
 

 

Classification of the Attempted Arm and Hand Movements of Patients with 

Spinal Cord Injury Using Deep Learning Approach 

Sahar Taghi Zadeh Makouei1  , Caglar Uyulan2*  

1 Uskudar University, Department of AI Engineering, Graduate School of Sciences, Istanbul, Turkey, 
sahar.t@inbox.ru 

2 İzmir Katip Çelebi University, Department of Mechanical Engineering, Faculty of Engineering and 

Architecture, İzmir, Turkey 

*Corresponding author: caglar.uyulan@ikcu.edu.tr  

Abstract 

The primary objective of this research is to improve the average classification performance for 

specific movements in patients with cervical spinal cord injury (SCI). The study utilizes a low-

frequency multi-class electroencephalography (EEG) dataset obtained from the Institute of 

Neural Engineering at Graz University of Technology. The research combines convolutional 

neural network (CNN) and long-short-term memory (LSTM) architectures to uncover strong 

neural correlations between temporal and spatial aspects of the EEG signals associated with 

attempted arm and hand movements. 

To achieve this, three different methods are used to select relevant features, and the proposed 

model's robustness against variations in the data is validated using 10-fold cross-validation 

(CV). Furthermore, the study explores the potential for subject-specific adaptation in an online 

paradigm, extending the proof-of-concept for classifying movement attempts. 

In summary, this research aims to make valuable contributions to the field of neuro-technology 

by developing EEG-controlled assistive devices using a generalized brain-computer interface 

(BCI) and deep learning (DL) framework. The focus is on capturing high-level spatiotemporal 

features and latent dependencies to enhance the performance and usability of EEG-based 

assistive technologies. 
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1. Introduction 

Individuals experiencing spinal cord injury (SCI) commonly exhibit primary symptoms 

associated with the loss of motor and sensory functions. SCI is characterized by the disruption 

of specific neuronal pathways that connect the brain to the limbs, resulting in damage to the 

brain regions responsible for controlling these limbs [Lopez-Larraz et al., 2012]. This condition 

has significant physical and psychological consequences, necessitating substantial lifestyle 

adjustments. SCI can have devastating effects, including the loss of motor and sensory 

function, chronic pain syndromes, heightened susceptibility to depression, anxiety, and 

substance abuse, as well as increased hospitalizations and an overall decline in health. Trauma 

or illness-induced damage to the spinal cord leads to the demise of neural cells and debilitating 

sensory and motor function loss [Wei et al., 2009]. 

Individuals with mobility impairments caused by various conditions such as amyotrophic 

lateral sclerosis, brainstem trauma, brain or spinal cord injury, cerebral palsy, muscular 

dystrophies, and multiple sclerosis are unable to effectively interact with computers and 

machinery due to their compromised movement abilities. One approach to enable 

communication between these individuals and machines is through the identification and 

interpretation of brain activity patterns [Karakaya et al., 2017]. 

Brain-computer interfaces (BCIs) based on electroencephalograms (EEG) have garnered 

significant attention as a direct and non-invasive means of communication between external 

devices and the human brain. This method can be employed with almost any individual 

possessing a healthy brain and is safe, straightforward to implement, and non-invasive. The 

field of neuro-engineering has made promising advancements over the past two decades, 

demonstrating the potential use of BCIs in enhancing functional recovery and autonomy in 

individuals with motor impairments. BCIs bypass the impaired neuromotor system by 

converting brain activity into control signals for computers and machines. In recent years, BCIs 

have emerged as an alternative form of communication between the human brain and output 

devices. By capturing electrical signals from the scalp, the intentions of the user can be decoded 

in real time and translated into control commands for operating external devices, computer 

screens, and virtual objects. The application of BCIs involves identifying suitable physical and 

mental tasks, placing electrodes corresponding to these tasks, extracting relevant features from 

the recorded signals, developing high-performance classification algorithms, and transmitting 

this information to communication and control units via transducer algorithms. BCIs detect 

changes in brain activity when users move or intend to move, and translate these changes into 

control signals for neuroprostheses or robotic arms. BCI systems typically comprise signal 
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acquisition and preprocessing, feature extraction, classification, and a control interface [Xu et 

al., 2022; Agarwal et al., 2020; Robinson et al., 2021; Tariq et al., 2018; Aydin et al., 2022]. 

Each BCI progresses through five primary stages: brain activity measurement, data 

preprocessing, feature extraction, classification, and the control interface, where meaningful 

information is extracted from the classified data for output devices. 

As seen in Fig.1, in Human-Computer Interface systems, data received from humans are 

processed and transmitted to the computer environment. This environment may be an electronic 

device or a mechanical arm. In the signal processing portion, an accurate determination may 

be made through preprocessing, feature extraction, and classification. 

 

Figure 1: Human-computer interface system signal processing scheme [Mudgal et al., 2020; 

Kareem Abdullah& Chao Zhu, 2014]. 

EEG is utilized in BCI research due to its non-invasive nature, practicality, real-time 

capabilities, and wearable options. EEG signals, which are among the most favored methods 

for measuring electrical signals generated as a result of brain activity, are obtained through the 

use of electrodes placed on the user's scalp. The high time resolution, painlessness, low cost in 

comparison to other methods, availability of wearable types, and harmlessness make it a 

preferred choice in BCI studies. Affordable devices are available for capturing brain signals, 

which serve as inputs for systems that decode the relationship between experimental arm and 

hand movements and variations in electroencephalographic (EEG) signals. These devices are 

known as EEG-based brain-computer interfaces (BCIs). The overarching goal of research in 
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the field of EEG-based BCIs is to develop a method with higher classification rates and brain-

computer interface data rates compared to existing methods [Aydemir & Kayikcioglu, 2014; 

Torres et al., 2020]. 

Electroencephalography (EEG) provides a powerful means of studying cortical plasticity. One 

of the main applications of EEG is monitoring brain activity associated with cognitive and 

movement-related processes. When individuals with complete spinal cord injuries (SCIs) are 

instructed to attempt movement with their paralyzed limbs, EEG data, or brain waves, represent 

the electrical signals generated by the excitatory and inhibitory potentials of neurons. The 

processing of EEG signals involves various aspects of noise rejection and feature vector 

extraction. Independent Component Analysis (ICA) is the most commonly used method for 

noise removal. Recently, a multivariate spectral technique called Directed Transfer Function 

(DTF) has been proposed to determine directional effects between different channels in 

multivariate datasets. Fast Fourier Transforms (FFT) is an algorithm used to transform data 

into the frequency domain, providing magnitude values (μV) for each frequency band. When 

comparing SCI and healthy control groups, magnitude difference datasets are generated for 

each frequency range. EEG signals offer excellent temporal resolution and directly measure 

neuronal activity. These signals cannot be manipulated or simulated to mimic hand movements, 

making them reliable sources of information. EEG-based BCI devices, such as non-invasive, 

low-cost, and wearable options like helmets and headbands, provide a cost-effective and 

convenient means of detecting EEG signals. Brain electrophysiological signals, including EEG 

and evoked potentials (EP), contain valuable information about the physiological states and 

functional activities of the brain. EEG activity is often characterized by five different frequency 

bands: delta (0.1 - 3 Hz), theta (4 - 7 Hz), alpha (8 - 13 Hz), beta (14 - 29 Hz), and gamma. 

Investigating alterations in the 8-13 Hz range of brain activity following an SCI is crucial, as 

studies suggest cortical remodeling that may impact activity within this frequency range 

[Stewart et al., 2014; Xu et al., 2022; Wei et al., 2009; Xu et al., 2022; Selvi et al., 2021]. 

Oscillatory activity, including delta, theta, alpha/mu, beta, and gamma rhythms, event-related 

potentials (ERPs) such as P300, visual evoked potentials (VEPs), and slow cortical potentials 

(SCPs), are important components for effective communication in EEG-based BCIs. 

Oscillating rhythms fluctuate based on the state of brain activity, with specific rhythms 

associated with particular situations. Mu and beta rhythms, referred to as sensorimotor rhythms 

(SMRs), exhibit event-related desynchronization (ERD) and event-related synchronization 

(ERS), respectively, which are directly linked to power decrease during movement execution 

or power increase during rest. ERPs, on the other hand, are phase-locked signals. Users can be 
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categorized based on their physical and mental status; for example, locked-in patients with 

intact eye muscles can communicate via ERP signals, while individuals with motor-complete 

but sensory-deficient SCIs can utilize SMR-based motor imagery signals. EEG signals provide 

rich information such as emotional, motor, and visual states. However, EEG signals are 

complex and require feature extraction techniques to obtain the desired signal structure. As 

non-stationary signals containing a large amount of data, EEG signals consist of spikes and 

field potentials. Spikes represent individual action potentials of neurons and are detected using 

invasive microelectrodes, while field potentials can be measured by EEG and reflect the 

combined synaptic, axonal, and neuronal activity of groups of neurons. EEG signals are 

obtained by measuring the currents resulting from synaptic stimulation, which create a 

magnetic field that can be measured by an EEG device. Electrodes are attached to different 

parts of the brain to measure and record this magnetic field, and the impedance of the 

connection electrodes should be chosen accordingly due to the differing impedances at each 

brain stage. EEG signals are recorded after appropriately placing electrodes on the human skull, 

typically using multiple channels to capture signals more accurately. Downsampling and 

filtering are applied to address noise issues in the EEG signals, with Butterworth filtering 

commonly used. The combination of downsampling and filtering reduces training time for 

model algorithms, resulting in efficient and fast models. A comparison of EEG signals before 

and after downsampling and filtering is presented. 

Related Works 

A novel approach called Proto-imEEG, based on a Prototypical Network, has been developed 

for automatically classifying imagined speech prompts and words using EEG data. This 

approach incorporates a one-dimensional convolutional layer and bidirectional recurrent 

networks, surpassing the performance of state-of-the-art methods with an average classification 

accuracy of 92-96% and an average inference time of 0.2 seconds. This study represents the 

first application of a Prototypical Network in this context [Hernandez-Galvan et al., 2022]. 

Three hybrid models combining convolutional neural networks (CNNs) with Long-Short Term 

Memory (LSTM) networks were proposed for classifying EEG signals in motor imagery-based 

BCIs. The models were evaluated using the BCI Competition IV dataset 2a, and the hybrid 

neural network with Inception-v3 achieved the highest mean accuracy of 92% and a mean 

Kappa value of 88%. These findings suggest that transfer learning, using a pre-trained CNN 

combined with LSTM, holds promise for motor imagery-based BCIs and has the potential to 

reduce computational time by selecting the most discriminative channels for different motor 

imagery tasks in distinct brain regions [Khademi et al., 2022]. 
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Accurate classification of target movements in EEG and EMG signals is crucial for effective 

control of prosthetics. However, missing data in these signals can significantly decrease 

classification accuracy and impair prosthetic control. A framework combining tensor 

factorization and an attention-based CNN-LSTM deep learning method was proposed to 

recover missing data and classify target movements, respectively. The tensor factorization 

employed Canonical/Polyadic Weighted OPTimization (CP-WOPT), and the CNN-LSTM-

Attn classifier demonstrated mean classification accuracies of 98%, 83%, and 90% on 

complete, partially complete, and tensor-recovered real-world EEG and EMG data, 

respectively, indicating its effectiveness in this application [Akmal, 2022]. 

A hybrid deep learning method, combining a one-dimensional CNN and a long short-term 

memory (LSTM) model, was employed for the classification of four motor imagery tasks using 

EEG and electrooculogram (EOG) data. The proposed method showed improved classification 

accuracy compared to state-of-the-art methods and exhibited robustness against data variations. 

The model's performance was evaluated using various metrics, including accuracy, kappa 

value, receiver operator characteristic curve, and area under the curve [Uyulan, 2021]. 

A hybrid deep learning approach was presented for classifying four-class motor imagery EEG 

signals. The proposed algorithm utilized a filter bank common spatial pattern for feature 

extraction and a hybrid deep network consisting of a convolutional neural network and a long-

term short-term memory network to learn spatial and temporal features simultaneously. The 

shared neural network, trained using data from all subjects, achieved an accuracy of 83% and 

a Cohen's kappa value of 0.80 on a brain-computer interface competition dataset. Additionally, 

the shared neural network demonstrated satisfactory accuracy when evaluated on a subject-by-

subject basis [Zhang et al., 2019]. 

A model for identifying EEG signals of children with attention deficit hyperactivity disorder 

(ADHD) was presented, consisting of temporal convolutional blocks, spatial convolutional 

blocks, and an LSTM layer. This model, designed to extract more temporal information from 

the EEG data, outperformed Support Vector Machine (SVM) and EEGNet in terms of correct 

classification rates. The model achieved correct classification rates of 92.29%, 92.76%, and 

90.91% on the three backs, respectively, and 94.25% on the full dataset, demonstrating its 

feasibility and applicability to ADHD recognition [Zhang et al., 2022]. 

The development of a BCI system for controlling the movement of a hexapod robot using fist 

motor imagery signals was presented. The system utilized EEG signals sensed on the human 

sensorimotor cortex to classify motor imagery EEG signals and identify commands for 

controlling the robot's locomotion. A hybrid architecture combining CNNs and LSTM 
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networks achieved accuracies of 84.69% and 79.2% on two datasets, respectively, 

demonstrating the feasibility of using motor imagery EEG signals in BCI systems for 

controlling mobile robots and related applications [Mwata-Velu et al., 2021]. 

2. Material and Method 

2.1.Experimental Design 

We utilized EEG data from an online repository, collected from 10 participants with cervical 

spinal cord injury (SCI) within the age range of 20 to 69 years. The majority of participants 

were male, and all were originally right-handed. Two paradigms were employed: an offline 

paradigm involving 9 participants with a single session each, and an online paradigm with one 

participant and two sessions. In the offline paradigm, participants focused on a fixation cross 

and were instructed to avoid eye movements, blinking, and swallowing while executing or 

attempting hand movements corresponding to five different classes. This paradigm consisted 

of 9 runs, with each run comprising 40 trials, including eye movement and rest conditions. Two 

separate paradigms were used for training and evaluating a classifier for hand movements. 

The training paradigm involved two types of trials: movement trials and rest trials. In a 

movement trial, participants were presented with a class cue indicating either hand open or 

palmar grasp, followed by a ready cue and then a go cue. Participants were instructed to 

perform the corresponding movement when the go cue appeared. In the rest trial, participants 

were instructed to refrain from any movement. 

The test paradigm also included movement and rest trials. At the beginning of each trial, a class 

cue was presented, and participants attempted to perform multiple self-paced movements of 

the requested movement class for 60 seconds. Participants reported any movement attempts, 

and the experimenter marked the time point of each movement event. The online classifier 

remained active throughout the sessions and displayed the corresponding movement icon (hand 

open or palmar grasp) for 2 seconds whenever a movement attempt was detected. 

The study recorded a total of 150 movement trials (75 trials per movement class) and 4 rest 

trials for the training paradigm. For the test paradigm, there were 4 movement trials and 1 rest 

trial in each of the 6 runs during session 1, and 5 runs during session 2. The study provided 

participants with instructions on how to perform the movements and when to report any 

movement attempts. The training and test paradigms for classification are given in Fig.2 [Ofner 

et al., 2019]. 
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Figure 2: Experimental design paradigms for classification. a) training paradigm b) test 

paradigm [Ofner et al., 2019]. 

2.2. Data Acquisition and Preprocessing 

The study utilized a 61-electrode EEG and 3-electrode EOG system to record biosignals from 

frontal, central, parietal, and temporal areas, as well as above the nasion and below the outer 

canthi of the eyes. A left earlobe reference and AFF2h ground were employed while recording 

signals with four 16-channel g.USBamps biosignal amplifiers and a 

g.GAMMAsys/g.LADYbird active electrode system, which is presented in Fig.3. 

 

Figure 3: g.GAMMAsys/g.LADYbird active electrode system. 
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The purpose of g.GAMMAsys is to simplify and expedite the process of setting up experiments 

for EEG/ECG/EMG/EOG recording while ensuring excellent signal quality through the use of 

a comfortable cap. g.GAMMAsys is compatible with all g.tec amplifiers and offers various 

types of active and passive electrodes. These electrodes are connected to g.GAMMAbox, 

which is then connected to g.USBamp. For EEG recordings, the electrodes can be mounted 

onto the head using the g.GAMMAcap, while for ECG/EMG/EOG recordings, they can be 

placed on the body. The g.GAMMAcap can be customized with electrodes specific to a 

particular experiment, such as the P300 speller. Even during cleaning, the electrodes remain 

inside the cap, allowing for quick preparation and cleaning, thus significantly expediting the 

experiment process.  

The signals were sampled at 256 Hz and filtered using an 8th-order Chebyshev filter with a 

band-pass range of 0.01 Hz to 100 Hz, and a notch filter at 50 Hz was applied to suppress 

power line interference. The collected data were stored in the GDF Format, with each run stored 

in a separate GDF file, named after the participant's code name and run number. The data set 

included 15 runs per participant, consisting of 9 attempted movement runs, 3 eye movement 

runs, and 3 rest runs, with event codes used to encode cues and other events. The study also 

included an online paradigm, with two online sessions for participant P09, including training 

runs and test runs, which included EEG and EOG data, as well as data glove data, classifier 

output data, and button press data [Ofner et al., 2019].  The standard deviation was applied to 

the EEG signals after the filtering process. Standard deviation is a statistical measure that 

indicates how much the data is dispersed from the mean value. In EEG signal processing, the 

standard deviation is commonly used as a preprocessing step for feature extraction to reduce 

the dimensionality of the data and to capture relevant information about the signal. One of the 

main advantages of using standard deviation as a preprocessing step in EEG signal 

classification is that it provides a robust estimate of the variability of the signal across time. 

This is particularly useful for EEG signals, which are highly dynamic and subject to noise and 

artifacts. By computing the standard deviation of the signal, we can capture both the temporal 

and spectral characteristics of the EEG signal, which can be used to distinguish between 

different brain states or cognitive processes. The use of standard deviation as a preprocessing 

step in EEG signal classification has been shown to improve the accuracy and reliability of 

EEG-based classification models.  

The formula of the standard deviation is given in Eq.1 
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where 𝑛 is the number of samples, and x  is the mean value of the samples.  

2.3.Feature Selection Method  

In the field of machine learning, feature selection is an essential process that is equally as 

important as feature extraction. An excessive number of features in a system can cause 

computational overload and increased model complexity. Hence, eliminating unused data from 

EEG signals before classification can significantly improve the system's speed. 

The feature selection process is crucial because it identifies the most relevant features of the 

signal that represent the EEG features to be classified. BCI systems often have high-

dimensional feature vectors, and feature selection helps reduce the number of input variables 

for the classifier. Feature selection methods do not alter features but exclude certain ones based 

on predetermined criteria. 

The goal of feature selection is to achieve the best results by processing the smallest amount of 

data possible. This process eliminates attributes that are irrelevant or redundant for simpler 

classification models, thus reducing the likelihood of overfitting in datasets with too many 

features or not enough observations. Feature selection methods are categorized into filter, 

wrapper, and embedded methods. 

Embedded Feature Selection (EFS) is an efficient method for feature selection, and the random 

forest algorithm is a popular embedded method used to eliminate uninformative or unnecessary 

features. Tree-based feature selection is another method that takes advantage of the 

interpretable nature of the tree model. Decision trees are used as an embedded method of 

feature selection, where the most relevant features are selected and ranked based on their 

importance score. 

The decision tree induction algorithm is used to learn decision tree classifiers, where each node 

represents an attribute test, and each branch specifies the class prediction. The information gain 

metric is used to select the best partitioning attribute for feature selection based on the attribute 

with the highest information gain. 

Feature selection is a critical process that reduces the number of input variables for the 

classifier, eliminates irrelevant or redundant features, and reduces the likelihood of overfitting. 

Embedded methods, such as random forests and decision trees, are efficient and accurate 

feature selection methods used in machine learning [Li et.al, 2022; Bekiryazici et al., 2020; 

Primartha et al., 2019]. 
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2.4.Deep Learning Methodology 

Deep learning is a powerful machine learning technique that involves the use of multiple hidden 

layers to perform a series of nonlinear operations. These operations are performed using neural 

networks, which can learn complex functions that can distinguish between different classes of 

responses in classification problems. 

One type of neural network that has gained considerable popularity in recent years is the 

recurrent neural network (RNN), which is particularly effective in extracting higher-

dimensional dependencies from sequential data such as EEG time series. RNNs consist of units 

that have connections not only between subsequent layers but also among themselves, allowing 

them to receive information from previous inputs. However, traditional RNNs have difficulty 

learning long-term dynamics due to the disappearing and exploding gradient problems. 

To address these problems, a type of RNN called Long Short-Term Memory (LSTM) was 

introduced. LSTMs are designed to learn both long-term and short-term dependencies, and they 

replace simple neurons with LSTM units, each consisting of four main components: an input 

gate, a neuron with self-repetitive connectivity, a forget gate, and an output gate. These 

components allow the LSTM to selectively recall patterns over long periods, making it 

particularly effective in sequence prediction and time-series prediction. 

In recent years, LSTMs have gained tremendous momentum and prevalence for various 

applications, including classification from EEG data. LSTMs have widespread uses in real-life 

problems due to their ability to selectively recall patterns over long periods. The architecture 

of LSTMs consists of memory cells that hold the previous state and input information. These 

cells decide which data to keep or delete and combine the previous state with the current 

memory and the input data, eliminating long-term dependencies and making it possible to 

maintain datasets. 

The forget gate in the LSTM architecture is used to reset the state and facilitate the learning of 

connections in the input gate. Therefore, the use of LSTMs in classification problems can be 

highly effective, particularly when dealing with complex sequential data such as EEG time 

series [Zhang et al., 2020; Agarwal et al., 2020; Tayeb et al., 2019].  

In recent years, Convolutional Neural Networks (CNNs) have emerged as a powerful tool for 

addressing complex tasks across various domains. These networks are inspired by the 

hierarchical organization of processing units in the animal visual system. CNNs are designed 

to automatically learn features from raw input data without manual intervention, making them 

highly effective for processing different data types, including spectrograms. 
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CNNs are composed of stacked convolutional layers that employ convolutional filters to scan 

the input layer nodes and calculate the output. Each layer in the network utilizes different 

convolutional filters, and the network learns the appropriate filters when exposed to training 

data. CNN architectures encompass several layers such as the Convolution Layer, Batch 

Normalization (BN) Layer, Activation Layer, Pooling Layer, Dropout Layer, Flatten Layer, 

and Fully Connected (FC) Layer. 

The Convolution Layer is essential in CNNs as it enables feature detection in the data. The 

filter matrix dimensions are typically 3x3, 5x5, or 7x7. The BN Layer is employed to address 

issues like gradient loss and minimal learning by standardizing input values. The Activation 

Layer applies non-linear functions (e.g., sigmoid, tanh, ReLU) to determine the output. The 

Pooling Layer, similar to the Convolution Layer, reduces the computational burden by 

decreasing the image size. The Dropout Layer prevents overfitting by randomly deactivating a 

portion of neurons during training. The Flatten Layer transforms data into a one-dimensional 

array, preparing it for the FC Layer. In the FC Layer, each input connects with all neurons. 

Normalization is a crucial preprocessing step for the RNN component of the model to mitigate 

negative effects caused by outliers in the dataset. Data normalization aims to eliminate 

redundancy and inconsistency in the database, controlling neural network complexity and 

achieving generalizable performance across various applications. Batch Normalization (BN) is 

the most commonly used normalization method. BN normalizes the input layer through re-

centering and re-scaling, making artificial neural networks faster and more stable. BN 

accelerates the training speed of deep neural networks by reducing the internal covariate shift, 

which refers to the change in the distributions of internal nodes in a deep network. BN also acts 

as a regulator, potentially replacing the need for dropout and preventing overfitting [Peng, 

2018; Awais et al., 2021; Baumgartner et al., 2017; Poernomo&Kang, 2018; Bengio et al., 

2007].  

Adaptive Momentum (Adam) optimizer, which has gained widespread adoption in deep 

learning due to its efficiency and effectiveness, has been used. Adam is a stochastic 

optimization method that only requires first-order gradients and has low memory requirements. 

It computes adaptive learning rates for individual parameters using estimates of the first and 

second moments of the gradients, hence the name adaptive moment estimation. 

A major advantage of Adam is its combination of two other popular optimization methods, 

AdaGrad and RMSProp. AdaGrad performs well with sparse gradients, while RMSProp is 

effective in online and non-stationary environments. Adam's combination allows it to handle 
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sparse gradients in noisy datasets and naturally perform gradual size annealing. Additionally, 

it can efficiently handle large datasets with minimal computational overhead. 

However, the Adam optimizer has certain limitations. It may not always converge to the 

optimal solution and can encounter weight loss problems. Moreover, recent optimization 

algorithms have proven faster and more effective in specific scenarios. Nonetheless, the default 

hyperparameter values of Adam are generally sufficient for most problems, and it remains a 

popular and reliable optimization method in the field of deep learning [Barakat&Bianchi, 2021; 

Krizhevsky et al., 2017; Lecun et al., 1998].  

3. Results 

After performing the standard scaling process, the data has a size of [64,3775000]. It comprises 

five classes that are equally distributed. Given that the EEG device's sampling frequency is 250 

Hz, the data is reshaped to [15100,250,64]. When feeding the data matrix into the classifier 

algorithm, it follows a specific order. The rows represent the data package (250) at a particular 

sample time, while the columns represent the EEG and ECoG channels (64). The samples are 

organized in the 3rd dimension with a count of 15100. To label the data, the one-hot encoder 

method was employed, resulting in labels with a shape of [15100, 5]. Following the reshaping 

and labeling steps, the data is further processed by shuffling it and splitting it into train, test, 

and validation datasets. The dimensions of the train, test, and validation data are presented in 

Table 1. 

Table 1: The size of the train, test, and validation data. 

Data Type Size 

Train Data [11325, 250, 64] 

Test Data [1510, 250, 64] 

Validation Data [2265, 250, 64] 

Train Label [11325, 5] 

Test Label [1510, 5] 

Validation Label [2265, 5] 

 

3.1. 1D CNN+LSTM model 

In this study, a 1D CNN and LSTM model is used to create a combined system, which aims to 

improve the accuracy of the model in predicting sequences. 

The model consists of multiple layers that are designed to process the input data in a way that 

captures the essential features of the sequence. The input data, in this case, is a 3D tensor with 

shape (timesteps, dims), where timesteps refer to the length of the sequence and dims refer to 
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the number of features in each timestep. The model architecture can be broken down into the 

following steps: 

The model architecture we will be discussing is a combination of Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The model is built using 

the TensorFlow Keras Sequential API, which allows us to stack layers on top of each other in 

a linear fashion and provides a high-level interface for building deep learning models. 

The first layer of the model is a 1D convolutional layer with 24 filters and a kernel size of 8. 

This layer takes input in the shape of (timesteps, and dims), where timesteps are the number of 

time steps in the input sequence and dims are the number of dimensions in each time step. The 

activation function used in this layer is ReLU (Rectified Linear Unit), which is a popular choice 

in deep learning for its simplicity and effectiveness in solving the vanishing gradient problem. 

The next layer is a max pooling layer with a pool size of 4, which reduces the dimensionality 

of the output from the previous layer. The second convolutional layer has 8 filters and a kernel 

size of 4. It also uses ReLU as the activation function and has a stride of 2, which reduces the 

output dimensionality further. The next layer is an LSTM layer with 45 units, which takes input 

from the previous layer and returns a sequence of outputs. The activation function used in this 

layer is tanh, which is a common choice for LSTM networks. Additionally, this layer has a 

dropout rate of 0.2, which helps prevent overfitting. The second LSTM layer has 25 units and 

takes input from the previous LSTM layer. This layer does not return a sequence of outputs, 

but instead returns a single output. After the LSTM layers, we add a dropout layer with a rate 

of 0.5, which randomly drops out 50% of the neurons to reduce overfitting. The final layer is a 

dense layer with 5 output units, which uses softmax activation to predict the class probabilities. 

This layer also has weight decay regularization applied to it, with a regularization parameter of 

0.001. 

The model is compiled using the categorical cross-entropy loss function and the Adam 

optimizer, which is a popular choice in deep learning for its effectiveness in handling noisy 

data and convergence speed. The model is trained using early stopping, which stops the training 

process if the validation loss does not improve for a certain number of epochs. 

The model is trained for 150 epochs with a batch size of 128. The model is evaluated on test 

data, and the test accuracy is reported. 

The use of both CNN and LSTM layers enables the model to capture both spatial and temporal 

features of the sequence. Additionally, the use of regularization techniques such as dropout and 

weight decay helps prevent overfitting and improves the generalization ability of the model. 

The architecture of the model is given in Fig.4. 
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Figure 4: The architecture of the proposed deep learning model. 
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Training and test model accuracy and loss function values for the first 150 epochs are given in 

Fig.5a and Fig.5b, respectively.  

                     a)                                                                          b)  

 

Figure 5: a) Training and test model accuracy, b) Training and test loss function values. 

The confusion matrix is given in Table 2. 

Table 2: The confusion matrix of the model. 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292320doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292320
http://creativecommons.org/licenses/by-nd/4.0/


 

 

The model's test accuracy is reported as 73.775%. This metric represents the proportion of 

correctly classified instances in the test dataset. 

We also assess the model's performance using the Kappa value, which is calculated to be 0.63. 

Kappa evaluates the agreement between predicted and actual values, taking into account the 

agreement occurring by chance. 

In terms of the model's overall effectiveness, the mean f1 score is measured as 0.738. This 

score combines precision and recall, providing an assessment of the model's ability to balance 

accurate predictions and complete coverage of relevant instances. 

Specifically, the mean precision score is determined as 0.746, reflecting the model's ability to 

accurately identify positive instances among the predicted positives. 

Additionally, the mean recall score is calculated as 0.738, indicating the model's capacity to 

capture a significant portion of actual positive instances among all positive cases in the dataset. 

By considering these metrics together, we can better understand and evaluate the performance 

of the model in terms of accuracy, agreement, precision, and recall. 

3.2.1D CNN+LSTM model with Feature Selection 

Building a machine learning system poses challenges when dealing with high-dimensional and 

noisy data. One effective technique to address this is feature selection, which aims to reduce 

the dimensionality of the data by identifying the most important features that contribute 

significantly to the system's predictive performance. In this article, we compare three feature 

selection algorithms: tree-based embedded random forest, wrapper-based recursive feature 

elimination, and filter-based chi-square feature selection. The goal is to reduce the number of 

electrodes from 64 to improve the system's efficiency. The first method, tree-based embedded 

random forest, estimates feature importance using decision trees. By fitting a random forest 

model to the data, it utilizes the mean decrease impurity metric to determine feature importance 

and selects the most crucial features accordingly. The second method, wrapper-based recursive 

feature elimination, adopts a model-based approach for feature selection. It recursively 

removes features from the dataset, fits a model to the remaining features, evaluates model 

performance, and eliminates the feature with the least contribution. This process continues until 

the desired number of features is achieved. The third method, filter-based chi-square feature 

selection, leverages statistical tests to select informative features. By calculating the chi-square 

statistic for each feature, it identifies and selects the features with the highest statistics. After 

applying these methods to the dataset, the most important features are selected using the 

Xgboost method, a widely-used gradient-boosting algorithm for feature selection. Next, the 

selected features are fed into a 1D CNN+LSTM classifier, a deep-learning model suitable for 
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sequential data analysis. This classifier consists of a convolutional layer for extracting local 

features and an LSTM layer for capturing temporal dependencies between these extracted 

features. In summary, feature selection plays a crucial role in reducing the dimensionality of 

high-dimensional and noisy data. In this article, we examined and compared tree-based 

embedded random forest, wrapper-based recursive feature elimination, and filter-based chi-

square feature selection algorithms. We also explored the Xgboost method for assessing feature 

importance and the 1D CNN+LSTM classifier for sequential data analysis. Applying these 

methods improved system performance by selecting the most relevant features. It's important 

to note that selecting too few features may result in information loss while selecting too many 

features can lead to overfitting and decreased performance. To optimize the number of selected 

features, various methods can be employed. In our case, cross-validation was used to estimate 

model performance with different feature subsets. The dataset was divided into training and 

validation sets, and the feature selection method was applied to the training set. The selected 

features were then used for training the model, and its performance was evaluated on the 

validation set. This process was repeated with different numbers of selected features, and the 

number of features yielding the best performance on the validation set was chosen. Wrapper-

based recursive feature elimination algorithms have built-in mechanisms to optimize the 

number of selected features. These algorithms utilize cross-validation and iterative methods to 

determine the optimal number of features for a given problem. After optimization, it was found 

that the best classification accuracy was achieved with a subset of 32 selected features. The 

locations of the selected features are given in Fig.6. 
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Figure 6: Location and nomenclature of a 64-channel cap according to the 5% electrode 

placement scheme: frontal pole (Fp), antero-frontal (AF), frontal (F), central (C), parietal (P), 

temporal (T), occipital (O), and mastoid (M). The numbering starts at the midline (z for zero) 

increasing with distance. Even numbers indicate right-sided placement with odd numbers on 

the left. [Martin et al., 2014]. 

The labels and the corresponding numbers of electrodes that are mapped to the EEG cap are 

given: ['AFz']→ 1, ['F3 '] → 2, ['F1'] → 3, ['Fz'] → 4, ['F2'] → 5, ['F4'] → 6, ['FFC5h'] → 7, 

['FFC3h'] → 8, ['FFC1h'] → 9, ['FFC2h'] → 10, ['FFC4h'] → 11, ['FFC6h'] → 12, ['FC5'] →

13, ['FC3'] → 14, ['FC1'] → 15, ['FCz'] → 16, ['FC2'] → 17, ['FC4'] → 18, ['FC6'] → 19, 

['FCC5h'] → 20, ['FCC3h'] → 21, ['FCC1h'] → 22, ['FCC2h'] → 23, ['FCC4h'] → 24, 

['FCC6h'] → 25, ['C5'] → 26, ['C3'] → 27, ['C1'] → 28, ['Cz'] → 29, ['C2'] → 30, ['C4'] → 31, 

['C6'] → 32, ['CCP5h '] → 33, ['CCP3h'] → 34, ['CCP1h'] → 35, ['CCP2h'] → 36, ['CCP4h'] 

→ 37, ['CCP6h'] → 38, ['CP5'] → 39, ['CP3'] → 40, ['CP1'] → 41, ['CPz'] → 42, ['CP2'] → 43, 

['CP4'] → 44, ['CP6'] → 45, ['CPP5h'] → 46, ['CPP3h'] → 47, ['CPP1h'] → 48, ['CPP2h'] →

49, ['CPP4h'] → 50, ['CPP6h'] → 51, ['P5'] → 52, ['P3'] → 53, ['P1'] → 54, ['Pz'] → 55, ['P2'] 

→ 56, ['P4'] → 57, ['P6'] → 58, ['PPO1h'] → 59, ['PPO2h'] → 60, ['POz'] → 61, ['eog-l '] →

62, ['eog-m'] → 63, ['eog-r'] → 64 

The selected features obtained from three different methods are listed in Table 3.  

Table 3: The features obtained from the feature selection methods. 
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In this study, three different feature selection methods were employed to select features for 

analysis. The selected features from each method were then used as inputs for training a 1D 

CNN + LSTM deep learning model, allowing for comparative analysis. 

A total of 32 features were selected by each method, and these features were used as inputs for 

training the model. The training process was repeated six times for each method. The resulting 

 Feature Selection Method 

 

Filter-based 

(Chi-Squared) 

Embedded 

(Random Forest) 

Wrapper-based 

(RFE) 

Selected 

Features 

4 1 1 

5 2 3 

8 3 4 

12 6 5 

14 7 8 

15 10 9 

16 11 11 

17 12 12 

18 13 14 

19 14 17 

20 15 18 

21 17 21 

22 18 22 

27 20 28 

29 21 30 

31 24 31 

33 28 41 

37 29 42 

38 30 43 

41 32 44 

42 36 47 

43 42 50 

44 43 51 

45 45 52 

50 48 55 

52 52 56 

55 54 57 

59 58 58 

60 59 60 

62 60 62 

63 62 63 

64 64 64 
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test accuracy values were used to calculate p-values, which measure the statistical significance 

of the differences between the methods. 

The p-value between the Random Forest (RF) and Recursive Feature Elimination (RFE) 

methods was found to be P = 0.0000122, indicating a statistically significant difference 

between these two methods. Similarly, the p-value between RF and Chi-square methods was 

calculated as P = 0.00000746, also suggesting a significant difference between RF and Chi-

square. 

On the other hand, the p-value between RFE and Chi-square methods was determined to be P 

= 0.78321757709, which is greater than the commonly used significance level of 0.05. This 

implies that there is no statistically significant difference in performance between RFE and 

Chi-square. 

The test accuracy values obtained after six training runs for each method were recorded. For 

RF, the test accuracy values were [0.80244, 0.81674, 0.82006, 0.81912, 0.80331, 0.81325], for 

RFE they were [0.77351, 0.78300, 0.77921, 0.77145, 0.78001, 0.78940], and for Chi-square 

they were [0.76995, 0.78117, 0.77154, 0.78166, 0.78132, 0.78477]. 

The comparison in terms of test and train accuracy is given in Table 4. 

Table 4: Test and train accuracies of the models subjected to different feature selection 

methods. 

Model 
Test Accuracy 

(%) 

Train Accuracy  

(%) 

RF+1D CNN+LSTM 81.248 82.934 

RFE+1D CNN+LSTM 77.943 81.737 

Chi-square+ 1D 

CNN+LSTM 
77.840 81.332 

 

Based on the p-values and the results in the table, it can be concluded that the Random Forest 

method (RF) yielded the best performance among the three feature selection methods. 

Therefore, the features selected by the Random Forest method were chosen for further analysis 

and model training.  

The confusion matrix is given in Table 5. 
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Table 5: The confusion matrix of the model (Features selected with the RF method). 

 

The model's test accuracy is reported as 81.248%. We also assess the model's performance 

using the Kappa value, which is calculated to be 0.648.  In terms of the model's overall 

effectiveness, the mean f1 score is measured as 0.81.  Specifically, the mean precision score is 

determined as 0.844. Additionally, the mean recall score is calculated as 0.779.  

Using the random forest feature selection method, we identified and measured the weights of 

32 electrodes.  

To determine the most influential electrodes, we applied the XGBoost (eXtreme Gradient 

Boosting) algorithm, specifically the Feature Importance functionality. By analyzing the 

results, we found that electrodes 28, 36, 43, 48, and 59 exhibited XGBoost values higher than 

0.02, placing them in the top row of Table 6.  

These electrodes have been identified as having significant importance in the dataset based on 

their weights and XGBoost scores. 

XGBoost is a powerful machine learning algorithm that utilizes gradient boosting techniques 

to create an ensemble of weak prediction models, typically decision trees, and combines their 

predictions to make more accurate predictions. In addition to its strong predictive capabilities, 
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XGBoost provides a useful feature importance analysis, which helps in understanding the 

relative importance of different features in the dataset for making predictions. 

Feature importance in XGBoost is determined by considering the contribution of each feature 

to the reduction of the loss function (e.g., mean squared error) during the training process. The 

algorithm calculates the total gain, also known as the total reduction in the loss function, 

achieved by using a specific feature to make splits in the decision trees. Features that result in 

higher gain are considered more important. 

The feature importance in XGBoost can be assessed using various techniques. One commonly 

used method is the "weight" metric, which represents the number of times a feature is used to 

make splits across all decision trees. Features with higher weights are generally considered 

more important. 

Another method is the "cover" metric, which represents the average coverage (i.e., the number 

of samples affected) of a feature across all decision trees. Features that cover a larger portion 

of the dataset are considered more important. 

Finally, the "gain" metric, as mentioned earlier, represents the average gain achieved by using 

a feature for making splits across all decision trees. Features with higher average gains are 

considered more important. 

By analyzing the feature importance scores provided by XGBoost, data scientists can identify 

the most influential features in a dataset, gain insights into the relationships between features 

and the target variable, and potentially improve the model's performance by selecting or 

engineering more relevant features [Wang et al., 2020; Friedmann, 2001; Raihan et al., 2023; 

Machado et al., 2019].  
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Table 6: The scores of the selected features obtained from the feature importance analysis. 

Selected 

Feature 

XGBoos

t Score 

Selected 

Feature 

XGBoos

t Score 

Selected 

Feature 

XGBoos

t Score 

Selected 

Feature 

XGBoos

t Score 

1 0.01935 13 0.01442 28 0.02945 48 0.02057 

2 0.01613 14 0.01979 29 0.01662 52 0.01627 

3 0.01591 15 0.01662 30 0.01675 54 0.01259 

6 0.01362 17 0.01662 32 0.01329 58 0.01487 

7 0.01366 18 0.01870 36 0.02050 59 0.02027 

10 0.01914 20 0.01869 42 0.01770 60 0.01609 

11 0.01865 21 0.01700 43 0.02515 62 0.01595 

12 0.01743 24 0.01596 45 0.01415 64 0.01495 

 

The scores for each electrode obtained from the XGBoost analysis are represented in Fig. 7.  

 

Figure 7: The feature importance results obtained from the XGBoost method. 
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3.3.The result after applying 10-fold cross-validation  

Cross-validation is a widely used technique in data science for evaluating the performance of 

machine learning models and estimating their generalization ability. Specifically, 10-fold 

cross-validation is a common approach that divides the dataset into ten equal-sized subsets or 

"folds." 

The 10-fold cross-validation process can be summarized as follows: 

The dataset is randomly shuffled to ensure an unbiased representation of the data across the 

folds. 

The data is divided into ten equal-sized subsets, each containing an approximately equal 

distribution of samples. One subset is set aside as the "validation set" or "holdout set," while 

the remaining nine subsets are used for training. 

The model is trained on the training set, using nine subsets of data, and evaluated on the holdout 

set. This process is repeated ten times, with each of the ten subsets used as the holdout set once. 

At the end of the ten iterations, the evaluation metric (e.g., accuracy, precision, or mean squared 

error) is recorded for each fold. The evaluation metric from each fold is then averaged to 

provide an overall assessment of the model's performance. 

The benefits of using 10-fold cross-validation include: 

More robust performance estimation: By repeating the training and evaluation process ten 

times with different holdout sets, we obtain a more reliable estimate of the model's 

performance, reducing the impact of variability in the data. 

Efficient use of data: Cross-validation allows us to utilize a larger portion of the data for both 

training and evaluation, compared to a simple train-test split. 

Model selection and hyperparameter tuning: Cross-validation aids in selecting the best model 

or tuning hyperparameters. By comparing the performance of different models or 

hyperparameter settings across the ten folds, we can identify the most effective choices. 

Detecting overfitting: Cross-validation helps in assessing whether the model is overfitting the 

training data. If the model performs significantly worse on the holdout sets compared to the 

training sets, it suggests overfitting, indicating a need for adjustments [Varma&Simon, 2006; 

Stone, 2006; Jiang&Wang, 2017].   

We applied the 10-Fold CV to the features selected 1D CNN+LSTM model. The results are 

given in Table 7.  
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Table 7: 10-Fold cross-validation results. 

     10-Fold Cross Validation                         Accuracy 

             Iteration 1                             76.49% 

             Iteration 2                             75.70% 

             Iteration 3                             74.17% 

             Iteration 4                             75.76% 

             Iteration 5                             76.23% 

             Iteration 6                             75.17% 

            Iteration 7                             76.09% 

            Iteration 8                             76.23% 

            Iteration 9                             76.69% 

            Iteration 10                             74.97% 

 

        Mean Accuracy   Standard Deviation 

10-Fold Cross Validation               75.75%          +/- 0.74% 

 

4. Discussion and Conclusive Summary 

The research conducted aimed to enhance the classification performance of specific 

movements in patients with cervical spinal cord injury (SCI) using electroencephalography 

(EEG) data. By combining convolutional neural network (CNN) and long-short-term memory 

(LSTM) architectures, the study successfully revealed strong neural correlations between 

temporal and spatial aspects of the EEG signals associated with attempted arm and hand 

movements. 

To improve the model's performance, feature selection methods were applied. The Random 

Forest (RF) feature selection method yielded a significant improvement, resulting in a test 
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accuracy of 81.248% when combined with the 1D CNN+LSTM model. This indicates the 

effectiveness of RF in selecting relevant features for classification. 

Additionally, the study assessed the robustness of the proposed model against data variations 

using 10-fold cross-validation (CV). The mean test accuracy achieved with RF feature 

selection, combined with 1D CNN+LSTM and 10-fold CV, was 75.75%. Although slightly 

lower than the RF-enhanced model without cross-validation, this result indicates that the model 

maintains reasonable performance across different folds and provides a more reliable estimate 

of its generalization ability. 

In conclusion, the research successfully contributes to the field of neuro-technology by 

developing EEG-controlled assistive devices through a generalized brain-computer interface 

(BCI) and deep learning (DL) framework. By capturing high-level spatiotemporal features and 

latent dependencies, the proposed model demonstrates improved classification performance for 

specific movements in SCI patients. The findings highlight the potential for utilizing EEG-

based technologies in assisting individuals with motor impairments and provide a foundation 

for further advancements in the field of neuro-technology. 
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