1	Epidemiology of cruciate ligament surgery in Japan: A retrospective cohort study
2	from 2014 to 2019
3	
4	Shota Uchino ^{1,2*} , Masataka Taguri ³
5	
6	
7	¹ Department of Data Science, Graduate School of Data Science, Yokohama City University,
8	Yokohama, Japan
9	² REHASAKU Co., Ltd, Tokyo, Japan
10	³ Department of Health Data Science, Tokyo Medical University, Tokyo, Japan
11	
12	*Corresponding author:
13	Email: <u>ucchi.no.shota@gmail.com</u>
14	
15	
16	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

17 Abstract

18	Understanding the incidence and trends of cruciate ligament (CL) surgeries in Japan is crucial for
19	providing effective healthcare services. This study aimed to use open data available from the
20	National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB) to
21	determine the changes over time in CL surgeries and to analyze the characteristics of the Japanese
22	population in terms of sex and age. We retrospectively identified CL surgeries of the knee joint
23	registered from April 2014 to March 2020 using the NDB open data. Data on sex, age, and practice
24	were extracted to determine the number of cases per 100,000 population. Trends in the annual
25	incidence of CL surgeries were evaluated using Poisson regression analysis. In total, 112,686 CL
26	surgeries were performed from 2014 to 2019. Arthroscopic ligament reconstruction accounted for
27	98% of all the cases. The number of surgeries performed had increased significantly from 16,975 in
28	2014 to 19,735 in 2019 (P<0.001). Overall, CL surgeries were most common in the 15–19 years age
29	group, followed by the 20-29 years age group. However, these trends differed between males and
30	females. The incidence of CL surgery in Japan has increased, and its characteristics vary by gender
31	and age. These characteristics have been identified not only in younger patients but also in middle-
32	aged and older patients. It would be valuable to further investigate the general patterns of CL surgery
33	in Japan.

35 Introduction

36	In recent years, the availability of medical and national big data has made it possible to determine the
37	incidence of ligament injuries and surgeries [1-9]. These studies have revealed epidemiological
38	models that allow for the generalization of disease incidence. They have also been used to improve
39	treatment strategies and health care services to enhance patients' quality of life.
40	In Japan, an epidemiological study using insurance records of middle and high school athletes
41	reported 30,458 anterior cruciate ligament (ACL) injuries (0.81 per 1000 athlete-years) in these
42	growing athletes over a 10-years from 2005 to 2014. Furthermore, the incidence rate of ACL injuries
43	was reported to be 2.8 times higher in female athletes than in male athletes [10]. This previous study
44	determined the incidence of ACL injuries using a large and long-term insurance dataset; however, it
45	only focused on populations considered at high risk for ACL injury, and the incidence and the post-
46	injury response of other populations remain unknown.
47	To understand the incidence and trends of the disease in the Japanese population, a larger sample
48	size should be examined. Epidemiological studies using the National Database of Health Insurance
49	Claims and Specific Health Checkups of Japan (NDB) established by the Ministry of Health, Labour
50	and Welfare (MHLW) and NDB open data, which is a more generalized compilation of the NDB, have
51	been actively conducted in the field of locomotor system [11-13]. Epidemiological modeling from
52	these big data could lead to improved healthcare services.

- 53 This study aimed to elucidate trends in the number of cruciate ligament (CL) surgeries, sex, age
- distribution, and characteristics over time using NDB open data from 2014 to 2019. We hypothesized
- 55 that the number of CL surgeries would increase over the years, and that there would be a higher
- 56 incidence of such surgeries among females.
- 57

59 Materials and methods

60	This population-based retrospective cohort study uses the NDB open data provided by the MHLW
61	from April 2014 to March 2020. These data are widely accessed for research purposes and have been
62	anonymized. Therefore, obtaining informed consent was not necessary.
63	We accessed the NDB open data website and obtained data on the "Number of calculations by sex,
64	and age group" for "operation (Code K)" [14–19]. There were four categories of the CL of the knee
65	joint: ligament tear suture (K074), arthroscopic ligament tear suture (K074-2), ligament reconstruction
66	(K079), and arthroscopic ligament reconstruction (K079-2). Data on the number of registered CL
67	surgeries were stratified by fiscal year, sex, and age (5-year interval). No detailed analyses were
68	performed if the number of registered CL surgeries had no specific values shown in <10 cases. The
69	sex and age data were obtained by calculating the number of surgeries per 100,000 population. The
70	calculation method utilized population estimates published by the Statistics Bureau of the Ministry of
71	Internal Affairs and Communications, based on population data as of October 1 of each year [20].
72	Changes in the number of surgeries on the CL of the knee joint over time were assessed using Poisson
73	regression, with the number of surgeries as the outcome variable and the year of surgery as the
74	explanatory variable. The supporting information file contains the details of the STROBE checklist
75	(S1 Table). The NDB open data is widely available for research purposes by the Ministry of Health,
76	Labour, and Welfare (MHLW). The data are compiled and published based on existing anonymized

- 77 NDB, and since there is no corresponding table, individuals cannot be identified. Therefore, ethical
- approval was not required for this study.

79 **Results**

80	In total, 112,686 CL surgeries were performed from April 2014 to March 2020, with 109,925 (98%)
81	being arthroscopic ligament reconstruction. The remaining procedures included ligament
82	reconstruction and arthroscopic ligament tear suture, each accounting for approximately 1.0% of the
83	total number of surgeries performed, with very few cases of ligament tear suture (Table 1). The number
84	of arthroscopic ligament reconstruction increased significantly from 16,997 (18.3 cases/100,000
85	population) in 2014 to 19,774 (22.1 cases/100,000 population) in 2019, surpassing the number of all
86	other techniques (P<0.001) (Fig 1).

87

88 Table 1. Annual number of cruciate ligament surgeries in the NDB open data from 2014 to 2019.

Category, year	2014	2015	2016	2017	2018	2019
Ligament tear suture	26	24	15	20	16	19
Arthroscopic ligament tear suture	225	204	228	267	213	227
Ligament reconstruction	289	229	230	209	169	151
Arthroscopic ligament reconstruction	16,997	17,507	18,129	18,241	19,277	19,774
Total	17,537	17,964	18,602	18,737	19,675	20,171

91 **population from 2014 to 2019.**

92

93	Due to low registration numbers, data for the $0-9$ and >70 years age groups were incomplete. For the
94	10-69 years age group, the highest number of registrations was observed in the 15-19 years age group
95	(108.5 cases/100,000 population), followed by the 20-24 years age group (41.8 cases/100,000
96	population). We noted that registrations declined with age (Fig 2 and S2 and S3 Tables).
97	In terms of sex, females outnumbered males by a factor of 6.7 in the 10–14 years age group and by
98	1.6 in the 15-19 years age group. In contrast, males were 1.6 times more likely than females to be
99	enrolled in the 20-24 years age group and more than twice as likely as females to be enrolled in the
100	25–29 and 30–34 years age groups. Registration numbers were similar for other age groups (Fig 3 and
101	S3 Table).
102	
103	Fig 2. Number of registered arthroscopic ligament t reconstruction procedures per 100,000
104	population by age group from 2014 to 2019.
105	Fig 3. Number of registered arthroscopic ligament reconstruction procedures per 100,000

106 **population.**

108 **Discussion**

109	This study investigated the number of registered CL surgeries, sex differences, and age characteristics
110	in Japan from 2014 to 2019 using the NDB open data. As hypothesized, there was a consistent increase
111	in CL surgery over the study period. Notably, most CL surgeries were arthroscopic ligament
112	reconstruction procedures, which constitutes a significant finding of this study. With the advancement
113	of medical technology, arthroscopic surgery, which enables a detailed examination of the interior of a
114	joint during surgery, has become increasingly prevalent [21-23]. This development may have led to
115	the rise in the number of arthroscopic procedures in Japan.
116	Arthroscopic ligament reconstruction was found to vary by sex and age. Overall, the incidence was
117	higher among males. Conversely, females often undergo surgery during their teenage years, potentially
118	due to the disparity in growth rates between males and females. Height growth in Japanese females
119	reaches its peak around 2 years earlier than in males [24]. Variations in growth rates may influence
120	the timing of surgery. However, it should be noted that CL surgery has been a subject of intense debate
121	regarding its potential impact on growth retardation [25,26]. Other factors, such as female's inability
122	to be active in sports at times due to childbirth, may be related to the sex difference. Another finding
123	was that the incidence of surgery among middle-aged and older adults had also increased. Injuries
124	resulting from sports activities, everyday sprains, and falls are common among middle-aged and older
125	adults [27]. This can be attributed to increased health awareness and higher physical activity levels.

126	Additionally, there is a higher risk of knee joint dysfunction and secondary injuries (such as meniscus
127	and cartilage damage) [28,29]. Good outcomes of CL surgery in middle-aged and older patients have
128	also been reported [30,31]. Consequently, many patients may choose surgery with the goal of
129	regaining their previous level of activity. In Japan, like in other countries, the indications for surgery
130	have likely expanded due to changes in individual lifestyles and advancements in medical technology.
131	This study had several limitations. First, it failed to provide details on the number of ACL and PCL
132	surgeries as a categorization of the CL surgeries. Second, tissue injuries other than those caused by
133	CL surgery were not identified, as they cannot be used for ligament and meniscus surgeries for health
134	claims. Third, it was impossible to analyze information other than medical practice, sex, and age.
135	Finally, traffic accidents and occupational injuries were not included in the present data.
136	In future studies, we aim to investigate the number of injuries and reconstruction surgeries separately
137	for ACL and PCL injuries. We would also like to clarify the characteristics of Japanese patients
138	through comparison with overseas reports. We believe organizing information on knee joint ligament
139	injuries will lead to novel suggestions for rehabilitation and prevention programs.

141 Conclusion

- 142 The present study identifies an increased incidence of CL surgery in Japan, along with gender and age
- 143 characteristics. This trend is not limited to younger age groups but is also observed in middle-aged
- 144 and older age groups. In the future, more detailed data should be extracted from medical databases to
- 145 identify insights for optimal treatment strategies for specific populations.

147 Acknowledgments

- 148 This work was supported by JSPS KAKENHI Grant Numbers JP21K02905. We would like to express
- 149 our gratitude to all the members of Taguri's laboratory for their valuable discussions and comments.
- 150 Additionally, we would like to thank Editage (https://www.editage.jp/) for providing English language
- 151 editing services.
- 152

154 **References**

155	1.	Gianotti SM, Marshall SW, Hume PA, Bunt L. Incidence of anterior cruciate ligament injury
156		and other knee ligament injuries: A national population-based study. Journal of Science and
157		Medicine in Sport. 2009;12: 622-627. doi:10.1016/j.jsams.2008.07.005
158	2.	Nordenvall R, Bahmanyar S, Adami J, Stenros C, Wredmark T, Felländer-Tsai L. A
159		Population-Based Nationwide Study of Cruciate Ligament Injury in Sweden, 2001-2009:
160		Incidence, Treatment, and Sex Differences. Am J Sports Med. 2012;40: 1808–1813.
161		doi:10.1177/0363546512449306
162	3.	Longo UG, Nagai K, Salvatore G, Cella E, Candela V, Cappelli F, et al. Epidemiology of
163		Anterior Cruciate Ligament Reconstruction Surgery in Italy: A 15-Year Nationwide Registry
164		Study. JCM. 2021;10: 223. doi:10.3390/jcm10020223
165	4.	Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG. Epidemiology of Anterior
166		Cruciate Ligament Reconstruction: Trends, Readmissions, and Subsequent Knee Surgery. The
167		Journal of Bone and Joint Surgery-American Volume. 2009;91: 2321-2328.
168		doi:10.2106/JBJS.H.00539
169	5.	Janssen KW, Orchard JW, Driscoll TR, van Mechelen W. High incidence and costs for
170		anterior cruciate ligament reconstructions performed in Australia from 2003-2004 to 2007-

171		2008: time for an anterior cruciate ligament register by Scandinavian model?: Incidence of
172		ACL surgery in Australia. Scand J Med Sci Sports. 2012;22: 495-501. doi:10.1111/j.1600-
173		0838.2010.01253.x
174	6.	Granan L-P, Forssblad M, Lind M, Engebretsen L. The Scandinavian ACL registries 2004–
175		2007: baseline epidemiology. Acta Orthopaedica. 2009;80: 563-567.
176		doi:10.3109/17453670903350107
177	7.	Longo UG, Viganò M, Candela V, de Girolamo L, Cella E, Thiebat G, et al. Epidemiology of
178		Posterior Cruciate Ligament Reconstructions in Italy: A 15-Year Study. JCM. 2021;10: 499.
179		doi:10.3390/jcm10030499
180	8.	Chung KS, Kim JH, Kong DH, Park I, Kim JG, Ha JK. An Increasing Trend in the Number of
181		Anterior Cruciate Ligament Reconstruction in Korea: A Nationwide Epidemiologic Study.
182		Clin Orthop Surg. 2022;14: 220. doi:10.4055/cios20276
183	9.	Chung KS. An increasing trend of posterior cruciate ligament reconstruction in South Korea:
184		epidemiologic analysis using Korean National Health Insurance System Database. Knee Surg
185		& Relat Res. 2021;33: 44. doi:10.1186/s43019-021-00126-y
186	10.	Takahashi S, Okuwaki T. Epidemiological survey of anterior cruciate ligament injury in

187		Japanese junior high school and high school athletes: cross-sectional study. Research in Sports
188		Medicine. 2017;25: 266–276. doi:10.1080/15438627.2017.1314290
189	11.	Katano H, Ozeki N, Kohno Y, Nakagawa Y, Koga H, Watanabe T, et al. Trends in
190		arthroplasty in Japan by a complete survey, 2014–2017. Journal of Orthopaedic Science.
191		2021;26: 812-822. doi:10.1016/j.jos.2020.07.022
192	12.	Katano H, Koga H, Ozeki N, Otabe K, Mizuno M, Tomita M, et al. Trends in isolated
193		meniscus repair and meniscectomy in Japan, 2011–2016. Journal of Orthopaedic Science.
194		2018;23: 676–681. doi:10.1016/j.jos.2018.04.003
195	13.	Yamaguchi S, Kimura S, Akagi R, Yoshimura K, Kawasaki Y, Shiko Y, et al. Increase in
196		Achilles Tendon Rupture Surgery in Japan: Results From a Nationwide Health Care Database.
197		Orthopaedic Journal of Sports Medicine. 2021;9: 232596712110341.
198		doi:10.1177/23259671211034128
199	14.	Ministry of Health, Labour and Welfare. 1st NDB open data Japan. 2014. Available:
200		https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000139390.html
201	15.	Ministry of Health, Labour and Welfare. 2nd NDB open data Japan. 2015. Available:
202		https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177221.html

203	16.	Ministry of Health, Labour and Welfare. 3rd NDB open data Japan. 2016. Available:
204		https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177221_00002.html
205	17.	Ministry of Health, Labour and Welfare. 4th NDB open data Japan. 2017. Available:
206		https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177221_00003.html
207	18.	Ministry of Health, Labour and Welfare. 5th NDB open data Japan. 2018. Available:
208		https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177221_00008.html
209	19.	Ministry of Health, Labour and Welfare. 6th NDB open data Japan. 2019. Available:
210		https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177221_00010.html
211	20.	Japanese population. Statistics Bureau of the Ministry of Internal Affairs and Communications
212		Website. [cited 9 Mar 2023]. Available: https://www.stat.go.jp/data/jinsui/2.html
213	21.	Mahapatra P, Horriat S, Anand BS. Anterior cruciate ligament repair – past, present and
214		future. J EXP ORTOP. 2018;5: 20. doi:10.1186/s40634-018-0136-6
215	22.	Hopper GP, Heusdens CHW, Dossche L, Mackay GM. Posterior Cruciate Ligament Repair
216		With Suture Tape Augmentation. Arthroscopy Techniques. 2019;8: e7-e10.
217		doi:10.1016/j.eats.2018.08.022

218 23. Davarinos N, O'Neill BJ, Curtin W. A Brief History of Anterior Cruciate Ligament

219		Reconstruction. Advances in Orthopedic Surgery. 2014;2014: 1-6. doi:10.1155/2014/706042
220	24.	Zheng W, Suzuki K, Yokomichi H, Sato M, Yamagata Z. Multilevel Longitudinal Analysis of
221		Sex Differences in Height Gain and Growth Rate Changes in Japanese School-Aged Children.
222		Journal of Epidemiology. 2013;23: 275–279. doi:10.2188/jea.JE20120164
223	25.	Chotel F, Henry J, Seil R, Chouteau J, Moyen B, Bérard J. Growth disturbances without
224		growth arrest after ACL reconstruction in children. Knee Surg Sports Traumatol Arthrosc.
225		2010;18: 1496–1500. doi:10.1007/s00167-010-1069-5
226	26.	Gicquel P, Geffroy L, Robert H, Sanchez M, Curado J, Chotel F, et al. MRI assessment of
227		growth disturbances after ACL reconstruction in children with open growth plates-Prospective
228		multicenter study of 100 patients. Orthopaedics & Traumatology: Surgery & Research.
229		2018;104: S175-S181. doi:10.1016/j.otsr.2018.09.002
230	27.	Weng C-J, Yeh W-L, Hsu K-Y, Chiu C, Chang S-S, Chen AC-Y, et al. Clinical and Functional
231		Outcomes of Anterior Cruciate Ligament Reconstruction With Autologous Hamstring Tendon
232		in Patients Aged 50 Years or Older. Arthroscopy: The Journal of Arthroscopic & Related
233		Surgery. 2020;36: 558–562. doi:10.1016/j.arthro.2019.08.047
234	28.	Filbay SR, Culvenor AG, Ackerman IN, Russell TG, Crossley KM. Quality of life in anterior

235		cruciate ligament-deficient individuals: a systematic review and meta-analysis. Br J Sports
236		Med. 2015;49: 1033-1041. doi:10.1136/bjsports-2015-094864
237	29.	van Meer BL, Meuffels DE, van Eijsden WA, Verhaar JAN, Bierma-Zeinstra SMA, Reijman
238		M. Which determinants predict tibiofemoral and patellofemoral osteoarthritis after anterior
239		cruciate ligament injury? A systematic review. Br J Sports Med. 2015;49: 975–983.
240		doi:10.1136/bjsports-2013-093258
241	30.	Toanen C, Demey G, Ntagiopoulos PG, Ferrua P, Dejour D. Is There Any Benefit in Anterior
242		Cruciate Ligament Reconstruction in Patients Older Than 60 Years? Am J Sports Med.
243		2017;45: 832-837. doi:10.1177/0363546516678723
244	31.	Liu C-H, Chiu C-H, Chang S-S, Yeh W-L, Chen AC-Y, Hsu K-Y, et al. Clinical and
245		functional outcomes of isolated posterior cruciate ligament reconstruction in patients over the
246		age of 40 years. BMC Musculoskelet Disord. 2022;23: 210. doi:10.1186/s12891-022-05151-w
247		

249 Supporting information

- 250 S1 Table. STROBE Statement—checklist of items that should be included in reports of observational
- studies.
- 252 S2 Table. Annual registrations of arthroscopic ligament reconstruction according to age groups from
- 253 2014 to 2019. To avoid the identification of individuals, aggregate units that are <10 in principle are
- not included.
- 255 S3 Table. Annual registrations of arthroscopic ligament reconstruction per 100,000 population
- according to sex and age groups from 2014 to 2019. To avoid the identification of individuals,
- aggregate units that are <10 in principle are not included.

Figure1

Figure2

Figure3

■ Male ■ Female