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Abstract 

Precision medicine is cognizant of the impact of genetics and environments on subtypes of 
heterogeneous diseases and aims to identify, diagnose, and treat each subtype appropriately. Real-
valued biomarkers, such as protein levels in plasma, are key for practical subtype diagnoses and hold 
potential to elucidate subtypes and illuminate promising drug targets. Biomarkers that are common 
across all subtypes have been discovered using fold change (FC) and the area under the receiver 
operating characteristic curve (AUC). However, FC and AUC fail to identify biomarkers for subtypes when 
they comprise less than half of the disease group. We present here a machine-learning biomarker 
evaluation method based on clustering of the data points, referred to as Difference in Bicluster 
Distances (DBD). We contribute efficient, yet optimal, software coupled with rigorous validation 
techniques, and demonstrate our approach on a late-onset Alzheimer disease (AD) gene expression 
dataset. Our trials produced four significant genes and appropriate thresholds for biomarker diagnostics. 
While none of these genes were identified as significant by either FC or AUC for the given dataset, the 
genes have been independently associated with AD or neurological disorders by other groups using 
completely independent means. In summary, DBD provides a unique and effective method for screening 
real-valued data to identify biomarkers associated with subtypes of heterogeneous diseases.  

 

Introduction 

Many complex diseases of interest are heterogeneous, in that they arise due to multiple distinct causes, 
yielding various subtypes. The goal of precision medicine is to identify, diagnose, and develop 
treatments for each subtype. Many successes have been made, such as the identification of distinct 
subtypes of breast cancer, e.g. luminal A, luminal B, HER2 positive, and basal-like, and treating each 
subtype appropriately. However, progress toward developing precision medicine for many diseases 
plaguing humanity, such as late-onset Alzheimer disease (AD), has been slow. AD is a heterogeneous 
disease, as revealed by its wide range of genetic and environmental risk factors and diversity of clinical 
manifestations, yet the lack of knowledge about these subtypes impedes development of treatments to 
cure this devastating disease. Drug discovery and selections of individuals for drug trials are severely 
handicapped by the lack of ability to discern subtypes. 

Most complex diseases arise due to combinations of genetic and environmental factors, such as lifestyle. 
In addition to genetic testing, biomarkers generated by procedures such as PET or MRI scans, biopsies, 
lumbar punctures, and plasma sampling provide clues for identifying subtypes. Many of these 
procedures produce real-valued data, such as levels of proteins in plasma or cerebral spinal fluid, and 
amyloid or tau loads in various brain regions. Real-valued biomarkers are commonly evaluated using 
either fold change (FC) or the area under the receiver operating characteristic curve (AUC). FC is the 
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ratio of the mean or median of biomarker levels for the diseased cases and normal controls. AUC is the 
area under the curve of a 2-dimensional plot of the true positive rate vs. the false positive rate as these 
values range from zero to one. 

We previously demonstrated the inability for FC and AUC to capture signals for subtypes when they 
comprise less than 50% of the diseased individuals.1 FC is unable to capture the subtypes as only the 
mean or median is used in the computation and subtype signals are lost. AUC’s dependence upon the 
true positive rate cripples its evaluation as the upper limit on this rate is the percentage of individuals in 
the subset. As most heterogeneous disease subtypes are expected to represent less than half of the 
diseased individuals, FC and AUC are inappropriate metrics for evaluating biomarkers for precision 
medicine.  

Cognizant of the limitations of the true positive rate, as well as the related measurements in the 
confusion matrix, for detecting subtypes we previously proposed a bimodality coefficient difference 
(BCD) evaluation.1 Based on the assumption that a subtype will create a secondary peak in the 
distribution of the data for diseased cases, BCD computes the bimodality coefficient for each group of 
diseased cases and normal controls and is set to the difference of these two values. The bimodality 
coefficient is based on statistical characteristics of the data, including skewness, cardinality, and 
kurtosis.2 Using BCD, we presented dramatic improvement over AUC and FC for large sample sizes, 
including thousands of simulated trials with 1000 individuals and RNA sequencing of ~2k Mus musculus 
microglia cells tracked during neurodegeneration.  

During the course of our trials, we have observed that statistical characteristics indicative of bimodality 
tend to erode with smaller sample sizes. Due to the limited numbers of individuals in many research 
trials due to budget constraints, we present herein an alternative approach based on the concept that 
data points in the two modes resemble two natural clusters.  

Clustering of data points has been heavily researched in the field of machine learning. k-means and k-
medians are two methods that minimize the sum of the distances of the points to the means or 
medians, respectively, of their assigned clusters. We opt for k-medians due to potential issues of using 
means in the presence of extreme values and/or outliers. Given a set of points, k-medians aims to 
subdivide the points into k subsets such that the following summation of squares is minimized: 

��‖𝑥𝑥 −𝑚𝑚𝑖𝑖‖2
𝑥𝑥∈𝑆𝑆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

where 𝑘𝑘 is the number of clusters, 𝑆𝑆𝑖𝑖 is the set of points that are in cluster 𝑖𝑖, and 𝑚𝑚𝑖𝑖 is the median for 
cluster 𝑖𝑖.  

Optimally solving k-medians is generally NP-hard3,4 and Lloyd’s algorithm5 is commonly used to identify 
an approximate solution. Lloyd’s algorithm is an expectation-maximization method in which data points 
are first assigned to arbitrary clusters, then two alternating steps are iteratively repeated until data 
points no longer move to different clusters. The two steps are (1) medians are computed for each 
cluster and (2) the points are reassigned to their closest median. The closeness between two points can 
be assessed using metrics such as Euclidean distance. In general, the number of clusters is typically 
unknown prior to the analysis and multiple trials are run with sequential values for k. For our purposes, 
k is always set to two (2-medians) as we aim to see how well the data points clump into two clusters.  
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We assume that an analyte associated with a subtype for a disease will have values that tend to form 
two clusters for the diseased cases, in which one cluster represents the values for the individuals with 
the subtype. Greater separation between the medians for the two clusters represents higher distinction 
between the subtype and the other diseased cases. Note that it is possible that the normal controls 
generate two clusters for analytes that naturally vary, such as glucose levels in blood. For this reason, we 
compare how well the diseased cases vs. the normal controls cluster into two distinct clusters.   

We present Difference in BiCluster Distances (DBD) for evaluating real-valued biomarkers for 
heterogeneous diseases. First, the samples are split into Discovery and Validation datasets. Candidate 
biomarkers are identified by analyzing the Discovery data and then tested in the unseen Validation data 
to ensure reliability of the results. Second, each analyte is evaluated by computing the optimal 2-
medians solution for the diseased cases and then for the normal controls in the Discovery dataset. The 
distance between the medians for the controls is subtracted from the distance between the medians for 
the cases and this difference is recorded as DBDi for analyte i. Third, each DBDi is evaluated for 
significance by running a series of permutation trials in which the values for the analyte are randomly 
assigned to a case or control label and the DBD value is computed. This procedure breaks down any 
associations that might exist and provides a p-value for each analyte. Fourth, the most significant 
analytes are tested on the individuals in the Validation dataset and corrections for multiple testing are 
applied. We conservatively utilize Bonferroni corrections to provide high confidence in final results.  

Optimally solving k-medians is NP-hard3,4, but we were able to develop a highly efficient optimal 
algorithm with worst-case time complexity of O(mn2), where m is the number of analytes and n is the 
number of individuals in the group with highest cardinality. This efficiency is possible due to the low 
dimensionality of the data points, setting k to 2, and using a unique dynamic programming approach 
which stores subproblem solutions for reuse.  

In addition to introducing the DBD method, we present results from using this method on a gene 
expression dataset comprised of 7,431 genes for 173 AD cases and 184 normal controls. These trials 
yielded four significant genes after Bonferroni corrections when tested on the independent Discovery 
data. None of the four genes are significant when analyzed using AUC or FC. DBD provided thresholds 
for direct translation to biomarker trials and these thresholds exhibit extremely strong odds ratios.  

 

Methods 

We utilized previously generated Sentrix HumanRef-8 Expression BeadChip22 gene expression data 
(GEO Omnibus GSE15222), which consists of expression levels for 8,560 genes derived from human 
cortex tissue of 176 AD cases and 188 age-matched controls.6 The dataset was cleaned to a maximum of 
5% missing values per individual and per gene using the DataRetainer program 
(http://www.cs.umsl.edu/~climer/blocBuster/code.html). The cleaned data are comprised of 7,431 
genes for 173 AD cases and 184 controls and are available by request.  

The overall procedure is tabulated in Figure 1. Optimal 2-medians clustering was implemented using a 
dynamic programming algorithm, which eliminates redundant computations while ensuring the optimal 
solution is returned. Quicksort was utilized for sorting data. Ten thousand permutation trials were 
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performed for each analyte, providing accurate p-values with four significant digits. This large number of 
permutation trials also ensures adequate sample size for analytes returned as significant. 

 

Results 

When tested on the unseen Validation data, 15 of the 50 genes with the highest significance in the 
Discovery trials had p-values ≤ 0.05. Four of these 15 genes had p-values ≤ 0.05 after Bonferroni 
corrections for multiple testing (Table 1).  
 
The four significant genes are: ubiquitin-conjugating enzyme E2H (UBE2H), fasciculation and elongation 
protein zeta 1 (FEZ1), transmembrane protein 5 (TMEM5), and amyloid beta precursor protein-binding 
family A, member 2 (APBA2). Histograms of these four genes illuminate subtypes within the AD Cases 
(Figure 2).  
 
Note that none of the four genes are significant when analyzed using AUC or FC (Table 1). Thresholds 
suggested by the DBD results yield extremely strong odds ratios, as shown in Table 2. DBD directly 
provides thresholds that can be utilized in biomarker diagnostics.  
  
Total computation time for the Discovery trials was 24 minutes. Over 74 million DBD computations were 
conducted, with an average time of 1.9 x 10-5 seconds per evaluation. This efficiency is due to the use of 
a unique dynamic programming algorithm, fast sorting algorithm, and C/C++ code implementation.  
 
Conclusions 

DBD provides a machine-learning approach for assessing real-valued biomarkers. It has no reliance upon 
statistical characteristics of the data making it robust for practical sample sizes. Also, it utilizes medians, 
rather than means, thereby providing robustness in the presence of outliers and other extreme values.  
 
Although optimally solving k-medians is NP-hard, our 2-medians objective over 1-dimensional data using 
dynamic programming is highly efficient and enables the use of a large number of permutation trials to 
determine the significance for each analyte. The permutation trials retain the original data values and 
provide insights into the likelihood of observing a given DBD value for the specific data values.  
 
We demonstrate the utility of our approach by revealing four genes worthy of further investigation. It is 
important to note that both AUC and FC failed to identify any of these four genes for the given dataset, 
yet independent research by others reveal associations. UBE2H has previously been identified as a 
potential biomarker for AD.7 Also, it was recently shown that reversal of increased FEZ1 in rats with 
induced AD suggests a mechanism for the effects of melatonin.8 Although a brief search did not reveal 
any direct associations between AD and TMEM5, transmembrane proteins in general play many roles in 
neurological disorders.9 Finally, APBA2 encodes a protein that interacts with the Alzheimer’s disease 
amyloid precursor protein, APP, which is cleaved during the production of amyloid beta, and several 
studies suggest that APBA2 regulates amyloid beta production.10–13 
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It is patently clear that AUC and FC fail to identify biomarkers for subtypes of heterogeneous diseases 
when the subtype comprises less than half of the entire group of diseased cases.1 Subtypes have 
inherently low true positive rates, which sabotage AUC assessments, and are lost in summary statistics 
such as FC. Instead of focusing on these traditional measurements, we have developed tools based on 
the assumption that a subtype will form a secondary cluster within the data values for the diseased 
cases. Our recent approach, BCD, is based upon the statistical characteristics of the data and shows 
great improvements for large sample sizes.1 This manuscript introduces a machine-learning approach, 
DBD, based on clustering that is suitable for more moderate sample sizes. In summary, DBD provides a 
unique and effective method for screening real-valued data to identify biomarkers associated with 
subtypes of heterogeneous diseases. 
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DBD Analysis: 

 Randomly split AD Cases and Controls into 60% for Discovery and 40% for Validation 

 For each analyte in the Discovery dataset: 

 Compute the optimal k-medians clustering for k = 2 for the AD Cases data 

 Record the distance between the medians for the two clusters as DCases 

 Repeat for the Controls data and identify DControls 

 Let Difference of Bicluster Distances (DBD) = DCases - DControls  

 Run 10,000 permutation trials to determine significance 

 Randomly reassign sample values to ‘Case’ and ‘Control’ groups and compute 
DBD value 

 Determine p-value for original result based upon the randomized trials 

 Select 50 most significant analytes from the Discovery trials 

 Test the selected 50 analytes using DBD on the unseen Validation data 

 Apply Bonferroni corrections for multiple testing 

 

Figure 1  Steps used in our data analysis of gene expression data for AD cases and normal controls.  
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Figure 2 Histograms for the four genes identified by DBD.   
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Table 1 DBD, AUC, FC, and gene information for the four genes identified by DBD. FC shown is the 
absolute value of the log2 of the ratio of case/controls medians.   

 

  

Discovery 
p-value

Validation 
p-value

Bonferroni 
corrected

UBE2H 0.0002 0.0002 0.010 0.546 0.042
ubiquitin-conjugating 
enzyme E2H (UBC8 

homolog, yeast)
NM_182697.1 7q32

FEZ1 0.0008 0.0005 0.025 0.585 0.187
fasciculation and 

elongation protein    
zeta 1 (zygin I)

NM_022549.2 11q24.2

TMEM5 0.0004 0.0007 0.035 0.540 0.026
transmembrane    

protein 5
NM_014254.1 12q14.2

APBA2 0.0005 0.0010 0.050 0.566 0.145

amyloid beta (A4) 
precursor protein-
binding, family A, 

member 2

NM_005503.2 15q11-q12

Cytoband

DBD

AUC FCGene  
Symbol

Description Refseq
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Table 2 Thresholds suggested by the DBD results, percentages of AD cases and normal controls with 
corresponding values, odds ratio, and 95% confidence interval for the odds ratio.   

 

Gene Symbol Threshold % Cases %  Controls OR [95% CI]
UBE2H >=600 22.5% 2.7% 10.4 [4.0, 27.1]
FEZ1 <= 325 30.6% 8.7% 4.6 [2.5, 8.5]

TMEM5 >=220 21.1% 1.7% 15.8 [4.8, 52.5]
APBA2 < =174 23.7% 6.0% 4.9 [2.4, 9.9]
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