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Summary7

Background. Sleep is essential to life. Accurate measurement and classification8

of sleep/wake and sleep stages is important in clinical studies for sleep disorder9

diagnoses and in the interpretation of data from consumer devices for monitoring10

physical and mental well-being. Existing non-polysomnography sleep classification11

techniques mainly rely on heuristic methods developed in relatively small cohorts.12

Thus, we aimed to establish the accuracy of wrist-worn accelerometers for sleep stage13

classification and subsequently describe the association between sleep duration and14

efficiency (proportion of total time asleep when in bed) with mortality outcomes.15

Methods. We developed and validated a self-supervised deep neural network for16

sleep stage classification using concurrent laboratory-based polysomnography and17

accelerometry data from three countries (Australia, the UK, and the USA). The18

model was validated within-cohort using subject-wise five-fold cross-validation for19

sleep-wake classification and in a three-class setting for sleep stage classification20

wake, rapid-eye-movement sleep (REM), non-rapid-eye-movement sleep (NREM) and21

by external validation. We assessed the face validity of our model for population22

inference by applying the model to the UK Biobank with 100,000 participants, each23

of whom wore a wristband for up to seven days. The derived sleep parameters were24

used in a Cox regression model to study the association of sleep duration and sleep25

efficiency with all-cause mortality.26

Findings. After exclusion, 1,448 participant nights of data were used to train the27

sleep classifier. The difference between polysomnography and the model classifica-28

tions on the external validation was 34.7 minutes (95% limits of agreement (LoA):29

-37.8 to 107.2 minutes) for total sleep duration, 2.6 minutes for REM duration (95%30

LoA: -68.4 to 73.4 minutes) and 32.1 minutes (95% LoA: -54.4 to 118.5 minutes) for31

NREM duration. The derived sleep architecture estimate in the UK Biobank sample32

showed good face validity. Among 66,214 UK Biobank participants, 1,642 mortal-33

ity events were observed. Short sleepers (<6 hours) had a higher risk of mortality34

compared to participants with normal sleep duration (6 to 7.9 hours), regardless of35

whether they had low sleep efficiency (Hazard ratios (HRs): 1.69; 95% confidence36
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intervals (CIs): 1.28 to 2.24 ) or high sleep efficiency (HRs: 1.42; 95% CIs: 1.14 to37

1.77).38

Interpretation. Deep-learning-based sleep classification using accelerometers has a39

fair to moderate agreement with polysomnography. Our findings suggest that having40

short overnight sleep confers mortality risk irrespective of sleep continuity.41
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Research in context

Evidence before this study

Sleep plays a crucial role in our mental and physical health. Nonetheless, much

of our understanding of sleep relies on self-report sleep questionnaires, which

are subject to recall bias. We searched on Web of Science, Medline, and Google

Scholar from the database inception to June 23, 2023, using terms that included

“wearable”, “actigraphy” or “accelerometer” in combination with “sleep stage”

or “sleep classification”, and “polysomnography”. Existing studies have at-

tempted to use machine learning to predict both sleep and sleep stages using

accelerometry. However, prior methods were validated in populations of small

sample sizes (n<100), making the prediction validity unclear. To date, no

study has examined variations of accelerometer-derived sleep stage estimates

in large population datasets with longitudinal disease outcomes.

Added value of this study

We showed that our deep-learning-based method improves sleep staging for

wrist-worn accelerometers against the current state-of-the-art. We quantified

the model uncertainty in a large multicentre dataset with 1,448 nights of

concurrent raw accelerometry and polysomnography recordings. We further

demonstrated that our sleep staging method could capture population

differences concerning age, season, and other sociodemographic characteristics

using a large health database. Shorter overnight sleep duration was associated

with an increased risk of all-cause mortality after seven years of follow-up in

groups with both low and high sleep efficiencies.

Implications of all the available evidence

This study helps clinicians to interpret sleep measurements from wearable sen-

sors in routine care. Researchers can use derived sleep parameters in large-

scale accelerometer datasets to advance our understanding of the association

between sleep and population subgroups with different clinical characteristics.

Our findings further suggest that having a short overnight sleep is a risky

behaviour regardless of the sleep quality, which requires immediate public at-

tention to fight the social stigma that having a short sleep is acceptable as long

as one sleeps well.
77
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1. Introduction78

Sleep is essential to life and is structurally complex. Humans spend approximately79

one third of their lives asleep, yet sleep is hard to assess in free-living environ-80

ments [1]. Our understanding of how sleep is associated with health and morbidity81

primarily draws on studies that use self-report sleep diaries, which capture the sub-82

jective experience [2]. However, sleep diaries have a low correlation with objective83

device-measured sleep parameters [3, 4]. The accepted standard for sleep measure-84

ment is laboratory-based polysomnography, which monitors sleep using a range of85

physical and physiological signals. However, polysomnography is not feasible for use86

at scale due to its high cost and technical complexity. Instead, wrist-worn accelerom-87

eters are more viable to deploy in large-scale epidemiological studies because of their88

portability and low user burden.89

Despite the popularity of sleep monitoring in consumer and research-grade wrist-90

worn devices, sleep assessment algorithms are frequently proprietary and validated in91

small populations, making their measurement validity unclear [5, 6, 7, 8]. Methods92

for Sleep classification (i.e. defining periods of wake, NREM and REM sleep) pri-93

marily rely on hand-crafted spatiotemporal features such as device angle, which may94

not make full use of all the information in the signals. Hence, data-driven methods95

like deep learning could be advantageous. Furthermore, existing actigraphy-based96

sleep studies on large health datasets have only focused on the differentiation be-97

tween sleep and wakefulness [9, 4, 10, 11] without evaluating variations in the stages98

of sleep.99

We therefore set out to: (1) develop and internally validate an open-source novel100

deep learning method to infer sleep stages from wrist-worn accelerometers, (2) ex-101

ternally validate our proposed algorithm together with existing sleep staging bench-102

marks, and (3) investigate the association between device-measured overnight sleep103

duration and efficiency with all-cause mortality.104
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2. Methods105

2.1. Study design and participants106

In our multicentre cohort study, we developed and tested a sleep staging model for107

accelerometers (SleepNet) using a self-supervised deep recurrent neural network. We108

designed the model to classify each 30-second window of accelerometry data into109

one of the three sleep stages, wake, rapid-eye-movement sleep (REM), and non-110

rapid-eye movement sleep (NREM). Figure 1 illustrates the three main steps in our111

study: (1) feature extraction from unlabelled free-living data, (2) sleep staging model112

development, and (3) face validity assessment and health association analysis using113

the machine learning-estimated sleep parameters.114

We used the UK Biobank accelerometry dataset [12] for two purposes: learning115

health-relevant accelerometer features to support the training of the sleep staging116

model and conducting the downstream health association analyses using the devel-117

oped sleep staging model.118

For sleep staging model development, internal validation consisted of two gener-119

ations of participants from the Raine Study [13, 14] and a sleep patient population120

from the Newcastle cohort [15]. The Raine Study has followed up roughly 2900 chil-121

dren since 1989 in Australia. A subset of children (Raine Generation 2, Gen2) at122

the age of 22 and their parents (Raine Generation 1, Gen1) were invited to undergo123

one night of laboratory-based polysomnography at Western Australia’s Center for124

Sleep Science. The external validation consisted of two general populations from Le-125

icester [16] and Pennsylvania [17]. Detailed population characteristics and inclusion126

criteria are listed in Supplementary Section 5.127

2.2. Accelerometer devices and data preprocessing128

Three different devices were used to collect the accelerometry for the included129

datasets, ActiGraph GT3X, Axivity AX3 and GENEActive Original accelerome-130

ters. The devices used have been shown to have a high inter-instrument agreement131

(> 80%) in derived sedentary and sleep-related time estimates in free-living envi-132

ronments [18]. As for device placement, we selected data from the dominant wrist133

where possible to be consistent with the UK Biobank protocol.134
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We used the Biobank Accelerometer Analysis Tool [19, 20] to preprocess all the135

data. The raw tri-axial accelerometry was first resampled into 30 Hz and clipped136

to ± 3 g. The accelerometry sequence was then divided into consecutive 30-second137

windows. We considered stationary periods (x/y/z sd < 13 mg) with a duration138

greater than 60 minutes as non-wear [12]. We further excluded the data that could139

not be parsed, had unrealistic high values (> 200 mg), or were poorly calibrated.140

2.3. Ascertainment of sleep stages via polysomnography141

The gold-standard, laboratory-based polysomnography sleep label was aligned142

with its concurrent accelerometer data as the model ground truth. The polysomnog-143

raphy labels were scored according to the American Academy of Sleep Medicine144

(AASM) protocol [21], which divided sleep into five categories: wake, REM, and145

NREM I, II, and III. In total, 1,157,913 (∼10,000 hours) sleep windows were used to146

train the network. The sleep stage distributions were similar across all the datasets147

except for the Newcastle cohort, which had a greater proportion of wakefulness than148

the others (Supplementary Figure 1).149

2.4. Deep learning analysis of sleep stages from wrist-worn accelerometers150

A deep recurrent neural network (SleepNet) was trained to classify the sleep151

stages for every 30-second window of tri-axial accelerometry data. The SleepNet has152

three components: a ResNet-17 V2 [22] with 1D convolution for feature extraction, a153

bi-directional Long-Short-Term-Memory (LSTM) network for temporal dependencies154

learning [23], and two fully-connected (FC) layers for sleep stage prediction. During155

training, we provided the SleepNet with five-stage polysomnography labels (wake,156

REM, and NREM I, II, III). When evaluating the model, we collapsed all the NREM157

stages into one class for classification (wake/REM/NREM). Similarly, we collapsed158

all the REM and NREM stages together to classify wake vs sleep.159

The SleepNet was pre-trained using multi-task self-supervision on the UK Biobank160

to learn features of human motion dynamics [24]. Multi-task self-supervision auto-161

matically extracts the features relevant to motion by learning to discriminate dif-162

ferent spatiotemporal transformations applied to the unlabelled 700,000 person-days163
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of data. Self-supervised pre-training has been shown to help classify human activ-164

ity recognition not just in healthy but clinical populations [25]. See Supplementary165

Section 6 for further details of the model development.166

For internal validation, we used subject-wise five-fold cross-validation on the167

Raine Gen2, Raine Gen1, and Newcastle cohorts. For external validation, we trained168

the SleepNet on all the internal datasets and then evaluated its performance on the169

Leicester and Pennsylvania cohorts. We compared the SleepNet performance with170

a random forest model that used the hand-crafted spatiotemporal features [20, 26].171

The random forest feature definitions are listed in Supplementary Table 2.172

We reported the staging performance in both subject-wise and epoch-to-epoch173

fashion. Three-class and five-class confusion matrices were plotted for both internal174

and external validation. Since Cohen Kappa, F1 scores, and balanced accuracies175

(Supplementary Table 3) are less influenced by class imbalance, they were used to176

evaluate the overall model. To assess the relationship between the model perfor-177

mance and population characteristics, we stratified the subject-wise sleep staging178

performance by age, sex, employment status, income level, body mass index (BMI),179

presence and severity of sleep apnea using the apnea-hypopnea index (AHI), existing180

sleep disorders, and neurological disorders where available.181

Finally, we evaluated the agreement between summary sleep parameters per182

each night derived from our deep learning method and polysomnography via Bland-183

Altman plots for the following sleep parameters: total sleep duration, sleep efficiency184

(proportion of total time asleep when in bed), time awake after sleep onset (WASO),185

REM duration, NREM duration, REM ratio, NREM ratio. Supplementary Table 4186

entails the sleep parameter definitions and their calculations.187

2.5. Measurements of sleep in 100,000 UK Biobank participants188

We obtained the sleep architecture estimates on the UK Biobank by applying189

SleepNet on the longest overnight sleep windows. Since no concurrent sleep diaries190

were collected in the UK Biobank, we used a random forest model trained on sleep191

diaries with Hidden Markov Models smoothing to first obtain time in bed [19, 20].192

The random forest model achieved 90%+ precision and recall for detecting sleep193

windows in 152 free-living participants with sleep diaries that asked two questions:194
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“what time did you first fall asleep last night?” and “what time did you wake up195

(eyes open, ready to get up)?” [20]. We used the sleep window output from the196

random forest model as a proxy for the time in bed. We then merged any time in197

bed windows within 60 minutes of one another [27]. Finally, we applied the SleepNet198

on the longest window over each noon-to-noon interval to estimate the overnight sleep199

duration. The difference between overnight and total sleep duration is that total sleep200

duration is a sleep parameter used to assess the agreement between our SleepNet201

output and polysomnography for model validation. Overnight sleep duration refers202

to the estimate for the amount of sleep one obtains for a noon-to-noon interval in a203

free-living environment using a random forest model for sleep window detection and204

the SleepNet for sleep stage identification.205

We simulated the effects of random missing data on the participants that had206

no missing data across seven-days to determine the minimum wear time required for207

stable weekly sleep parameter estimates (Supplementary Section 7.2). We found that208

a minimum of 22 hours of wear time per day for at least three days were required to209

ensure the intra-class correlation was greater than 0.75 between the weekly average210

sleep duration from incomplete and perfect wear data. Moreover, we tried to mitigate211

the weekend effect by only including the participants who had at least one weekday212

and one weekend day during the device wear. Shift workers and participants whose213

data had daylight saving cross-overs were also excluded, as circadian disruption is214

not the focus of our paper.215

Descriptive analyses were performed on the device-measured sleep parameters in216

the UK Biobank to quantify variations by age, sex, device-measured physical activity217

level, self-reported chronotype and insomnia symptoms. Estimated marginal means,218

adjusted for age and sex, were also calculated for different self-rated health groups219

and self-reported insomnia symptoms.220

2.6. Health association analysis221

The associations of overnight sleep duration and sleep efficiency with incident222

mortality were assessed using Cox proportional hazards regression. All-cause mor-223

tality was determined using death registry data (obtained by UK Biobank from NHS224

Digital for participants in England and Wales and from the NHS Central Register,225
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National Records of Scotland, for participants in Scotland). Participants were cen-226

sored at the earliest of UK Biobank’s record censoring date for mortality data (2021-227

09-30 for participants in England and Wales and 2021-10-31 for participants in Scot-228

land, with country assigned based on baseline assessment centre). Cox models used229

age as the timescale, and the main analysis was adjusted for sex, ethnicity, Townsend230

Deprivation Index, educational qualifications, smoking status, alcohol consumption,231

and overall activity. See Supplementary Section 7.1 for the full specification of the232

analysis.233

2.7. Role of the funding source234

The funders of the study had no role in study design, data collection, data anal-235

ysis, data interpretation, or writing of the report.236

3. Results237

3.1. Comparison to polysomnography238

After preprocessing, 1,395 participants were included in the internal validation, and239

53 participants were included in the external validation. Our proposed deep recurrent240

neural network (SleepNet) pre-trained with self-supervision achieved the best perfor-241

mance when compared with other baseline models that used hand-crafted features242

(Supplementary Table 6).243

On the internal validation, SleepNet had a mean bias of 8.9 minutes (95% limits of244

agreement (LoA): -89.0 to 106.9 minutes) for total sleep duration, -18.7 minutes (95%245

LoA: -130.9 to 93.6 minutes) for REM duration, and 27.6 minutes (95% LoA: -100.6246

to 155.8 minutes) for NREM duration (Figure 2). In comparison, on the external247

validation, the mean bias was 34.7 minutes (95% LoA: -37.8 to 107.2 minutes) for to-248

tal sleep duration, -2.6 minutes (95% LoA: -68.4 to 73.6 minutes) for REM duration,249

and 32.1 minutes (95% LoA: -54.4 to 118.5 minutes) for NREM duration. Overall,250

our model tends to underestimate REM and short sleep and overestimate NREM251

and long sleep. Supplementary Figures 5 to 10 depict the agreement assessments for252

other sleep parameters on the individual cohorts.253

The subject-wise performance for both the internal and external validation us-254

ing the pre-trained SleepNet is shown in Supplementary Table 7. On the pooled255
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internal validation, our model obtained an F1 of 0.75 ± 0.1 in the two-class setting256

(sleep/wake) and an F1 of 0.57 ± 0.11 in the three-class setting (wake/REM/NREM).257

The agreement decreased slightly on the external validation with an F1 of 0.67 ±258

0.11 in the two-class setting (sleep/wake) and an F1 of 0.52 ± 0.10 in the three-259

class setting (wake/REM/NREM). In the Newcastle cohort, for the sleep/wake clas-260

sification, sensitivity decreased and specificity increased in participants with sleep261

disorders. No obvious difference was observed in both Raine Gen1 and Gen2 co-262

horts when the participants were stratified by sex, BMI, AHI, and sleep disorder263

conditions.(Supplementary Table 8-10).264

To classify any given window in an epoch-by-epoch fashion, the SleepNet achieved265

a Kappa score of 0.39 on the internal validation set and a Kappa score of 0.32 on266

the external validation set in the three-class setting (Supplementary Figure 11).267

Cohort-specific confusion matrices can be found in Supplementary Figures 12-15.268

Supplementary Figure 16 visualizes a one-night sample actigram, its ground-truth269

polysomnography labels, and SleepNet predictions. We used SleepNet to generate270

all the sleep parameters for the rest of the paper.271

3.2. Face validity in the UK Biobank272

Before deploying the SleepNet on the UK Biobank, we excluded participants273

with unusable accelerometer data and participants with missing covariates in the274

descriptive analysis. We further excluded participants with any prior hospitalisa-275

tion for cardiovascular disease or cancer in the association analysis (Supplementary276

Figure 17). In sum, 66,214 participants were included in the final analysis.277

Table 1 describes the variations in overnight sleep duration, REM and NREM278

durations, and sleep efficiency across population subgroups in the UK Biobank. Older279

participants generally slept longer with higher sleep efficiency. Females had a longer280

overnight sleep duration and NREM but a shorter REM than males. Participants281

with better self-rated health had longer sleep duration and higher sleep efficiency282

than those with poor self-rated health. Sleep efficiency was relatively stable across283

different seasons and days of the week. The correlation coefficients between device-284

measured sleep parameters during accelerometer wear and self-reported total sleep285

duration at baseline assessment were all below 0.25 (Supplementary Figure 18). The286
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distributions of device-measured overnight sleep duration tend to have a greater287

variability for participants who self-reported to have less than 5 or greater than288

10 hours of total sleep duration (Supplementary Figure 19). Overall, sleep stage289

distribution was similar for males and females aged between 45 and 75, with NREM290

sleep fluctuating around 5 hours and REM sleep fluctuating around 2.5 hours per291

night (Supplementary Figure 20). No major differences were seen between females292

and males.293

We found expected sleep-wake patterns in population subgroups. For exam-294

ple, timing of the sleep opportunity for participants with a self-reported “morning”295

chronotype was about one hour earlier when compared with those that had a self-296

reported “evening“ chronotype (Figure 3a). We saw similar but shorter phase ad-297

vance (∼30 mins) in participants who were most physically active compared to the298

participants that were least physically active (Figure 3b). When comparing groups299

that had a history of self-reported insomnia symptoms versus those who did not,300

we found that participants with a history of insomnia symptoms were less likely301

to be in REM sleep on average during the overnight sleep window (Figure 3d and302

Figure 3c). Participants with a history of self-reported insomnia symptoms tended303

to have a longer overnight sleep duration but with a lower sleep efficiency (Supple-304

mentary Figure 21). The sleep architecture for different population subgroups were305

similar between weekdays and weekends, with a slight phase delay over the weekend306

(Supplementary Figure 22).307

3.3. Association with all-cause mortality308

Over 452,327 years of the follow-up, 1,642 mortality events among 66,214 par-309

ticipants were observed. Short sleepers (<6 hours) had a higher risk of mortality in310

groups of low sleep efficiency (Hazard ratios (HRs): 1.69; 95% confidence intervals311

(CIs): 1.28 to 2.24) and high sleep efficiency (HRs: 1.42; 95% CIs: 1.14 to 1.77)312

compared to participants with normal sleep duration (6 to 7.9 hours, Figure 4). The313

risk of all-cause mortality appeared to decrease linearly as sleep efficiency increased.314

However, a non-linear association was observed in the association for overnight sleep315

duration (Supplementary Figure 23). When further adjusted for BMI, associations316

of overnight sleep duration and sleep efficiency with all-cause mortality were slightly317
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attenuated (Supplementary Figure 24- 25). Longer overnight sleep duration was not318

founded to have a higher risk than the reference group in both the main (Supple-319

mentary Figure 23) and sensitivity analysis (Supplementary Figure 26).320

4. Discussion321

We have developed, and internally and externally validated a deep-learning method322

to characterise sleep architecture from a wrist-worn accelerometer with competitive323

performance against 1,448 nights of laboratory-based polysomnography recordings.324

When applying our developed method in the UK Biobank in an epidemiological325

analysis of 66,214 participants, we found that shorter sleep time was associated with326

an increased risk of all-cause mortality individually regardless of sleep continuity,327

indexed by sleep efficiency. Our open-source algorithm and the inferred sleep pa-328

rameters will open the door to future studies on sleep and sleep architecture using329

large-scale accelerometer databases.330

Our novel self-supervised deep learning sleep staging method outperformed ex-331

isting baseline methods that rely on hand-crafted features. The inferred sleep archi-332

tecture estimates had a fair agreement (κ = 0.39) with the polysomnography ground333

truth on the internal validation [28]. Unlike previous work in sleep classification334

methods that depended on hand-crafted features [26, 29], our proposed method au-335

tomatically extracted the features using self-supervision, hence removing the need for336

manual engineering. Even for sleep/wake classification, SleepNet achieved compa-337

rable results to a systematic evaluation of eight state-of-the-art sleep algorithms [8]338

in the Newcastle dataset. However, our work offers a more robust evaluation and339

identifies the upper limit of using accelerometry for sleep classification by developing340

a model with one of the largest multicentre datasets with polysomnography ground341

truth, at least ten times the size of existing studies.342

In the subsequent epidemiological analysis, we found a clear association between343

short overnight sleep duration with increased risk of all-cause mortality in both good344

and poor sleepers defined by sleep efficiency. Short overnight sleep duration has been345

linked with mortality outcomes in self-report and actigraphy-based studies [30, 31].346

However, few studies have investigated the joint effect of sleep duration and efficiency.347

One recent study has suggested that participants with short and long total sleep time348
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had an increased risk after accounting for sleep efficiency [32]. However, our analysis349

did not find that long overnight sleep duration was associated with increased risk,350

potentially because we did not include daytime naps in our measurement of overnight351

sleep duration. Daytime napping has been found to be associated with an increased352

risk of cardiovascular events and deaths in those with longer nighttime sleep [33]. We353

did not find a U-shape association between device-measured sleep and mortality that354

has been suggested by other smaller studies [30]. Instead, our data are supportive355

of adverse associations with short sleep duration only, which is concordant with pre-356

clinical human and animal studies [34].357

This study has several strengths, including the analysis of sleep architecture358

in a large, prospective Biobank with longitudinal follow-up. Compared with self-359

reported sleep questionnaires that only captured sleep duration to the nearest hour,360

actigraphy-based methods like ours can provide more fine-grained sleep duration361

and efficiency estimates. The extensive multicentre evaluation of the sleep classifi-362

cation allowed for the characterisation of the measurement uncertainty and a less363

biased interpretation of the health association analysis. Sleep stage identification364

from actigraphy is highly challenging, especially for wake periods in bed that are not365

characterised by wrist movement. With the proposed SleepNet, we could obtain sleep366

architecture estimates for population health inference after evaluating the face va-367

lidity of the sleep parameters in the UK Biobank. While future work might improve368

sleep staging performance by incorporating additional physiological signals, such as369

electrocardiogram, to improve sleep staging performance, multi-modal sensor signals370

are not yet available for population-scale studies with longitudinal follow-up beyond371

a few years [35]. Despite our best efforts to include diverse validation cohorts from372

different centres, the included datasets mainly consist of healthy populations from a373

Caucasian ethnic background. Validation in populations with chronic diseases and374

different ethnic backgrounds would aid in quantifying the measurement uncertainty.375

In this work, we have developed and validated an open-source sleep staging376

method that substantially improves the ability to measure sleep characteristics with377

wrist-worn accelerometers in large biomedical datasets. Using the sleep parameters378

generated by our model, we demonstrated that shorter overnight sleep was associ-379

ated with a higher risk of all-cause mortality in both good and poor sleepers. Our380
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proposed method provides the community with a rich set of new measurements to381

study how sleep parameters are longitudinally associated with clinical outcomes.382

Data sharing383

The data for the Newcastle cohort is available from direct download via https:384

//zenodo.org/record/1160410#.Y-O65i-l1qs. The data for other cohorts can385

be requested by contacting the corresponding host institute. All the sleep staging386

models and analysis scripts are freely available for academic use on GitHub: https:387

//github.com/OxWearables/asleep.388
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Table 1: Overall sleep parameters by participant characteristics in the UK Biobank
(mean ± SD) for overnight sleep duration, non-rapid-eye-movement sleep (NREM),
rapid-eye-movement sleep (REM), and sleep efficiency.

Characteristics Overnight sleep NREM REM Sleep efficiency
n (%) h/day h/day h/day %

Overall 66214 (100.0) 7.5±1.0 5.0±1.0 2.5±0.9 87.9±4.9
Age, year

40-49 6115 (9.2) 7.4±0.9 4.7±0.9 2.6±0.9 87.9±4.7
50-59 20130 (30.4) 7.4±0.9 4.9±1.0 2.5±0.9 87.7±4.9
60-69 29198 (44.1) 7.5±1.0 5.0±1.0 2.5±0.9 88.0±4.9
70-79 10771 (16.3) 7.5±1.0 5.0±1.0 2.5±0.9 88.2±5.0

Sex
Female 38525 (58.2) 7.6±0.9 5.2±1.0 2.4±0.9 88.3±4.7
Male 27689 (41.8) 7.3±1.0 4.7±0.9 2.7±0.9 87.4±5.1

Ethnicity
Non-white 2003 (3.0) 7.0±1.1 4.8±1.0 2.2±0.9 86.3±5.6
White 64211 (97.0) 7.5±0.9 5.0±1.0 2.5±0.9 88.0±4.9

Physical activity level
low < 24.08 mg 22058 (33.3) 7.7±1.1 5.1±1.0 2.5±1.0 87.2±5.4
Medium 24.08-30.42 mg 22072 (33.3) 7.5±0.9 5.0±1.0 2.5±0.9 88.1±4.7
High > 30.42 mg 22084 (33.4) 7.3±0.9 4.8±0.9 2.5±0.9 88.5±4.5

Smoking status
Never smoker 38930 (58.8) 7.5±0.9 5.0±1.0 2.5±0.9 88.0±4.8
Ex-smoker 22870 (34.5) 7.5±1.0 5.0±1.0 2.5±0.9 88.0±4.9
Current smoker 4414 (6.7) 7.3±1.0 5.0±1.0 2.3±0.9 87.4±5.5

Alcohol consumption
Never drinker 3607 (5.4) 7.4±1.1 5.0±1.0 2.4±0.9 87.4±5.4
< 3 times per week 30074 (45.4) 7.5±1.0 5.0±1.0 2.5±0.9 87.7±5.0
3+ times per week 32533 (49.1) 7.5±0.9 4.9±1.0 2.5±0.9 88.2±4.7

Education
School leaver 14648 (22.1) 7.6±1.0 5.1±1.0 2.5±0.9 87.5±5.1
Further education 21700 (32.8) 7.5±1.0 5.0±1.0 2.5±0.9 87.8±5.0
Higher education 29866 (45.1) 7.4±0.9 4.9±1.0 2.5±0.9 88.2±4.7

Townsend Deprivation Index
Least deprived (<-3.8) 16552 (25.0) 7.5±0.9 5.0±1.0 2.6±0.9 88.1±4.8
Second least deprived 16554 (25.0) 7.5±0.9 5.0±1.0 2.6±0.9 88.0±4.8
(-3.8 to -2.5)
Second most deprived 16552 (25.0) 7.5±1.0 5.0±1.0 2.5±0.9 87.9±4.9
(-2.5 to -0.2)
Most deprived (> -0.2) 16556 (25.0) 7.4±1.0 5.0±1.0 2.4±0.9 87.8±5.1

BMI
<18.5, underweight 397 (0.6) 7.5±1.0 5.1±1.0 2.5±0.9 89.1±4.7
18.5-24.9, normal 26759 (40.4) 7.6±0.9 5.0±1.0 2.6±0.9 88.4±4.6
25-29.9, overweight 26920 (40.7) 7.5±1.0 4.9±1.0 2.5±0.9 87.8±4.9
30+, obese 12138 (18.3) 7.3±1.1 5.0±1.0 2.3±0.9 87.1±5.4

Employment
Employed 41640 (62.9) 7.4±0.9 4.9±1.0 2.5±0.9 87.9±4.8
Not employed 24574 (37.1) 7.6±1.0 5.1±1.0 2.5±0.9 88.0±5.0

Self-rated health
Poor 1282 (1.9) 7.4±1.3 5.0±1.1 2.3±1.0 87.0±6.0
Fair 9162 (13.8) 7.4±1.1 5.0±1.0 2.4±0.9 87.3±5.3
Good 40120 (60.6) 7.5±0.9 5.0±1.0 2.5±0.9 87.9±4.9
Excellent 15650 (23.6) 7.5±0.9 4.9±1.0 2.6±0.9 88.4±4.6

Day
Weekday 66214 (100.0) 7.4±1.0 4.9±1.0 2.5±0.9 88.0±5.2
Weekend 66214 (100.0) 7.7±1.2 5.1±1.2 2.6±1.1 87.8±6.2

Wear season
Spring 14717 (22.2) 7.5±0.9 4.9±1.0 2.5±0.9 87.9±4.9
Summer 18203 (27.5) 7.4±0.9 4.9±1.0 2.4±0.9 88.2±4.8
Autumn 18682 (28.2) 7.5±1.0 5.0±1.0 2.5±0.9 87.9±4.9
Winter 14612 (22.1) 7.6±1.0 5.0±1.0 2.6±0.9 87.7±5.0
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Figure 1: The SleepNet development pipeline: 1. We use multi-task self-supervised learning
to obtain a feature extractor by learning from 700,000 person-days of tri-axial accelerometry data
in the UK Biobank. 2. The pre-trained feature extractor was then fine-tuned with a deep recurrent
network to train a sleep-stage classifier using polysomnography as the ground truth. 3. We deploy
the sleep prediction model on the UK Biobank and investigate the association between device-
measured sleep and mortality outcomes.
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Figure 2: Agreement assessment via Bland-Atman plot for total sleep duration, rapid
eye movement sleep (REM) duration, and non-rapid eye movement sleep (NREM)
duration on internal and external validation. The internal validation consists of 1,373
polysomnography nights from the Raine Study and the Newcastle cohort, whereas the external
validation consists of 53 polysomnography nights from the Leicester and Pennsylvania cohorts.
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Figure 3: Device-measured sleep probability trajectories throughout the day for the
UK Biobank participants. Top: variations of the average overnight sleep probability for the
participants with self-reported “morning” and “evening” chronotype (a) and the overnight sleep
distributions across thirds of device-measured physical activity level (b). Bottom: variations of the
average REM (c) and NREM (d) probability in participants with a history of self-reported insomnia
symptoms versus those without. REM: rapid-eye-movement sleep; NREM: non-rapid-eye-movement
sleep.
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(a) (b)

Figure 4: Associations of overnight sleep duration with all-cause mortality for groups
with low and high sleep efficiency. The model used 1,642 events among 62,214 participants.
We used age as the timescale and adjusted for sex, ethnicity, Townsend Deprivation Index of
baseline address (split by quarter in the study population), educational qualifications, smoking
status, alcohol consumption (Never, <3 times/week, 3+ times/week), overall activity (measured in
milli-gravity units). Areas of squares represent the inverse of the variance of the log risk. The I
bars denote the 95% confidence interval for the floated risks.
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Table 1: Characteristics of the datasets used for internal validation, external validation
and health association analyses “Patient” indicates whether a cohort consists of sleep patients
in a clinic.

Name n Age Placement Device Patient Publication

UK Biobank 103,561 62.3 ± 7.9 Dom wrist Axivity 7 [1]
Raine Gen1 865 56.7 ± 5.6 Dom wrist GT3X 7 [2]
Raine Gen2 795 22.1 ± 0.6 Dom wrist GT3X 7 [2]
Newcastle 28 44.9 ± 14.9 Both wrists GENEActiv 3 [3]
Leicester 30 30.8 ± 6.7 Both wrists Axivity 7 [4]
Pennsylvania 22 22.8 ± 4.5 Non-dom wrist Axivity 7 [5]

5. Datasets643

Raine Study. The Raine Study has followed up roughly 2900 children since 1989 in644

Australia. A subset of children (Raine Gen2, 50% females) at the age of 22 and their645

parents (Raine Gen1, 57% females) were invited to undergo one night of laboratory-646

based polysomnography at Western Australia’s Center for Sleep Science [2, 6]. Every647

participant was instructed to wear an ActiGraph GT3X device on the dominant648

wrist. Earlier GT3X firmware would enter an idle mode to save the battery when no649

sufficient movement was detected, so we only included participants with no missing650

data for the Raine Gen2 cohort.651

Newcastle. The Newcastle dataset recruited 28 adult patients (39% females) for a652

one night laboratory-based polysomnography assessment in Newcastle upon Tyne,653

UK, as part of their routine clinical visit [3]. During the polysomnography recording,654

the participants wore two GENEActive devices, one on each wrist. The sampling655

frequency for the wristbands was set to 85.7 Hz.656

Leicester. Thirty healthy volunteers (63% females and 73% white) wore three de-657

vices: GENEActive, Axivity AX3, and ActiGraph GT9X on each wrist during one658

night of laboratory-based polysomnography assessment [4]. The relative position of659

the devices was randomly allocated for each participant. The devices were set to660

record at 100 Hz. During the lab visit, when the participants wished to go to bed,661

the recording was started. The sleep episodes usually ended between 6 am and 7662
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Figure 1: Sleep stage distribution for all the datasets used.

am the following morning. We cleaned up the recording sessions such that every663

recording would start from ”light off” and end at ”light off” to ensure comparability.664

Pennsylvania. The Pennsylvania dataset consists of 22 healthy sleepers who had one-665

night of laboratory-based polysomnography assessment at the University of Penn-666

sylvania Center for sleep [5]. The participants were asked to wear an Axivity device667

on the non-dominant wrist during the polysomnography session.668

UK Biobank. The UK Biobank is a longitudinal cohort study that recruited 500,000669

adults from the UK [7]. A subset of the participants was invited to wear an Axivity670

device on the dominant wrist for one week in a free-living environment [1]. The sam-671

pling rate was set to 100 Hz. Roughly 100,000 participants (56% females) consented672

and participated in the accelerometry study. Other than the accelerometry data, a673

rich set of biomedical information was also collected on the study participants, such674

as health record linkage, self-reported questionnaire and genetic data.675

We preprocessed all the datasets by manual quality checks for unrealistic high676

values for accelerometry (>200 mg), parsing successes, polysomnography alignment,677

and visual inspection.678

6. Model development679

6.1. Self-supervised pre-training680

To obtain a feature extractor by leveraging a large amount of unlabelled data681

from the UK Biobank, we applied multi-task self-supervised learning following [8].682

In self-supervision pre-training, the model was designed to discriminate whether a683
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set of binary transformations have been applied to the signal. We selected reversal,684

permutation, and time-warping as potential self-supervised learning because they are685

suitable for learning spatiotemporal patterns.686

The feature extractor was built on top of ResNet-17 V2 [9] with 1D convolution,687

in total, with 10M parameters. Each feature vector is of size 1024. We used cross-688

entropy as the cost function, with each task having the same weight to balance the689

features learned from each task. In the training procedure, we applied axis swap and690

rotation as data augmentation to obtain a representation that is orientation invariant.691

During training time, we used a batch size of 2000 as a larger batch size was found692

to produce features with better quality. Adam [10] was used for optimisation with a693

learning rate of 1e-3. We distributed the training across 4 Tesla V100-SXM2 GPUs694

with 32GB. Early-stopping with a patience of five steps was used to avoid overfitting.695

It took about 420 GPU hours for the model to converge. More details can be found696

in [8].697

6.2. SleepNet training698

We used the pre-trained ResNet from self-supervision as the base model for fea-699

ture extraction. Then, we appended two layers of Bi-directional Long-Short-Term-700

Memory (LSTM) layers of 1024 units to learn the temporal dependencies of the701

model [11]. In the end, we had two fully-connected layers of 512 units to generate the702

sleep stages. The model was trained to discriminate five sleep stages directly (wake,703

N1, N2, N3 and REM). To obtain the three-class output, we combined NREM I, II,704

and III into the NREM class. Likewise, we combined NREM I, II, III and NREM705

into the sleep class to obtain the two-class output.706

The learning rate was set to be 1e-3. We also set the gradient clapping to 1 to707

avoid exploding gradient for LSTM. We used weighted Cross-Entropy as the objective708

function and weighted each class with the inverse of its frequency to account for the709

imbalanced dataset. We also used rotation and axis swap to augment the input data710

to obtain a direction-invariant model. Each training mini-batch consisted of five711

participants. For each individual, we selected four 1.5-hour sequences with random712

starting points to avoid overfitting to the study protocol, where the beginning and713

the end of the sequence are always the “wake” class. The model was trained on a714
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Tesla V100-SXM2 with 32GB of memory. It took about 12 hours for the model to715

converge. The model performance was reported using five-fold subject-wise cross-716

validation. We first split the data into train/test with a ratio of 8:2. We further split717

the train set into train/validation with a ratio of 8:2. We used early stopping with a718

patience of ten steps to avoid overfitting on the validation set in each cross-validation719

fold.720

Table 2: Hand-crafted features

Handcrafted features Notes

Sleep features [12]
All sleep features have 12 derived variables:

ENMO mean, std, min, max, entropy 20 bins (low resolution),
Angle Z entropy 200 bins (high resolution), median absolute derivation,
Locomotor inactivity during sleep and mean difference between neighbouring windows.

Axis features [13]
Mean 1 per axis
Standard deviation 1 per axis
Range 1 per axis
Inter-quantile-range 1 per axis
Correlation of variations 1 per axis

Features on the vector norm [13] norm =
√
x2 + y2 + z2

Mean
Standard deviation
Inter-quantile-range
Median absolute derivation
Kurtosis
Skew
Truncated ENMO
Absolute value of ENMO
Entropy
Dominant Frequency
Total power
Dominant frequencies 3 features: 0.3-5 Hz, 0.3-15 Hz, and 0.6-2.5 Hz
Dominant frequency power 3 features: 0.3-5 Hz, 0.3-15 Hz, and 0.6-2.5 Hz
Second dominant frequency 1 feature: 0.3-15 Hz
Fourier transform coefficients 11 features: 1 Hz - 11 Hz
Fourier coefficients 12 features: 1st - 12th coefficient
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Table 3: Model performance metric definitions (TP: true positive; TN: true negative;
FP: false positive; FN: false negative)

Metric Definition

Precision TP
TP+FP

Sensitivity/Recall TP
TP+FN

Specificity TN
TN+FP

Accuracy TP+TN
TP+TN+FP+FN

F1 2 × precision·recall
precision+recall

Kappa
1 − 1−po

1−pe
po: relative observed agreement

pe: expected agreement probability

Balanced accuracy 1
n

∑
i Accuracyclassi
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Table 4: Sleep parameter definitions: total sleep duration (TSD), rapid-eye-movement
(REM), non-rapid-eye-movement (NREM), sleep onset latency (SOL), wake after sleep
onset (WASO), and sleep efficiency (SE).

Parameter Definition

Total sleep duration (TSD) The total time spent in sleep during the
recording period per day.

Overnight sleep duration The longest sleep window duration
(max one hour of sleep discontinuity al-
lowed) over a noon-to-noon interval.

Time in bed The amount of time spent in bed: A
person might not be asleep during this
period. Our time in bed was estimated
using a random forest model that was
trained using data from sleep diaries.

Sleep onset latency (SOL) The time difference between when one
gets in bed and the sleep onset. The
sleep onset (SOL) is defined as the first
occurrence of three consecutive 30-sec
sleep windows.

Wake after sleep onset (WASO) The amount of wake time spent after
the sleep onset during the longest sleep
window.

Sleep efficiency (SE) SE for sleep window after device-
detected sleep onset:Overnight sleep duration

time in bed

REM duration The total time spent in the REM stage.

REM ratio REM duration
TSD

NREM duration The total time spent in the NREM I,
II, and III stages.

NREM ratio NREM duration
TSD
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7. UK Biobank analysis721

Table 5: Code table for UK Biobank variables used in the study.

Variable Code name

Month of birth p52
Year of birth p34
Device wear time p90010
Sex p31
Ethnicity p21000
Smoking status p20116
Alcohol consumption p1558
Education qualification p6138
Body mass index p21001
Employment status p6142
Overall health rating p2178
Self-reported total sleep duration p1160
Townsend Deprivation Index p189
Overall accelerometry average p90012
Self-reported trouble falling/ staying asleep p1200

The UK Biobank variable codes are shown in Table 5. We used the month of birth722

(p52) and year of birth (p34) along with device wear time (p90010) to compute the723

age at wear time. Participants were asked about their insomnia symptoms history724

(p1200) by “Do you have trouble falling asleep at night or do you wake up in the725

middle of the night?”. Four responses were possible: “never/rarely”, “sometimes”,726

“usually”, and “prefer not to answer”.727

7.1. Sleep and all-cause mortality728

The relationship between machine learning-derived sleep architecture estimates729

and all-cause mortality was assessed using association analyses. The main analysis730

split the participants into six groups stratified by sleep efficiency cut-off with clinical731

relevance. Then, five groups were created based on exact hour cut-offs in line with732

sleep recommendation guidelines for overnight sleep duration [14]. Four groups were733

created based on percentage cut-offs of clinical relevance for sleep efficiency [15]. In734
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the sensitivity analysis, seven sleep groups were created on exact hour cut-offs to735

capture the variations in participants with lower and higher sleep durations.736

Mortality was determined using death registry data (obtained by UK Biobank737

from NHS Digital for participants in England and Wales and from the NHS Central738

Register, National Records of Scotland, for participants in Scotland). For survival739

analyses, participants were censored at the earliest of UK Biobank’s record censor-740

ing date for mortality data (2021-09-30 for participants in England and Wales and741

2021-10-31 for participants in Scotland, with country assigned based on baseline as-742

sessment centre) and a record of loss to linked health record follow-up (field 191; 2743

participants only).744

In addition to the exclusions described for the analyses above, for prospective745

analyses for incident mortality we further excluded the participants if they had a746

prior hospitalisation for restless syndrome, any cardiovascular disease or cancer (a747

hospital episode with primary diagnosis G473, I00-I99 or C00-C99).748

Models used age as the timescale, and the main analysis was adjusted for sex749

(male/female), ethnicity (white/non-white), Townsend Deprivation Index of baseline750

address (split by quarter in the study population), educational qualifications (school751

leaver, further education, higher education), smoking status (never smoker, ex-752

smoker, current smoker), alcohol consumption (never, <3 times/week, 3+ times/week),753

and overall activity (measured in milli-gravity units). An additional analysis further754

adjusted for BMI (categorised as <18.5 kg/m2, 18.5-24.9 kg/m2, 25.0-29.9 kg/m2,755

30+ kg/m2). See Supplementary Table 5 for UK Biobank fields).756

Results are presented with their 95% confidence intervals. The Floating Absolute757

Risk approach was used to calculate confidence intervals for the estimate in each758

group, without contrast to a reference group [16, 17, 18].759

In statistical testing using the Grambsch-Therneau test with the Kaplan-Meier760

transformation, there was some evidence that the joint associations of overnight761

sleep duration and sleep efficiency with incident mortality violated the proportional762

hazards assumption (with age as the timescale). However, assessing associations763

at younger (< 65 years) and older (≥ 65 years) ages did not suggest substantially764

differing associations by age, and so the overall hazard ratios are presented.765
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7.2. Reliability assessment for device wear time exclusion criterion766
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Figure 2: How the intraclass correlation coefficient (ICC) changes with respect to the
non-wear hours (h) (left) and the number of wear days (right) in a reliability simulation
using data from 27,870 participants that had zero non-wear time across a seven-day
period. Mean and 95% confidence intervals are plotted.

We needed to discard participants with too much non-wear time to obtain a stable767

sleep duration estimate. Ideally, all the participants would have perfect seven-day768

device wear, which was not the case. Thus, we needed to determine the minimum769

wear time for seven days so that there is a high agreement between sleep duration770

computed for participants with perfect data and those computed for participants771

with missing data. To do this, we first selected a subset of 27,870 participants who772

did not have any non-wear time during the seven-day window. Then, we simulated773

the missing data by randomly removing one hour from each day or one whole day of774

data from each week from their recordings. We increased the amount of simulated775

missing data step-wise until all the data was removed. Then, we compared weekly776

mean sleep durations computed on data before and after removing the simulated777

missing periods.778

We used the intraclass correlation coefficient (ICC) to determine the acceptable779

missing time threshold. We selected two-way random-effects, single rater with an ab-780

solute agreement, ICC2, to reflect the reliability of our sleep duration measurement781

if we have missing data in the measurements [19]. Supplementary Figure 2 depicts782
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Figure 3: The distribution of non-wear time for all the participants from the UK
Biobank.

the ICC mean and 95% confidence intervals for the missing non-wear hour (Supple-783

mentary Figure 2 Left)and missing days (Supplementary Figure 2 Right). We used784

an ICC of 0.75 threshold when deciding the acceptable device wear range. According785

to the 0.75 cut-off, a maximum of two non-wear hours per day and a minimum of786

three days per week are suitable for obtaining stable measurements of sleep duration.787
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8. Additional Results788

8.1. Model performance789

Table 6: Subject-wise sleep stage classification for benchmark models using internal
validation datasets with the Raine Study and the Newcastle cohort: The random forest
model was trained using hand-crafted features. SleepNet is the deep recurrent network without
pre-training. SleepNet-SSL is the network pre-trained using self-supervision. Five-fold subject-
wise performance metrics (mean ± SD) are reported using the internal validation data. REM:
rapid-eye-movement sleep, NREM: non-rapid-eye-movement sleep, Kappa score: κ.

Model
Sleep versus Wake Wake versus REM versus NREM

κ Accuracy F1 κ Accuracy F1

Random forest 0.472±0.192 0.756±0.102 0.729±0.104 0.290±0.149 0.507±0.072 0.464±0.072
[13, 12]

SleepNet 0.468±0.193 0.757±0.103 0.727±0.105 0.313±0.162 0.576±0.112 0.535±0.106

SleepNet-SSL 0.511±0.196 0.775±0.105 0.750±0.107 0.375±0.163 0.625±0.116 0.573±0.116

Supplementary Table 6 shows the model performance comparison between the790

random forest model that used hand-crafted features and our proposed SleepNet791

on the internal validation. SleepNet pre-trained with self-supervision had the best792

performance in both the two-class (κ = 0.511 ± 0.196) and three-class settings (κ =793

0.375±0.163). In addition, the area under the receiver operating characteristic curve794

for the best SleepNet model is0.88 for the two-class setting and0.81 for the three-class795

setting (Supplementary Figure 4).796
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Table 7: Subject-wise performance sleep classification validation using our best-
performing model: All the performance is reported within period in bed. Cohort-specific and
pooled performance (Kappa (κ), balanced accuracy, and F1) are shown for both internal and ex-
ternal validation. The pooled performance is calculated by combining all the participants from
different datasets. REM: rapid-eye-movement sleep; NREM: non-rapid-eye-movement sleep.

Dataset
Sleep versus Wake Wake versus REM versus NREM

κ Accuracy F1 κ Accuracy F1

Internal validation

Raine Gen1 0.561±0.161 0.791±0.091 0.775±0.089 0.389±0.152 0.623±0.108 0.586±0.105
Raine Gen2 0.437±0.189 0.758±0.101 0.712±0.100 0.344±0.161 0.603±0.115 0.552±0.108
Newcastle 0.394±0.189 0.715±0.091 0.686±0.103 0.285±0.151 0.513±0.078 0.467±0.085
Pooled internal 0.509±0.184 0.777±0.097 0.748±0.099 0.369±0.158 0.613±0.112 0.571±0.108

External Validation

Leicester 0.278±0.141 0.678±0.072 0.633±0.075 0.253±0.122 0.527±0.086 0.488±0.082
Pennsylvania 0.468±0.225 0.807±0.117 0.725±0.118 0.374±0.172 0.626±0.092 0.565±0.097
Pooled external 0.360±0.205 0.734±0.114 0.673±0.106 0.306±0.157 0.570±0.101 0.521±0.097
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Figure 4: Receiver operating characteristics curves for two-class (wake/sleep) and three-
class (wake/REM/NREM) settings on the internal validation dataset using our best
performing model self-supervised SleepNet. REM: rapid-eye-movement sleep, NREM: non-
rapid-eye-movement sleep.
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Table 8: Model characteristics on the internal validation datasets (wake versus sleep): subject-wise performance metrics
(mean ± SD) are reported using the internal validation data. Sen: sensitivity, Spe: specificity. Wake is the negative class and the sleep
is the positive class when calculating model performance.

Wake versus Sleep
Raine Gen1 Raine Gen2 NewcastleSubgroups

n Sen (%) Spe (%) n Sen (%) Spe (%) n Sen (%) Spe (%)

Sex
Male 357 92.0 ± 9.1 63.7 ± 20.4 264 87.6 ± 10.0 62.7 ± 21.8 15 79.6 ± 21.9 59.1 ± 24.9
Femal 459 91.5 ± 9.2 68.6 ± 21.3 273 88.8 ± 9.3 63.3 ± 22.3 7 82.9 ± 14.9 69.3 ± 14.0

Body Mass Index (BMI)
< 25 232 92.9 ± 8.5 63.7 ± 22.1 338 88.5 ± 9.3 62.8 ± 21.6 - - -
25 - 29.9 318 92.1 ± 8.8 65.8 ± 21.0 120 89.7 ± 8.7 62.8 ± 22.7 - - -
>30 265 90.1 ± 9.9 69.7 ± 19.7 79 84.9 ± 11.8 64.0 ± 23.1 - - -

Apnea Hypopnea Index (AHI)
< 5 199 93.7 ± 7.2 67.0 ± 20.7 338 88.0 ± 10.0 65.2 ± 21.6 - - -
5 - 14.9 349 91.5 ± 8.4 67.6 ± 21.2 146 88.9 ± 9.4 58.4 ± 23.0 - - -
15 - 29.9 150 90.9 ± 9.3 66.5 ± 20.8 39 88.5 ± 8.1 61.7 ± 20.5 - - -
≥ 30 114 89.9 ± 12.2 62.5 ± 20.4 14 84.9 ± 8.8 62.4 ± 21.5 - - -

Has sleep disorder(s)?
Yes 155 90.6 ± 10.1 64.5 ± 22.3 106 87.6 ± 10.0 65.2 ± 22.2 15 75.3 ± 21.5 66.0 ± 23.4
No 661 91.9 ± 8.9 66.9 ± 20.7 431 88.4 ± 9.6 62.5 ± 22.0 7 92.3 ± 6.0 54.4 ± 18.3
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Table 9: Model characteristics on the internal validation datasets (wake versus REM versus NREM): subject-wise
performance metrics (mean ± SD) are reported using the internal validation data. REM: rapid-eye-movement, NREM: non-rapid-eye-
movement, Kappa score: κ.

Wake versus REM versus NREM
Raine Gen1 Raine Gen2 NewcastleSubgroups

n κ n κ n κ

Sex
Male 357 0.293 ± 0.100 264 0.286 ± 0.120 15 0.200 ± 0.137
Female 459 0.313 ± 0.114 273 0.284 ± 0.117 7 0.258 ± 0.084

Body Mass Index (BMI)
< 25 232 0.375 ± 0.162 338 0.342 ± 0.148 - -
25 - 29.9 318 0.390 ± 0.152 120 0.335 ± 0.170 - -
>30 265 0.401 ± 0.143 79 0.329 ± 0.178 - -

Apnea Hypopnea Index (AHI)
< 5 199 0.397 ± 0.163 338 0.349 ± 0.156 - -
5 - 14.9 349 0.390 ± 0.148 146 0.317 ± 0.158 - -
15 - 29.9 150 0.395 ± 0.153 39 0.355 ± 0.166 - -
≥ 30 114 0.369 ± 0.143 14 0.273 ± 0.139 - -

Has sleep disorder(s)?
Yes 155 0.386 ± 0.149 106 0.354 ± 0.162 15 0.277 ± 0.148
No 661 0.390 ± 0.153 431 0.335 ± 0.157 7 0.303 ± 0.179
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Table 10: Model characteristics on the internal validation datasets (wake versus REM versus NREM I, II, III):
subject-wise performance metrics (mean ± SD) are reported using the internal validation data. REM: rapid-eye-movement, NREM:
non-rapid-eye-movement, Kappa score: κ.

Wake versus REM versus NREM I, II, III
Raine Gen1 Raine Gen2 NewcastleSubgroups

n κ n κ n κ

Sex
Male 357 0.279 ± 0.103 264 0.287 ± 0.120 16 0.014 ± 0.102
Female 459 0.307 ± 0.111 273 0.285 ± 0.113 9 0.125 ± 0.106

Body Mass Index (BMI)
< 25 232 0.295 ± 0.117 338 0.286 ± 0.110 - -
25 - 29.9 318 0.309 ± 0.107 120 0.292 ± 0.127 - -
>30 265 0.307 ± 0.102 79 0.273 ± 0.140 - -

Apnea Hypopnea Index (AHI)
< 5 199 0.307 ± 0.114 338 0.293 ± 0.116 - -
5 - 14.9 349 0.309 ± 0.108 146 0.264 ± 0.118 - -
15 - 29.9 150 0.309 ± 0.104 39 0.299 ± 0.127 - -
≥ 30 114 0.283 ± 0.104 14 0.274 ± 0.131 - -

Has sleep disorder(s)?
Yes 155 0.286 ± 0.107 106 0.297 ± 0.131 15 0.213 ± 0.136
No 661 0.309 ± 0.108 431 0.283 ± 0.115 7 0.230 ± 0.099
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8.2. Cohort-specific performance against polysomnography using SleepNet797
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Figure 5: Agreement assessment via Bland-Altman plots for internal validation: total sleep duration (TSD), non-rapid-
eye-movement sleep (NREM), and rapid-eye-movement sleep (REM).42
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Figure 6: Agreement assessment via Bland-Altman plots for external validation: total sleep duration, wake after sleep
onset (WASO), non-rapid-eye-movement sleep (NREM), and rapid-eye-movement sleep (REM).
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Figure 7: Agreement assessment via Bland-Altman plots for internal validation: non-rapid-eye-movement sleep
(NREM) ratio, and rapid-eye-movement sleep (REM) ratio.
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Figure 8: Agreement assessment via Bland-Altman plots for external validation: non-rapid-eye-movement sleep
(NREM) ratio, and rapid-eye-movement sleep (REM) ratio.
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Figure 9: Agreement assessment via Bland-Altman plots for internal validation: wake after sleep onset (WASO), and
sleep efficiency (SE).
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Figure 10: Agreement assessment via Bland-Altman plots for internal validation: wake after sleep onset (WASO), and
sleep efficiency (SE).
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(b) Overall external validation

Figure 11: Three class classification (wake/REM/NREM) confusion matrix: epoch-to-
epoch Kappa and balanced accuracies are shown. The number of predictions and proportion ratios
are shown for each pair of ground-truth and prediction class. REM: rapid-eye-movement sleep;
NREM: non-rapid-eye-movement sleep.
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Figure 12: Three-class sleep staging (wake/REM/NREM) for internal validation:
epoch-to-epoch Kappa and balanced accuracies are shown. The number of predictions
and proportion ratios are shown for each pair of ground-truth and prediction class. REM: rapid-
eye-movement sleep; NREM: non-rapid-eye-movement sleep.
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Figure 13: Five-class sleep staging (wake/REM/N1/N2/N3) for internal validation:
epoch-to-epoch kappa and balanced accuracies are shown. The number of predictions and
proportion ratios are shown for each pair of ground-truth and prediction class. REM: rapid-eye-
movement sleep, N1, N2, N3: non-rapid-eye-movement sleep 1, 2, 3.
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Figure 14: Three-class sleep staging (wake/REM/NREM) for external validation: epoch-to-epoch kappa and balanced
accuracies are shown. The number of predictions and proportion ratios are shown for each pair of ground-truth and prediction class.
REM: rapid-eye-movement sleep; NREM: non-rapid-eye-movement sleep.
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Figure 15: Five-class sleep staging (wake/REM/N1/N2/N3) for external validation: epoch-to-epoch kappa and bal-
anced accuracies are shown. The number of predictions and proportion ratios are shown for each pair of ground-truth and prediction
class. REM: rapid-eye-movement sleep, N1, N2, N3: non-rapid-eye-movement sleep 1, 2, 3.
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A sample night for a participant in their 50s

Figure 16: A sample actigram, hypnogram ground truth and prediction for a partic-
ipant whose sleep stages are well captured: the top hypnogram is the ground-truth and
the bottom hypnogram is the prediction generated by SleepNet based on the actigram. REM:
rapid-eye-movement sleep, N1, N2, N3: non-rapid-eye-movement sleep 1, 2, 3.
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8.3. Additional results on the sleep variations for the UK Biobank participants798

53

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.07.23292251doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.07.23292251
http://creativecommons.org/licenses/by/4.0/


Figure 17: Participant flow diagram for the analysis of sleep and all-cause mortality
in the UK Biobank. TDI: Townsend deprivation index, BMI: body mass index, SR health:
self-reported overall health, SR insomnia: self-reported insomnia symptoms, CVD: Cardiovascular
disease.
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Figure 18: Correlation matrix for device-measured and self-reported sleep parameters
on the UK Biobank. The self-reported total sleep duration was obtained via questionnaire at
baseline assessment in the UK Biobank. REM: rapid-eye-movement sleep, NREM: non-rapid-eye-
movement sleep.
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Figure 19: Box plots showing the distributions of device-measured overnight sleep du-
ration against self-reported total sleep duration. The box whiskers reflect the lowest and
highest data points that are 1.5 times of the inter-quartile-range from the median.
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Figure 20: The average device-measured sleep stage distribution with respect to age for
both females (left) and males (right) on the UK Biobank. The histograms on the top show
the age distribution for the participants. The red vertical line denotes the median age for each sex.
WASO: wake after sleep onset; REM: rapid-eye-movement sleep; NREM: non-rapid-eye-movement
sleep.

Figure 21: Adjusted marginal mean (95% confidence interval) device-measured mean
overnight sleep duration and mean sleep efficiency by self-reported overall health status
and insomnia history in the UK Biobank. Mean overnight sleep duration and sleep efficiency
were adjusted for age and sex.
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Figure 22: Device-measured sleep probability trajectories throughout the day for the
UK Biobank participants (weekday vs weekend). Top: variations of the average overnight
sleep probability for the participants with self-reported “morning” and “evening” chronotype (a)
and the overnight sleep distributions across thirds of device-measured physical activity level (b).
Bottom: variations of the average REM (c) and NREM (d) probability in participants with a history
of self-reported insomnia symptoms versus those without. Rapid-eye-movement sleep (REM), and
non-rapid-eye-movement sleep (NREM). Areas of squares represent the inverse of the variance of
the log risk. And the I bars denote the 95% confidence interval for the floated risks.
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(a) (b)

Figure 23: Associations of overnight sleep duration (a) and sleep efficiency (b) with
all-cause mortality. The model used 1,642 events among 62,214 participants. We used age as the
timescale and adjusted for sex, ethnicity, Townsend Deprivation Index of baseline address (split by
quarter in the study population), educational qualifications, smoking status, alcohol consumption
(Never, <3 times/week, 3+ times/week), overall activity (measured in milli-gravity units). Areas of
squares represent the inverse of the variance of the log risk. The I bars denote the 95% confidence
interval for the floated risks.
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8.3.1. Models additionally adjusted for body mass index799

(a) (b)

Figure 24: Associations of overnight sleep duration with all-cause mortality for groups
with low and high sleep efficiency additionally adjusted for body mass index. The
model used 1,642 events among 62,214 participants. We used age as the timescale and adjusted for
sex, ethnicity, Townsend Deprivation Index of baseline address (split by quarter in the study pop-
ulation), educational qualifications, smoking status, alcohol consumption (Never, <3 times/week,
3+ times/week), overall activity (measured in milli-gravity units). Areas of squares represent the
inverse of the variance of the log risk. The I bars denote the 95% confidence interval for the floated
risks.
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(a) (b)

Figure 25: Associations of overnight sleep duration (a) and sleep efficiency (b) with all-
cause mortality additionally adjusted for body mass index. The model used 1,642 events
among 62,214 participants. We used age as the timescale and adjusted for sex, ethnicity, Townsend
Deprivation Index of baseline address (split by quarter in the study population), educational qual-
ifications, smoking status, alcohol consumption (Never, <3 times/week, 3+ times/week), overall
activity (measured in milli-gravity units), and body mass index. Areas of squares represent the
inverse of the variance of the log risk. The I bars denote the 95% confidence interval for the floated
risks.
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8.3.2. Sensitivity analysis for overnight sleep duration800

Figure 26: Associations of device-measured overnight sleep duration and all-cause mor-
tality with greater granularity. The model used 1,642 events among 62,214 participants. We
used age as the timescale and adjusted for sex, ethnicity, Townsend Deprivation Index of base-
line address (split by quarter in the study population), educational qualifications, smoking status,
alcohol consumption (Never, <3 times/week, 3+ times/week), and overall activity (measured in
milli-gravity units). Areas of squares represent the inverse of the variance of the log risk. The I
bars denote the 95% confidence interval for the floated risks.
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