers fully agreed and their JSON results were both valid for analysis, we 
randomly selected one to compute the precision and recall. Details of the parsing of the JSON 
result are included in the supplementary section S3. These expert-provided ground truth results 
were the basis for evaluating LlaMA-2. 
 
Statistical Approach 
For double-reviewed notes, we reported Fleiss Kappa [64] as a measure for inter-rater-
agreement, for ChatGPT analysis. We reported this metric for the four questions (Is MMSE 
complete/correct, and is CDR complete/correct). Additionally, for double-reviewed notes, we 
computed a 2-way Fleiss Kappa for MMSE and CDR lists of (outcome and date) tuples 
extracted from the JSON responses of expert reviewers, comparing them against each other, to 
derive inter-rater-agreement. Fleiss’ Kappa is useful when the assignment of a note to reviewer 
pairs has been random (uniform), and each note has been reviewed by a subset of reviewers 
[65] [66]. We only considered exact matches (i.e [MMSE-27/30, date “10-10-2010”], with 
[MMSE-26/30, date “10-10-2010”] is just as bad as [MMSE-5/30, date “10-10-2012”]). Kappa 
can be interpreted as follows: 40%–59% would be Weak, 60%–79% would be Moderate, 80%–
90% would be Strong, and Above 90% would be Almost Perfect [65]. In addition to 2-way 
Kappa, we also report a 3-way Kappa on the entries of MMSE and CDR results extracted from 
the JSON results, computing the joint agreement between the results of ChatGPT and the 
results provided by two human reviewers.  
 
We also report per test type (MMSE and CDR), Accuracy, True and False Negative Rates, 
Micro- and Macro-Precision and Micro- and Macro-Recall for both ChatGPT and LlaMA-2. 
Accuracy is defined as the percentage of correct results (at clinical note level), correct being 
defined as the list of (Value/Date) tuples in the JSON entries for the LLM and Ground Truth 
being fully identical. Macro-Precision for MMSE (or CDR) is the average (at the note level) of 
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percentage of correct MMSE (or CDR) tuples extracted (correct both in date and score values 
compared to an entry mentioned in the ground truth for MMSE (or CDR)). Macro-Recall for 
MMSE (or CDR) is the average (at the note level) of the percentage of the MMSE items in the 
ground truth that are extracted by the LLM. Micro-precision is calculated as percentage of 
correct MMSE (or CDR) items extracted by the LLM, from among all extracted MMSE (or CDR) 
items by that LLM, and is calculated as one number across all notes combining all notes’ 
entries. Micro-recall is similarly calculated as the percentage of all MMSE (or CDR) items 
mentioned in the ground truth that were extracted by the LLM. 

Results 
ChatGPT analyzed 765 notes for extraction of Mini Mental Status Exam (MMSE) and Cognitive 
Dementia Rating (CDR) scores and exam dates. Of these, 23 encountered API error (3%), and 
20 were used to fine-tune prompt and hyper-parameters. The remaining 722 notes were 
assigned to human expert reviewers who manually reviewed (and provided ground truth for) 
these notes. LlaMA-2 analyzed these 722 notes as well. Characteristics of these 722 notes and 
associated patients are included in Table 1. 
 
Table 1: Characteristics of 722 notes which are manually evaluated, and their 
corresponding patients 

Feature 
All notes (N=722 notes 
from 458 patients) 

Double reviewed 
notes (N=309 notes 
from 236 patients) 

Patient demographics 

Age at time of note (mean(sd)) 72.64 (14.01) 73.68 (14.01) 

Gender 

Female (%) 242 (52.84 %) 124 (52.54 %) 

Male(%) 216 (47.16 %) 112 (47.46 %) 

Race 

Asian 27 (5.90 %) 10 (4.24 %) 

Black 39 (8.52 %) 17 (7.20 %) 

White 334 (72.93 %) 178 (75.42 %) 

American Indian 1 (0.22 %) 0 (0.00 %) 

Unknown 57 (12.45 %) 31 (13.14 %) 

Note characteristics 

Date ranges (min to max) 
2011/11/21 to 
2023/05/10 

2011/11/21 to 
2023/05/10 

Length (in words) (mean (SD)) 8428.2 (3822.3) 8306.2 (3851.1) 

Open source BERT (prompt tokens) 2167.3 (1049.5) 2123.6 (1023.5) 
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ChatGPT (Prompt Tokens) 2212.93 (1002.9) 2174.9 (992.3) 

ChatGPT (Completion Tokens) 64.3 (49.6) 64.2 (46.5) 

ChatGPT (Total Tokens) 2277.3 (1017.9) 2239.1 (1005.0) 

Llama2 (Prompt Tokens) 2860.8 (1224.2) 2810.4 (1208.4) 

Llama2 (Completion Tokens) 140.2 (112.8) 146.9 (125.3) 

Llama2 (Total Tokens) 3000.9 (1276.7) 2957.4 (1270.8) 
 
Of the double-reviewed 309 notes, 69 had at least one disagreement between the responses to 
the four questions (if ChatGPT’s response for MMSE/CDR is correct/complete) and were 
assigned to a new reviewer for a third opinion. Among the responses with disagreement, 9 
disagreed about correctness of MMSE answers, 40 disagreed about completeness of MMSE 
answers, 17 disagreed about correctness of CDR answers, and 22 disagreed about 
completeness of CDR answers. The average response (at the note level) by the included 
reviews for the four yes/no questions are included in Table 2. Overall reviewers considered 
ChatGPT’s response to be 96.5% and 98% correct for MMSE and CDR respectively. The 
assessment for whether ChatGPT’s answers are also complete (i.e. they do not miss anything) 
was slightly lower averaging about 84% and 83% for MMSE and CDR respectively. 
 
Table 2: Average response (at the note level) of the responses of reviewers in judging if 
ChatGPT’s answers for MMSE and CDR are correct and/or complete. 

 All notes (N=722) 
Double reviewed 
notes (N=309) 

Is ChatGPT’s answer for MMSE correct? (%) 96.5 (sd 18.2) 96.4 (sd 18.5) 

Is ChatGPT’s answer for MMSE complete?
(%) 85.0 (sd 35.7) 84.7 (sd 36.0) 

Is ChatGPT’s answer for CDR correct? (%) 98.0 (sd 13.7) 99.6 (sd 5.6) 

Is ChatGPT’s answer for CDR complete? (%) 80.4 (sd 39.6) 83.4 (sd 37.1) 
 
The inter-rater-agreements between reviewers were calculated based on Fleiss’ Kappa and are 
summarized in Table 3. In addition to measuring Fleiss’ Kappa between reviewers based on 
double-reviewed notes (reported as 2-way Fleiss’ Kappa in Table 3), we also report agreement 
between ChatGPT, and the two human reviewers (reported as 3-way Fleiss’ Kappa in Table 3). 
The 2-way agreement on the yes/no questions was high (94% agreement between reviewers for 
MMSE and 89% agreement for CDR). There was some disagreement in judging the 
completeness of the answer, leading to a Kappa value of 75% for MMSE (and 85% for CDR). 
More notably, when analyzing the elements of the ground truth JSON, the 2-way agreement 
was excellent both for scores (83% for MMSE and 80% for CDR) and for dates (93% for MMSE 
and 79% for CDR). When measuring the 3-way agreement, there was an increase in all the 
metrics except MMSE dates. The accuracy and results of JSON formatting of the responses are 
included in supplementary section S4.  
 
Table 3: Fleiss’ kappa inter-rater-agreement metric between reviewers (2-way) and 
reviewers and ChatGPT (3-way) over the double-reviewed notes.  
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 2-way Fleiss’ kappa (Among 
human reviewers) 
 
 
On N=309 double-reviewed 
notes, n=21 reviewers (%) 

3-way Fleiss’ Kappa 
(between ChatGPT and two 
human reviewers) 
 
On N=309 double-reviewed 
notes, n=21 reviewers (%) 

Binary Questions 

Is MMSE list generated by 
ChatGPT correct? 

94.2 NA 

Is MMSE list generated by 
ChatGPT complete? 

75.2 NA 

Is CDR list generated by 
ChatGPT correct? 

89.0 NA 

Is CDR list generated by 
ChatGPT complete? 

85.8 NA 

Individual (value/date) tuples from ChatGPT and Ground-Truth JSON results. 

MMSE values (of the scores 
in the note) 

83.6 93.7 

MMSE dates (of the scores in 
the note) 

93.3 87.2 

CDR values (of the scores in 
the note) 

80.5 87.0 

CDR dates (of the scores in 
the note) 

79.0 82.5 

 
Table 4: Aggregate Accuracy, True Negative Rate, (Micro- and Macro-) Precision and 
Recall for MMSE and CDR scores extracted by ChatGPT and LlaMA-2. 
 

 

All notes with parsed 
JSON 
(N=710) 

Double-reviewed 
notes with parsed 
JSON 
(N=306) 

 ChatGPT LlaMA-2 ChatGPT LlaMA-2 

MMSE 

Total notes without any MMSE (in ground 
truth) 115 48 
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Total notes without any MMSE (in GPT results) 77 110 25 46 

Total correctly predicted empty MMSEs 76 66 24 23 

ChatGPT’s True Negative Rate for MMSE(%) 98.7 60.0 96 50.0 

ChatGPT’s  False Negative Rate for MMSE(%) 1.2 40.0 4 50.0 

Remaining notes with un-empty GPT response 
undergone Precision/Recall calculation for 
MMSE 633 600 281 260 

Total MMSE instances predicted 831 957 366 410 

MMSE Macro Precision  (mean % (sd %)) 
82.9 (sd 
36.2) 

62.2(sd 
45.5) 

82.7 (sd 
36.8) 

63.4 (sd 
44.9) 

MMSE Macro Recall (mean % (sd %)) 
87.8 (sd 
30.4) 

69.9 (sd 
43.5)  

89.7 (sd 
28.3) 

71.8 (sd 
42.1) 

MMSE Micro Precision (%) 83.8 57.7 84.1  59.3 

MMSE Micro Recall (%) 83.7 68.1 87.5 69.0 

Total notes with any error MMSE result 121 238 52 98 

Overall accuracy of MMSE (%) 82.9 66.4 83.0 68.0 

CDR 

Total notes without CDR (in ground truth) 608  260  

Total notes without CDR (in GPT results) 533 497 233 215 

Total correctly predicted empty CDR 532 489 233 212 

CDR True Negative Rate (%) 99.8 98.4 100 98.6 

CDR False Negative Rate (%) 0.2 1.6 0 1.4 

Remaining notes with un-empty GPT response 
undergone Precision/Recall calculation for 
CDR 177 213 73 153 

Total CDR instances predicted 256 344 92 153 

CDR Macro Precision (mean % sd %) 
48.3 (sd 
49.9) 

16.1 (sd 
35.5) 

57.5 (sd 
49.4) 

18.1 (sd 
36.9) 
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CDR Macro Recall (mean % sd %) 
84.3 (sd 
36.3) 

39.7 (sd 
48.7) 

91.3 (sd 
28.1) 

43.5 (sd 
49.6) 

CDR Micro Precision (%) 36.3 12.0 51.0 13.2 

CDR Micro Recall (%) 85.3 37.6 92.1 39.2 

Total notes with any error CDR result 91 181 31 76 

Overall accuracy of CDR (%) 87.1 74.5 89.8 75.4 

   
ChatGPT had an excellent True Negative Rate—over 96% for MMSE and 100% for CDR in 
double-reviewed notes. Both results had high recall (sensitivity), reaching 89.7% for MMSE 
(macro-recall) and 91.3% for CDR (macro-recall). MMSE was more frequently mentioned in the 
notes and ChatGPT’s macro precision (PPV) was 82.7%. CDR, on the other hand, was less 
frequent, and we observed that ChatGPT hallucinates (factitiously generates) results 
occasionally leading to a macro precision of only 57.5%. LlaMA-2 results were significantly 
lower than that of ChatGPT across all metrics. A detailed qualitative analysis of the ChatGPT 
errors for both CDR and MMSE, and LlaMA-2 results for MMSE are included in Supplementary 
section S5. The majority of the errors corresponded to ChatGPT presenting results of another 
test instead of the one indicated as the answer.  LlaMA-2 had higher rate of unexplained 
hallucinations. Taking positive and negative results into account, overall, ChatGPT had the 
highest performance with MMSE and CDR results being 83% and 89% accurate according to 
the double-reviewed notes.  

Discussion 
 
In this study, our primary objective was to evaluate the performance of two state of the art LLMs 
(ChatGPT and LlaMA-2), in extracting information from clinical notes, specifically focusing on 
cognitive tests such as the Mini-Mental State Examination (MMSE) and Clinical Dementia 
Rating (CDR). Our results revealed that ChatGPT achieves high accuracy in extracting relevant 
information for MMSE and CDR scores, as well as their associated dates, with high recall, 
capturing nearly all of the pertinent details present in the clinical notes. The overall accuracy of 
ChatGPT in information extraction for MMSE and CDR were 83% and 89% respectively. The 
extraction was highly and had outstanding true-negative-rates. The precision of the extracted 
information was also high for MMSE although in the case of CDR, we observed that ChatGPT 
occasionally mistook other tests for CDR.  Based on the ground-truth provided by our reviewers, 
89.1% of the notes included an MMSE documentation instance, whereas only 14.3% of the 
notes included a CDR documentation instance. This, combined with our analysis of the errors, 
explain lower precision in the CDR case, and suggest combining ChatGPT with basic NLP 
preprocessing may improve the LLM performance further. Compared to ChatGPT, the open-
source state of the art LLM (LlaMA-2) achieved lower performance across all metrics. The 
substantial inter-rater-agreement among our expert reviewers further supported the robustness 
and validity of our findings, and the reviewers considered ChatGPT’s responses correct and 
complete. 
 
The findings of our study demonstrate that ChatGPT (powered by GPT-4), offer a promising 
solution for extracting valuable clinical information from unstructured notes. This approach 
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provides a more efficient and scalable approach compared to previous methods that either rely 
on rigid rule-based systems or involve training resource intensive task specific models. 
Validated and accurate LLMs such as ChatGPT can be effortlessly applied to enhance the value 
of clinical data for research, enable harmonization with disease registries and biobanks, improve 
outreach programs within health centers, and contribute to the advancement of precision 
medicine. Additionally, the availability of large labeled datasets resulting from this information 
extraction process can also enable AI models to be trained for a wide variety of tasks.  
 
Furthermore, our findings have implications for future AD/ADRD research. Currently, the 
majority of research in scalable development and validation of AI tools for early AD/ADRD 
detection rely on research cohorts. These cohorts are overwhelmingly white (NACC cohort is 
83% white [68] ADNI cohort is 92% white [62], and do not represent true at-risk populations who 
tend to have higher comorbid disease burden [50]. Due to late detection and diagnosis of 
AD/ADRD [46] [47] [48] [49], clinical data often lacked the details necessary for accurate case 
identification (i.e. structured data such as ICD codes would yield low sensitivities). Using LLMs 
to extract data from clinical notes has the potential to improve the quality of clinical data, paving 
the way for clinical validation and development of clinically applicable novel AI tools and 
performing cognitive-health precision medicine at scale.  
 
Limitations 
Our focus was on evaluating the information extraction capabilities of two current state of the art 
of LLMs, specifically ChatGPT powered by GPT-4, and LlaMA-2, rather than comparing it to all 
other LLMs or NLP methods. We believe that our results may be enhanced with better prompt 
engineering and combining LLMs with standard NLP. Additionally, we conducted a large-scale 
human evaluation for a single dementia use case, prioritizing result reliability over assessing 
various clinical scenarios. It is also important to note that our findings pertain specifically to 
information retrieval from clinical notes and do not predict how LLMs will perform on medical 
tasks requiring diagnosis, treatment recommendation, or summarization. 
 
Conclusions 
 
In this diagnostic/prognostic study of ChatGPT and LlaMA-2 for extracting cognitive exam dates 
and scores from clinical notes, ChatGPT exhibited high accuracy in extracting MMSE scores 
and dates, with better performance compared to LlaMA-2.  The use of LLMs could benefit 
dementia research and clinical care, by identifying eligible patients for treatments initialization or 
clinical trial enrollments. Rigorous evaluation of LLMs is crucial to understanding their 
capabilities and limitations.   
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