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Abstract: 
 
Background: Brain metastases (BM) represent the most common intracranial tumor in adults. An 

estimated 20% of all patients with cancer will develop BM. Stereotactic Radiosurgery (SRS) is a major 

treatment option for BM. For SRS treatment planning and outcome evaluation, magnetic resonance 

imaging (MRI) are acquired before and at multiple stages during the follow-up. Accurate segmentation 

of brain tumors on MRI is crucial for treatment planning and response evaluation. Detection and 

segmentation of BM is a tedious and time-consuming task for many radiologists that could be optimized 

with machine learning methods. Previous studies evaluated the segmentation performance of several 

deep learning algorithms, but focused mainly on training and testing the models on the planning MR 

images only. The purpose of this study was to investigate a well-known deep learning approach (nnU-

Net) for BM segmentation and to evaluate its performance on both planning MR images and follow-up 

MR images based on training on planning MR images only and testing with both planning MR and 

follow-up MR images.  

Method: Pre-treatment contrast-enhanced T1-weighted brain MRIs(i.e. the planning MRI) were 

collected retrospectively for 263 patients with BM. Scans were made as part of clinical care at the 

Gamma Knife Center of the Elisabeth-TweeSteden Hospital (Tilburg, the Netherlands). This total of 263 

patients were split into 203 patients for model training/validation and 60 patients for testing. For these 

60 patients used for testing, the post treatment contrast-enhanced follow-up T1-weighted brain MRI 

scans(i.e. follow-up MRI) were also retrospectively collected. These 60 patients who were part of the 

testing set are from the set of patients included in the Cognition And Radiation Study A(CAR-Study A) at 

ETZ. The follow-up (FU) scans were made at 3, 6, 9, 12, 15, and 21 months after treatment. The nnU-Net 

model was trained with the planning MR images, and then tested separately against the planning and 

follow-up MR images. 
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Results: When tested with planning MR images, the model obtained a dice similarity coefficient (DSC) of 

0.940, a  False Negative Rate (FNR) of 0.065 and a sensitivity of 0.934. When tested with the follow-up 

MR images 3, 6, 9, 12, 15 and 21 months after treatment , the model obtained, respectively, a DSC of 

0.759, 0.667, 0.604, 0.589, 0.666 and 0.574, an FNR of 0.288, 0.379, 0.445, 0.470, 0.409, and 0.487 and a 

sensitivity of 0.711, 0.620, 0.554, 0.529, 0.590, and 0.512. 

Conclusion: The model achieved a good performance score for planning MR images. The nnU-Net 

model can automatically detect and segment brain metastases with high sensitivity, and low FNR. 

Though there is a decline in the DSC and an increase in the FNR of the model for the follow-up MR 

images, the algorithm could be a beneficial tool for clinicians and assist them for diagnosis, treatment 

planning and treatment response evaluations during follow-ups of BM patients. 

 

Keywords: Brain metastases, auto-segmentation, SRS, deep learning. 

 

Introduction: 

 

 For SRS treatment planning, the physician must manually contour the multitude of presenting 

lesions on co-registered, three-dimensional MR or CT images. This process is labor-intensive and prone 

to significant variability among physicians[12]. An automatic and robust system for detecting and 

contouring brain metastases would facilitate more precise and efficient treatment delivery in the 

radiotherapy clinic. Automated tools that assist radiologists and radiation oncologists in their respective 

roles in detection and delineation of multiple metastases can positively impact both the efficiency as 

well as efficacy of management of patients with multiple BMs. 

 

Deep learning models (DLMs) have shown great potential in detection, segmentation and 

classification tasks in medical image analysis while having the potential to improve clinical workflow[26]. 

Several approaches have been introduced for brain metastasis segmentation in MRI using deep 

learning[16]. The first application which produced state-of-the-art results in automated segmentation of 

BM in MRI was published in 2015 by Losch et al. [27]. Since then, a large variety of network architectures 

for deep learning such as convolutional neural networks (CNNs) and DeepMedic have been tested. One 

limitation of these studies is that they were mainly focused on training and testing the models on the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2024. ; https://doi.org/10.1101/2023.07.07.23292387doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.07.23292387


planning MR images only (e.g. [15, 17, 19, 21, 22, 24, 25]). This is a limitation because the performance 

of the deep learning algorithms on follow-up MR images might not be the same as their performance on 

the planning MR images. This could be because of the shrinkage of the tumors due to the radiation 

effect. The evaluation of the performance on the follow-up MRI images is necessary to establish the 

applicability of these algorithms to assist the clinicians for the response evaluation during follow-ups. 

Jalalifar et al[28]. evaluated the performance of a deep learning model on the follow-up MR images but 

presented the performance results for five sample patients only. 

One of the popular deep learning network architectures is the so-called nnU-Net[23]. Isensee et 

al [20] demonstrated how this architecture achieved state of the art performance on different 

challenges in segmentation of medical images by applying it to 10 international biomedical image 

segmentation challenges comprising 19 different datasets and 49 segmentation tasks across a variety of 

organs, organ substructures, tumors, lesions and cellular structures in MRI, computed tomography scans 

(CT) as well as electron microscopy (EM) images. Ziyaee et al[18] evaluated this algorithm for BM by 

training and testing it with planning MR images only. The model achieved an overall DSC of 82.2%, which 

shows good segmentation performance. By comparison to other algorithms, the model achieved the 

best detection performance, but the performance of this nnU-Net  algorithm for the segmentation of 

the follow-up images is not yet evaluated. In the present work we addressed this gap and assessed the 

applicability of nnU-Net for automated segmentation of both planning and follow-up images.  Hence the 

objective of this study is to evaluate the effectiveness of the nnU-Net algorithm for the segmentation of 

planning and follow up images.  At ETZ, the segmentations are done only for the planning MRI scans and 

not for the follow-up scans. This lack of ground truth segmentations creates a limitation for training the 

deep learning algorithms with follow-up scans. In this work, we evaluated the performance of the nnU-

Net algorithm by training it with planning images only and testing it with both planning and follow-up 

images. This evaluation will help to understand if this state of the art deep learning algorithm can assist 

the clinicians in detection and segmentation of BM images for treatment planning and treatment 

response evaluation during follow-ups. 

Method: 

For this study, pre-treatment contrast-enhanced (with triple dose gadolinium) T1-weighted 

brain MRIs of 263 BM patients were used. These planning MRI scans were collected using a 1.5T Philips 
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Ingenia scanner (Philips Healthcare, Best, The Netherlands). The voxel size was 0.82 x 0.82 x 1.5mm. 

Scans were made as part of clinical care at the Gamma Knife Center of the Elisabeth-TweeSteden 

Hospital (ETZ) at Tilburg, The Netherlands. The total of 263 patients were split into 203 patients for 

model training and 60 patients for testing.  For the 203 patients in the training data set, the treatment 

type was decided by assessing the volume of the tumors in the planning MRI. The patients underwent 

either GKRS at the Gamma Knife Center or were referred to WBRT or surgery at the other departments. 

The 60 patients who were part of the testing set are from the set of patients included in the Cognition 

And Radiation Study A (CAR-Study A) at ETZ [29]. Our test set is a random subset of the set of the 

patients included in this CAR-Study A. All the patients in the test data set underwent GKRS. Patients with 

other brain tumor types in addition to brain metastases were excluded from the test data set (n=6). For 

example, some patients also had a meningioma in addition to brain metastases and hence they were 

excluded from the test set. After this exclusion, there were 54 patients in the test data set. The 

segmentations of the baseline ground truth were manually delineated by expert oncologists and 

neuroradiologists at ETZ. The manually delineated ground truth for follow-up scans were only available 

for the patients who were part of the CAR-Study A.  

For the 54 patients used for testing, the post treatment contrast enhanced (with single dose 

gadolinium)  T1-weighted brain follow-up MRI scans were also retrospectively collected. Though the 

slice thickness of the follow-up scans ranged from 0.21 mm to 1.5 mm, the majority of the scans had a 

slice thickness of 0.8 mm. The images from 6 follow-up sessions were available. The follow-up (FU) scans 

were made at 3, 6, 9, 12, 15, and 21 months after treatment. For these follow-ups, scans of 54(FU1), 

41(FU2), 32(FU3), 27(FU4), 19(FU5) and 14(FU6) patients were available.  

As a preprocessing step, all the MRI scans were registered to standard MNI space using Dartel in 

SPM12, implemented in Python using the Nipype(Neuroimaging in Python–Pipelines and Interfaces) 

software package (Gorgolewski et al., 2011). The voxel size of the normalized image was set to 1*1*1. 

For all other normalization configurations, the default values offered by SPM12 were used. One other 

preprocessing step was to combine the ground truth labels for patients with more than one BM to 

create a single ground truth mask with all the BMs. FSL library was used for this integration[30]. 

The nnU-Net algorithm was used to automatically segment the brain images[23].It is a 

framework built on top of the U-Net[23]. Based on properties of the dataset, it makes key design choices 

for pre-and post-processing, data augmentation, network architecture, training scheme, and 
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inference[23]. These automatic design choices allow nnU-Net to perform well on many medical 

segmentation tasks. The nnU-Net model was trained with the planning MR images in 3d full resolution 

mode. The trained model was then tested separately against the planning and follow-up images.  

To assess the quality of the resulting segmentations, multiple metrics were employed. The dice 

similarity coefficient (DSC) measures the overlap with the ground truth (ranging from 0 for no overlap to 

1 for perfect overlap) per patient. It is calculated by dividing the double of the area of overlap by the 

sum of the areas of the predicted and the ground truth segmentation. The algorithm’s performance in 

detecting individual metastases was measured by sensitivity (number of pixels in the detected 

metastases divided by the number of pixels in all metastases contained in ground truth), and by the false 

negative rate (FNR).  The FNR is the probability that a true metastasis will be missed by the model. In the 

results section, these metrics are presented for the predictions done for baseline and for the follow up 

test data. 

Results: 

Table 1 shows the characteristics of patients included in our study.  

 

 
Training 
set 

Baseline 
test set 

FU1 
test set 

FU2 
test set 

FU3  
test set 

FU4  
test set 

FU5  
test set 

FU6  
test set 

Number 
of 
patients 

210 54 54 41 32 27 19 14 

Gender 
Male 
Female 

 
100 
110 

 
26 
28 

 
26 
28 

 
19 
22 

 
15 
17  

 
12 
15 

 
7 
12 

 
5 
9 

Age  
Average 
Min 
Max 

 
62 
34 
85 

 
62 
32 
81 

 
62 
32 
81 

 
63 
44 
81 

 
63 
44 
81 

 
63 
44 
81 

 
62 
49 
81 

 
62 
49 
75 

Total 
number of 
BM 

1321 203 208 182 134 81 65 39  

Highest 
tumor 

64.26 20.8 16.21 20.85 11.14 14.479 14.29 30.04 
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volume 
(cm3) 

Smallest 
tumor 
volume 
(cm3) 

1 3 3 1 1 2 1 2 

Table 1: Patient characteristics  

 

The tumor segmentation results obtained for the baseline and the FU tests are shown in table 2. 

The table presents the performance metrics for the baseline and follow up tests. The mean DSC when 

tested with the planning MR images is 0.940 and it is lower for the tests conducted with follow-up MRI 

images. The mean FNR for the planning MR images is 0.065 and it is higher for the tests conducted with 

follow-up MRI images. The mean sensitivity is 0.934 for the test with planning MR images and has lower 

values for the tests with follow-up MRI images. 

 
 

Baseline FU1 FU2 FU3 FU4 FU5 FU6 

DSC 0.940 0.759 0.667 0.604 0.589 0.666 0.574 

FNR 0.065 0.288 0.379 0.445 0.470 0.409 0.487 

Sensitivity 0.934 0.711 0.620 0.554 0.529 0.590 0.512 

Percentage of missed BMs 8.86 22.11 28.57 47.76 28.39 18.46 35.89 

Avg. missed BM per patient 0.333 0.851 1.268 2.000 0.851 0.631 1.000 

Table 2: Performance of the segmentation model 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2024. ; https://doi.org/10.1101/2023.07.07.23292387doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.07.23292387


The tumor segmentation results obtained for a representative patient with good results at 

baseline and at six follow-up sessions are shown in Figure 1. The tumors in the ground truth and 

segmented output are marked with green and red respectively and overlaid on each other. The 

overlapping region is marked in yellow. There are 2 tumors in the ground truth in the baseline and in all 

follow-up scans. The images show that the tumors have shrunk over time. Both the tumors are 

predicted correctly in the tests with baseline images and in all follow-ups except for the FU2. In the 

generated segmentation outcome for FU2, only one of the tumors is visible. The DSC, FNR and sensitivity 

for this patient in the baseline and in the follow-ups tests are shown in Table 3. 

Figure 1: Segmentation result for representative patient 1  

 

 

 

DSC 0.931 0.929 0.775 0.914 0.858 0.862 0.811 

FNR 0.079 0.083 0.336 0.131 0.224 0.206 0.208 

Sensitivity 0.920 0.916 0.663 0.868 0.775 0.793 0.791 

Table 3: Performance for the sample patient  
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The tumor segmentation results obtained for another representative patient at the baseline and 

at six follow-up sessions are shown in Figure 2. The model showed good performance for this patient at 

baseline, FU1, FU2 but showed poor performance results for the subsequent follow-ups. There is 1 

tumor in the ground truth in the baseline and in all follow-up scans. Similar to Figure 1, the tumors in 

the ground truth and segmented output are marked with green and red respectively and overlaid on 

each other. The overlapping region is marked in yellow. The images show that the tumor has shrunk 

over time. This tumor is predicted correctly in the tests with baseline images and in FU1, FU2 and not 

predicted for the subsequent follow-up tests. The DSC of this patient was 0.949, 0.946 and 0.836 for 

baseline, FU1 and FU2 respectively. For the subsequent tests, the DSC was 0 because of the missed 

tumor. 

 Figure 2: Segmentation result for representative patient 2 

Another interesting finding is that the model also detected some tumors that are missing in the 

ground truth. Some of the extra tumors detected by the model are part of the ground truth of 

subsequent scans. For example, for some patients the model detected an extra tumor in the baseline 

test. The ground truth masks of the baseline did not contain this tumor but the ground truth masks of 

FU1 contained these tumors. 

 

We also compared the performance for the patients who received the GKRS only once at the 

baseline with the patients who also received GKRS for local recurrence during follow-ups. Table 4 shows 

the performance for a sample patient (patient 1) who received GKRS only at the baseline and the 

performance for another sample patient (patient 2) who received the GKRS at the baseline and at two 

follow-ups. We did not observe a significantly higher drop in performance for the patient who received 

multiple treatments when compared to the patient who received the treatment only once. 

 
Baseline FU1 FU2 FU3 FU4 FU5 FU6 
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DSC for patient 1 0.949 0.920 0.865 0.812 0.860 0.707 0.581 

DSC for patient 2 0.974 0.921 0.913 0.921 0.926 0.929 0.458 
Table 4: performance comparison for single treatment vs multiple treatments 

 

Discussion: 

In this study, the nnU-Net deep-learning algorithm was evaluated for automatic segmentation of 

brain tumors on T1- weighted MR images before and after radiation therapy.  When tested on the pre-

treatment test data set, the model achieved a DSC of 0.940, FNR of 0.065 and a sensitivity of 0.934. The 

performance of the model for the baseline and the FU tests are shown in Table 2. The performance of 

the model for the follow up was lower than the performance for the planning MRI scans. The 

performance of the model when tested for the follow-up images obtained after 3 months (T3) was 

closer to the performance for the planning MRI images. The performance of the follow-up after FU1 was 

lower than compared to the baseline and FU1. 

 

The performance of the model for the baseline is higher when compared to other similar 

studies. For example, Dylan g et al[21], expounded a fully 3D deep learning approach capable of 

automatically detecting and segmenting brain metastases using T1 contrast and CT images. The DSC of 

this algorithm was found to be 0.76. Endre et al[25] observed a DSC of 0.79 while evaluating a deep 

learning algorithm for detection and segmentation of BM on multisequence MRI.  

 

When tested on planning MR images, the model did miss some of the tumors that were present 

in the ground truth. We observed that the model tends to miss metastases that are either near a blood 

vessel or located near the tentorium. Additionally, some false positive segmentations turned out to be 

blood vessels. However the model did detect and segment some tumors that were missed in the ground 

truth. Some of these extra tumors that were detected by the model were part of the ground truth of the 

subsequent follow-up scans. This shows that the model can assist the clinicians in the early detection 

and segmentation of the tumors.  
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The performance of the model for the follow up was lower than for the planning MR scans. This 

could be due to the fact that the amount of contrast administered to the followup images was less than 

the amount of contrast adminstered to the baseline images. The baseline images were contrast-

enhanced with triple-dose gadolinium and the follow-up images were contrast-enhanced with single-

dose gadolinium. The decrease in performance for the follow-ups may also be due to the radiation 

effect which causes the tumors to shrink over time. The detection and segmentation performances of 

the deep learning algorithms tend to decrease for smaller lesions[22]. Hence, the shrinkage of the 

tumors over time due to the radiation effect could be a reason for the lower performance for successive 

follow-up scans. Alternatively, the change in the texture of the tumor at follow-up months after multiple 

sessions of treatment could make it harder for the algorithm to detect. We compared the performance 

of those patients with only one treatment with the patients who had multiple treatments over time for 

local recurrence. The decline in performance for these two categories are similar and we did not 

observe a higher drop in performance for patients who received multiple treatments when compared to 

patients who received the treatment only once. This shows that the declining performance is less likely 

due to the treatments over time for local recurrence.  The difference in contrast or slice thickness 

between the planning and follow-up images might also cause some difference in the performance of the 

models on the follow-up MR images. 

 

A limitation of this work is that our test samples only included BM patients who were included 

for GKRS. This means that the performance of the algorithm could be different for the follow-up images 

after a different treatment approach. Future work could be to evaluate the performance of the 

algorithm for a larger sample size which also includes patients treated with other treatment types. 

 

 Results from this study showed that the algorithm achieved a good performance score for 

planning MR images. The nnU-Net model can automatically detect and segment brain metastases with 

high sensitivity, and low FNR for treatment planning. It could therefore be a beneficial tool for clinicians 

and assist them in diagnosis and treatment planning. 

 

     In the present work we assessed the applicability of nnU-Net for automated segmentation of 

both planning and follow-up MR images for BM patients. At ETZ, the segmentations are done only for 

the baseline scans and not for the follow-up scans. This lack of ground truth segmentations creates a 

limitation for training the deep learning algorithms with follow-up scans. We evaluated the performance 
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of the nnU-Net algorithm by training it with planning MR images only and testing it with both planning 

and follow-up images. To the best of our knowledge, the performance of the algorithm exceeded the 

performance reported by other similar studies for segmentation of planning MR images. Though there is 

a decline in the performance of the model for the follow-up images, the algorithm could be a beneficial 

tool for clinicians and assist them in diagnosis, treatment planning and treatment response evaluations 

during follow-ups.  
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