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ABSTRACT 

Objectives. The study of neural and visceral oscillatory activities reveals that both subsystems and their 
interactions influence human cognition. In particular, cardiac and neural changes during self-regulation 
processes can be studied through a comparison of stress-inducing procedures and meditation 
practices. Methods. In this study, we investigate the characteristic profiles of neural-cardiac 
interactions during a stress-inducing arithmetic task and a breath focus meditation period in a sample 
of 21 young participants (10 women, age range 20-29) with no prior experience in meditation practices. 
Using recordings of electroencephalography (EEG) and electrocardiography (ECG), we assessed 
instantaneous cross-frequency relationships between the alpha neural band and heart rate in both 
conditions. Results. Our results indicate significant heart rate and alpha frequency decelerations 
during breath focus compared to the stress-inducing task. Regarding alpha: heart rate cross-frequency 
relationships, the stress-inducing arithmetic task exhibited ratios of smaller magnitude than the breath 
focus task, including a higher incidence of the specific 8:1 cross-frequency relationship, compared to 
the breath-focus task, proposed to enable cross-frequency coupling among neural and cardiac rhythms 
during mild cognitive stress. The change in cross-frequency relationships were mostly driven by 
changes in heart rate frequency between the two tasks, as indicated through surrogate data analyses. 
Conclusions. Our results provide novel evidence that stress responses and changes during meditation 
practices can be better characterized by integrating physiological markers and, more crucially, their 
interactions. Together, this physiologically comprehensive approach can aid in guiding interventions 
such as physiology modulation protocols (biofeedback and neurofeedback) for emotion and stress-
regulation. 
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1 | INTRODUCTION 

The overwhelming nature of contemporary life rhythms has fostered the proliferation of techniques 
aimed at enhancing self-regulation abilities. A predominant set of techniques employed to effectively 
cope with stressors can be found within meditation or contemplative practices (Chiesa & Serretti, 
2009). Breath focus or mental scanning of body sensations, commonly taught in Mindfulness-Based 
Stress Reduction (MBSR) programs (Kabat-Zinn, 1990), are the most scientifically studied and practiced 
meditation techniques in western cultures. There is a vast body of research evidencing the benefits of 
meditation practices, which exert their effects through processes of attention regulation, body 
awareness, emotion regulation and shift in perspective of the self (Hölzel et al., 2011). Changes in brain 
function and structure as a result of contemplative practices have been widely investigated (Gotink et 
al., 2016; Hölzel et al., 2013; Tang et al., 2015). Furthermore, several studies have also shown 
mindfulness practices to result in down-regulation of stress reactivity (Goldin & Gross, 2010; Gotink et 
al., 2016; Kral et al., 2018), reductions in established physiological markers of stress including heart 
rate (Bortolla et al., 2022; Ooishi et al., 2021; Sun et al., 2019), reactivity of the autonomic nervous 
system and the stress hormone cortisol (Heckenberg et al., 2018), as well as reductions in other 
hormonal and immunological stress markers (Hoge et al., 2018). On the opposite end of the stress 
continuum, tasks such as mental arithmetic have been frequently used to study the physiological 
correlates of induced stress. Thus, characteristic profiles of neural activity have also been related to 
psychological stress (Lewis et al., 2007; Marshall et al., 2018; Marshall & Cooper, 2017; Zanetti et al., 
2019). Other studies have also found heart rate (HR) to increase during mental arithmetic tasks (Sun 
et al., 2019; Watford et al., 2020), and the Trier Social Stress Test (TSST, Hoge et al., 2018).  

Despite paving the way for unravelling the physiological mechanisms underpinning self-regulation 
through meditation practices, most research tends to focus on physiological subsystems 
independently (e.g. neural, cardiac). Although previously overlooked, science has recently started to 
reveal visceral influences on cognition and its neural underpinnings (Critchley & Garfinkel, 2018; Varga 
& Heck, 2017). For instance, studies have shown that cognitive experience is contingent to cardiac 
activity (Azevedo et al., 2017; Wilkinson et al., 2013) and its neural processing (Park et al., 2014). 
Interestingly, regarding cardiac influences on neural activity during meditation practices, Jiang and 
colleagues (2020) observed transient modulations of the neural response to heartbeats in the default 
mode network (DMN), as well as a stronger directional coupling from the gamma to the theta band. In 
relation to other visceral influences, different breathing characteristics such as frequency or modality 
(oral or nasal) have also been shown to affect neural oscillations and cognitive processing (Arshamian 
et al., 2018; Heck et al., 2019; Herrero et al., 2018; Hsu et al., 2020; Lee et al., 2020; Perl et al., 2019; 
Zelano et al., 2016). Thus, to address the inherent systemic nature of self-regulation, and to 
acknowledge the complexity arising from dynamic interactions between human physiological 
subsystems, the approach to study physiological processes is shifting towards a systemic domain, 
utilizing multivariate and network analysis methods (Bartsch et al., 2015; Bashan et al., 2012). Several 
methodologies are therefore being developed to analyze simultaneous physiological signals, applying 
tools deriving from fields such as Information dynamics, Bayesian inference or synthetic data 
generation (Bartsch et al., 2015; Bashan et al., 2012; Candia-rivera et al., 2023; Candia-Rivera, 
Catrambone, Barbieri, et al., 2022; Candia-Rivera, Catrambone, Thayer, et al., 2022; Stankovski et al., 
2016; Zanetti et al., 2019), as well as neural event related potentials such as the heartbeat evoked 
potential (HEP) (Jiang et al., 2020; Park & Blanke, 2019).  
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Physiological activity is commonly studied through the perspective of its oscillatory or rhythmic 
patterns. In the case of brain activity, electroencephalography (EEG) allows to observe oscillations 
arranged in distinct frequency bands. As elements of the same physiological subsystem, these 
oscillations inextricably interact to enable communication within the brain across different spatio-
temporal scales, hence allowing for complex information processing (Canolty & Knight, 2010; Fries, 
2015; Hyafil et al., 2015; Varela et al., 2001). The Binary Hierarchy Brain Body Oscillation Theory 
(Klimesch, 2018), follows up on this neurally observed interactions, and presents a model of a unified 
architecture comprised by the main oscillations, both neural and visceral, in the human body. This 
theory proposes that different body subsystem oscillations interact via the same oscillatory coupling 
principles of cross-frequency phase coupling, allowing communication across different spatio-
temporal scales. The ability of two oscillators to phase couple depends on whether their respective 
frequencies maintain a harmonic/integer cross-frequency relationship. For example, at any given time 
and within their frequency ranges, the neural oscillations alpha (α) and theta (θ) can oscillate at 12 and 
6 Hz respectively, yielding a harmonic relationship of 2:1. In a state and task dependent manner, and 
specifically upon cognitively demanding conditions, neural oscillations have been shown to increase 
phase coupling (Palva et al., 2005; Rodriguez-Larios & Alaerts, 2019; Sauseng et al., 2008; 
Siebenhühner et al., 2016). In the context of MBSR interventions and meditation practices, the 
analyses to test cross-frequency relationships between alpha and theta rhythms have been further 
developed and employed in a series of studies (Rodriguez-Larios, Faber, et al., 2020; Rodriguez-Larios, 
Wong, et al., 2020; Rodriguez-Larios & Alaerts, 2019, 2020). These studies have revealed that the 
occurrence of harmonic frequency relationships and phase coupling between alpha and theta is higher 
during a stress-induction arithmetic task compared to rest and breath focus periods (Rodriguez-Larios 
& Alaerts, 2019). This latter study and subsequent ones (Rodriguez-Larios, Faber, et al., 2020; 
Rodriguez-Larios, Wong, et al., 2020; Rodriguez-Larios & Alaerts, 2020), also show that harmonic cross-
frequency relationships and phase coupling are less pronounced during meditation practices when 
compared to rest and an arithmetic task in expert meditators (Rodriguez-Larios, Faber, et al., 2020). 
Similarly, the degree of attendance to an MBSR program has been shown to predict decreases in 
harmonicity and phase coupling between alpha and theta oscillations during meditation practices 
(Rodriguez-Larios, Wong, et al., 2020). Even in novice meditators, it is shown that during a period of 
breath focus meditation, self-reported mind-wandering (distracting self-generated thoughts) is 
associated with an increase in harmonic cross-frequency relationships and phase coupling between 
alpha and theta compared to periods of breath focus (Rodriguez-Larios & Alaerts, 2020). These studies 
suggest that the non-harmonicity relationships characteristic of meditation practices preclude the 
unwanted interaction between executive and memory processes, aiding the achievement of a 
meditative state (Rodriguez-Larios, Faber, et al., 2020).  

Cross-frequency dynamics among neural and visceral rhythms (i.e., alpha rhythm and heart 
rate/respiration) however, have only been investigated in one study (Rassi et al., 2019). Considering 
the aforementioned effects of visceral physiology in cognition and neural activity, and with the aim of 
testing Klimesch’s (2018) theory, Rassi and colleagues (2019) studied cross-frequency ratios between 
alpha and heart rate, alpha and respiration, as well as heart rate and respiration during a memory task, 
rest and sleep. Cross-frequency ratios derived from the average peak frequencies of the oscillators, 
revealed a higher occurrence of harmonic frequency relationships between alpha, heart rate and 
breathing frequency during a memory task, but a non-harmonic neural-visceral relationship during rest 
and sleep.  
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In the current study we assess the relevance of the Binary Hierarchy Brain Body Oscillation Theory 
(Klimesch, 2018; Rassi et al., 2019) through an examination of changes in neural-cardiac cross-
frequency arrangements during breath focus practice versus a stress-inducing arithmetic task in novice 
meditators. Crucially, our study approaches the assessment of cross-frequency arrangements from an 
instantaneous, instead of an average perspective (Rassi et al., 2019). Thus, we developed a novel 
examination of transient changes in the alpha and heart rate rhythms as well as their cross-frequency 
ratio, allowing a fine-grained analysis of time-varying dynamics in harmonic versus non-harmonic 
cross-frequency arrangements.  

2 | METHODS 

2.1 | Participants 

Twenty-eight healthy volunteers (11 males, mean age 23.46 years, age range: 20–29) were recruited 
to participate in the study. Informed written consent was obtained from all participants before the 
study. Consent forms and study design were approved by the Social and Societal Ethics Committee 
(SMEC) of the KU Leuven university (G- 2018 12 1,463), in accordance with the World Medical 
Association Declaration of Helsinki. Participants were compensated for their participation (8€ per 
hour). Participants took part in all conditions of the study, except for two participants who did not 
complete one of the two conditions of interest. Five additional participants were excluded due to 
technical problems during data acquisition, and another participant due to low data quality, rendering 
the total number of analysed participants to 20 (12 females, average age: 23,38, age range: 20-29). 

Note that participants of the current study were recruited to participate in a larger project additionally 
including a rest condition and a heartbeat counting task, as well as a probe-caught mind wandering 
focus task, previously described in Rodriguez-Larios & Alaerts (2020).  

2.2 | Design and tasks 

Continuous electroencephalographic (EEG) and electrocardiographic (ECG) recordings were 
simultaneously obtained while participants performed an unguided breath focus session and a stress-
inducing arithmetic task. During the breath focus session, similar to instructions given in MBSR 
programs (Kabat-Zinn, 1990), participants were instructed to focus on the sensation of breathing, for 
approximately 5 minutes, while closing their eyes, and to come back to that focus whenever they 
noticed their mind wandered off in thoughts. The arithmetic task condition lasted approximately 5 
minutes, and was divided in four trials. In each trial, participants were instructed to reproduce a 
numerical series similar to Fibonacci’s in their minds. Thus, they were required to iteratively add two 
numbers, and subsequently add the result to the second term of the previous addition (i.e., starting 
with numbers 0 and 1; 0 +1 = 1, 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5…), until their mental calculation surpassed 
100 and, once reached, they were required to press a button and verbally inform the experimenter 
about the obtained result. Accordingly, the total length of the arithmetic task varied depending on how 
fast each participant performed the calculations and responded in each trial.  

2.3 | Data acquisition and analysis 

We assessed the relationship between neural and cardiac electrophysiology during conditions of 
breath focus and the stress-inducing mental arithmetic task. To that end, we employed an alpha 
frequency band (8-14) and heart rate frequency (0.6-2 Hz) instantaneous cross-frequency ratio 
approach. 
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2.3.1 | Recordings 

The Nexus-32 system (version 2015a, Mind Media, The Netherlands) and BioTrace software (Mind 
Media) were used to record EEG and ECG.  

EEG. Continuous EEG was recorded with a 22-electrode cap (two reference electrodes and one ground 
electrode) positioned according to the 10–20 system (MediFactory). Vertical (VEOG) and horizontal 
(HEOG) eye movements were recorded by placing pre-gelled foam electrodes (Kendall, Germany) 
above and below the left eye (VEOG) and next to the left and right eye (HEOG) (sampling rate of 2048 
Hz). Skin abrasion and electrode paste (Nuprep) were used to reduce the electrode impedances during 
the recordings. The EEG signal was amplified using a unipolar amplifier with a sampling rate of 512 Hz.  

ECG. Continuous ECG was recorded with a bipolar two-lead electrode configuration. Active electrodes 
were placed below the left ribcage and below the right collarbone and ground electrode was that of 
the EEG cap. Signal was amplified using a bipolar amplifier with a sampling rate of 256 Hz. Recordings 
were synchronized to the presented tasks using E-prime and the Nexus trigger interface (Mind Media). 

2.3.2 | Pre-processing 

EEG pre-processing was performed through custom MATLAB scripts and EEGlab functions (Delorme & 
Makeig, 2004) and was similar to that described in Rodriguez-Larios & Alaerts (2020). First, the initial 
and final two seconds of raw EEG data were rejected, and remaining data was down sampled to 256 
Hz to match the sampling rate of ECG data. Then a bandpass filter between 0.5 Hz and 40 Hz was used 
to attenuate non-physiological EEG artifacts (function pop_eegfiltnew). Noisy channels were 
automatically detected based on the correlation with their robust estimate (see function 
clean_channels; correlation threshold = 0.6). EEG was re-referenced to common average and 
independent component analysis (ICA) was performed to reject activity related to eye movements, 
muscle activity and cardiac artifacts (runica algorithm as implemented in EEGlab; number of 
components was equal to the number of non-interpolated channels minus 1 to avoid rank deficiency). 
Components to be rejected were automatically detected using the iclabel classifier (Pion-Tonachini et 
al., 2019). EEG data was divided into 1-s epochs and those exceeding an absolute amplitude of 50 μV 
were rejected.  

To avoid signal to noise ratio differences between the two experimental conditions (breath focus and 
arithmetic), the number of epochs was matched in subsequent analyses by selecting the initial epochs 
of the condition with a higher number of clean epochs to match the number of the condition with a 
lower number of clean epochs (see Table 1 in Supplementary Material). 

ECG was pre-processed by first rejecting the initial and final two seconds of raw data, then data was 
zero-phase filtered between 1 and 20 Hz (Butterworth filter with order 2 and 4 respectively) using the 
Matlab function filtfilt. R peaks within the QRS complex were automatically detected and annotated 
with the Matlab toolbox R-DECO (Moeyersons et al., 2019). When needed, automatic R peak 
annotations were corrected by visual inspection. 
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2.3.3 | Condition-related differences in average and transient alpha: heart rate cross-frequency 
ratios 

An instantaneous cross-frequency ratio approach was employed (similar to Rodriguez-Larios et al., 
2020) for the calculation and comparison of frequency relationships between alpha and heart rate 
during breath focus and arithmetic task conditions. 

EEG transient alpha peak frequency. First, short-term fast Fourier transformations were performed in 
each 1 second EEG epoch using the function spectrogram in MATLAB 2019b (0.1 Hz resolution between 
0.1 and 40 Hz). Thereafter, transient peak frequencies in the alpha frequency band (8-14 Hz) were 
extracted per second using the MATLAB function findpeaks, which define peaks as data samples that 
are larger than its two neighbouring samples. When more than one peak was detected, the peak with 
the highest amplitude was selected. Thus, per condition, participant and electrode, one alpha peak 
frequency time series was calculated.  

 

Figure 1. Electrophysiological one-minute recording of an exemplary participant. Visualization of neural alpha (top panel, example electrode 
Fp1) and heart rate (middle panel) instantaneous frequency time series, from which the instantaneous cross-frequency relationship (bottom 
panel, ratio alpha: heart rate) is calculated. 

ECG transient heart rate frequency. From the annotated R peaks, inter beat intervals (IBIs) were 
calculated and used to derive instantaneous heart rate in Hz, dividing IBIs by 60.  

Transient Alpha: heart rate cross-frequency ratio (see Figure 1). Dividing the alpha frequency time 
series by the heart rate frequency time series, the cross-frequency ratio series were calculated per 
condition, participant, and electrode. With an a priori definition of alpha between 8-14 Hz and heart 
rate typically oscillating between 0.6 - 2 Hz, computed ratios ranged between 4 and 24, with a 
resolution of 0.5 (41 possible ratios between the two oscillators). Thereafter, the percentage of 
occurrence of each possible ratio within the ratio time series was calculated per condition, electrode, 
and participant. 

In addition to the instantaneous approach, also ‘average’ cross-frequency relationships were obtained 
(similar to Rassi et al., 2019), by calculating the average individual alpha frequency (IAF), by averaging 
the previously obtained spectrograms across time, and finding a peak comprehended between 8 and 
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14 Hz, as well as the average heart rate. Next, the average cross-frequency ratio between the average 
alpha and heart rate frequencies was calculated for each condition, electrode, and participant.   

2.3.4 | Condition-related differences in alpha : heart rate cross-frequency ratios with surrogate data 

In order to control for differences between conditions in the two independent physiological signals 
(alpha frequency and heart rate) used to compute cross-frequency ratios, as well as for the relevance 
of physiologically recorded instantaneous alpha: heart rate relationships, four surrogate data 
approaches were used.  

Surrogate 1, permutated heart rate across conditions. First, a distribution of recorded heart rate 
frequencies per participant was derived combining values from the time series of both conditions 
(breath focus and arithmetic). Then, the moments (mean, standard deviation, kurtosis and skewness) 
of the combined distribution were calculated and used to create surrogate heart rate time series per 
participant, using the function pearsonrnd, which draws values from a distribution with the specified 
moments. While maintaining the original alpha frequency time series per participant, new cross-
frequency ratios and their percentage of occurrence were calculated using the surrogate heart rate 
time series.  

Surrogate 2, permutated alpha frequency across conditions. The same procedure was used to calculate 
surrogate alpha frequency time series per participant and electrode, while maintaining original heart 
rate time series. Then, new cross-frequency ratios and their percentage of occurrence were calculated.  

Permutating either heart rate (surrogate 1) or alpha frequency time series (surrogate 2) across the 
breath focus and stress-induction conditions, maintaining the same distribution moments across 
conditions in one of the signals, allowed examining the relative contribution of each physiological 
signal in driving the identified condition-related differences in alpha : heart rate cross-frequency 
relationships. If condition-related differences in cross-frequency occurrences do not prevail after 
permutating the alpha frequency or heart rate time series across conditions, it can be inferred that 
condition-related differences in either single time series were necessary to yield condition-specific 
effects in the cross-frequency arrangements. Conversely, if condition-related differences persist with 
the surrogate time series, it can be inferred that changes in the maintained original physiological signal 
were enough in driving the condition-related effects in cross-frequency ratios.  

Next, similar surrogate analyses were performed, permutating either alpha or heart rate to examine 
their respective contribution to yielding observed patterns of condition-related effects in cross-
frequency occurrence, albeit now, random heart rate (surrogate 3) or alpha frequencies (surrogate 4) 
were calculated within the defined frequency ranges. Thus, omitting physiologically relevant 
characteristics of the distribution of observed alpha or heart rate frequencies. These surrogate 
analyses thereby allow examining the relative contribution of physiologically observed alpha frequency 
or heart rate distributions in yielding the condition-related differences in alpha : heart rate cross-
frequency ratios.  

Surrogate 3, random heart rate. In this surrogate approach, random values comprehended between 
0.6 and 2 were drawn, to produce random heart rate series per participant, while maintaining original 
alpha frequency. Such series was then used to compute new cross-frequency ratios and their 
percentage of occurrence, using original alpha frequency time series per participant.  
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Surrogate 4, random alpha. The same procedure was used selecting random values between 8 and 14 
to produce random alpha frequency series per participant and electrode, while maintaining original 
heart rate series to compute cross-frequency ratios and associated percentages. 

For each of the four surrogate controls, the procedure was repeated 1000 times and used for further 
analyses (see Section Statistical Analyses). Results for the surrogates 3 and 4 are shown in 
Supplementary Materials. 

2.3.6 | Statistical analyses 

Average condition differences. To compare the average values of heart rate, IAF and IAF : heart rate 
cross-frequency ratio between conditions, we applied paired-sample t-test with the function ttest in 
MATLAB. 

Cluster-based permutation tests. For each of the computed variables of interest (ratio percentages) a 
cluster-based permutation statistical method was adopted to assess condition-related differences 
(between breath focus and arithmetic task) as implemented in the MATLAB toolbox Fieldtrip (function 
ft_timelockstatistics) (Maris & Oostenveld, 2007). This statistical method controls for the type I error 
rate arising from multiple comparisons through a non-parametric Montecarlo randomization. In short, 
data were shuffled (10,000 permutations) to estimate a ‘null’ distribution of effect sizes based on 
cluster-level statistics (sum of t-values with the same sign across adjacent electrodes and ratios). Then, 
the cluster-corrected p-value was defined as the proportion of random partitions in the null 
distribution for which the test statistics exceeded the one obtained for each significant cluster (cluster-
defining threshold: p < .05) in the original (non-shuffled) data. Significance level for the cluster 
permutation test was set to 0.025 (corresponding to a false alarm rate of 0.05 in a two-sided test) 
(Maris & Oostenveld, 2007). To assess condition-related differences, paired-sample t-test (function 
ft_statfun_depsamplesT in Fieldtrip) was chosen as the test statistic.  

Surrogate data analyses. For each of the four surrogate data analyses and their respective 1000 
repetitions, the same cluster-based permutation approach as with original data was employed to test 
for significance. A distribution of average t-values, as well as number of times that each cell (electrode 
by ratio) came significant within a cluster was calculated. Next, to test the significance of t-values from 
the permutation test with original data, against the surrogate distribution of 1000 t-values, the normal 
cumulative density function (Matlab function normcdf) of the 1000 values was calculated. Each of the 
original t-values within the electrode by ratio grid, was then searched within the surrogate distribution 
to select the associated p-value. The original t-value was marked as significant if its associated p-value 
in the cdf was below 0.025 or above 0.975. Subsequently, to account for the multiple comparisons, the 
grid of associated p-values was FDR (false discovery rate) corrected (following the procedure of 
Benjamini and Yekutieli, 2001) with threshold q set at 0.05. 

Additionally, relationships between condition-related changes from breath focus to arithmetic task in 
the individual physiological measures (heart rate, alpha and IAF) and the percentages across relevant 
ratios were examined via Pearson correlations, calculated using the corrplot function in Matlab.  
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3 | RESULTS 

3.1 | Condition-related differences in alpha and heart rate electrophysiological measures  

First, we explored condition-related modulations in each of the physiological measures separately. As 
depicted in Figure 2A, most participants showed a significantly lower average heart rate in the breath 
focus condition compared to the stress-inducing arithmetic condition. Significance of this difference 
was evaluated using a paired-sample t-test (t(19) = 5.22; p < 0.01) on the participant average values 
per condition (mean breath focus =  1.10 Hz; SD = 0.13; mean arithmetic = 1.20 Hz; SD = 0.16 ). 
Condition-related differences in individual alpha frequency (IAF) were also present (Figure 2B), 
indicating lower IAF in the breath focus condition compared to the arithmetic condition. As visualized 
in the topographical plot in Figure 2B, marked with asterisks, the condition-related difference in IAF 
was particularly evident at electrodes clustered towards right- and central-frontal locations (Fz, F4, Cz) 
(t cluster (19) = 9.14; p = 0.01). 

 

Figure 2. Condition-related differences in electrophysiological measures. For each measure and condition, box plots are presented, 
depicting median (red line), minimum and maximum values (bottom and top whiskers) as well as first (bottom) and third quartiles (top box 
boundary). A) visualizes average heart rate (HR), separately for the breath focus (blue) and arithmetic conditions (red). B) visualizes average 
individual alpha frequency (IAF) (average across significant electrodes), separately for the breath focus (blue) and arithmetic conditions (red). 
The adjacent topographical plot shows the t-values of condition-related differences (arithmetic-breath focus), as well as electrodes showing 
significant differences in IAF between conditions (*p<0.05). C) visualizes cross-frequency ratio averages (IAF: average HR) (across significant 
electrodes) separately for the breath focus (blue) and arithmetic conditions (red). Also here, the adjacent topographical plot depicts the t-
values of condition-related differences, with indication of significant electrodes with an asterisk (*p<0.05). 

3.2 | Condition-related differences in average alpha: heart rate cross-frequency ratios 

Average cross-frequency ratios (IAF: average heart rate), calculated for each electrode, were shown to 
be significantly higher for the breath focus condition (mean = 9.58; SD = 1.16) compared to the 
arithmetic condition (mean = 8.92; SD = 1.34) (tcluster(19) = -78.89 ; p < 0.001). As visualized in Figure 
2C, the effect was evident for all electrodes (marked with asterisks). 
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3.3 | Condition-related differences in transient alpha : heart rate cross-frequency ratios 

Next, we explored whether condition-related modulations in instantaneous cross-frequency ratios 
were present. In Figure 3, distributions of average percentage (across participants) of each possible 
ratio at each electrode location are depicted. During the breath focus condition (Figure 3A), cross-
frequency ratios followed a normal distribution, similar across the entire scalp, with a maximal 
percentage at ratio 9 (11.11%, averaged across electrodes). Also, during the arithmetic condition, 
cross-frequency ratios followed a normal distribution with maximal occurrence at ratio 8.5 (13.42%) 
(Figure 3B). Cluster-based permutation statistics examining condition-related differences (Figure 3C) 
revealed two significant clusters. One cluster (grouping positive t-values, arithmetic > breath focus) 
indicated that - across the entire scalp - the occurrence of ratios between 6 and 8.5 was significantly 
higher during the arithmetic condition (Mean cluster = 8.26%; SD = 4.59) compared to the breath focus 
condition (Mean cluster = 5.24%;  SD = 3.4) (t cluster (19) = 183.9 ; p = 0.004). Interestingly, this cluster 
includes the harmonic alpha: heart rate cross-frequency ratio of 8, as hypothesized by Klimesch (2018). 
Conversely, another cluster (grouping negative t-values, arithmetic < breath focus) indicated that the 
occurrence of ratios between 10 and 13.5 was significantly higher during the breath focus condition 
(Mean cluster = 5.48%; SD = 3.36) compared to the arithmetic condition (Mean cluster = 3.33%; SD = 2.77), 
also across all electrodes (t cluster (19) = -286.82 ; p < 0.001). Also in this case, the hypothesized non-
harmonic ratio of 12.94 is within the ratio range of the cluster. Note that, due to the absence of data 
for ratios smaller than 4.5 and greater than 18.5 in both conditions (Figure 3A and 3B), the permutation 
analysis was performed on a subset of the ratios (4-19) leaving a relative margin in both data 
boundaries (Figure 3B). 

 

Figure 3. Condition-related differences in the incidence (% of epochs) of different alpha : heart rate cross-frequency ratios. A) visualizes 
the distribution of the percentage of each ratio occurrence for the breath focus condition, separately for each electrode (y-axis) and cross-
frequency ratio (x-axis) (ratios ranging between 4 and 24). B) visualizes the distribution of the percentage of each ratio occurrence for the 
arithmetic condition. C) visualizes the colormap of t-values derived from cluster-based permutation analysis estimating the condition-related 
effect (paired-sample t-test; arithmetic versus breath focus condition), separately for each electrode (y-axis) and cross-frequency ratio (x-
axis). Permutation analyses were performed for ratios ranging between 4 and 19, since the occurrence of ratios below 4.5 or above 18.5 was 
< 0.01 %. D) shows the map of t-values masked for significance after the multiple comparison correction of the cluster-based permutation 
(*p<0.025). 
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3.3 | Condition-related differences in alpha : heart rate cross-frequency ratios with surrogate data 

Given the significant difference in heart rate across conditions, and to assess the robustness of the 
instantaneous alpha : heart rate ratio approach compared to the average IAF: heart rate approach 
(Figure 2), a surrogate data procedure was employed. Specifically, four surrogate analyses were 
performed, (i) one in which alpha: heart rate ratios were calculated with surrogate heart rate data 
derived from a distribution with the same moments as that of both conditions combined, and original 
alpha data (surrogate 1 heart rate, Figure 4); (ii) the other in which alpha: heart rate ratios were 
calculated with surrogate alpha data derived from a distribution with the same moments as that of 
both conditions combined, and original heart rate data (surrogate 2 alpha, Figure 5). (iii) one in which 
alpha: heart rate ratios were calculated with surrogate heart rate data randomly assigned between 0.6 
and 2 Hz, and original alpha data (surrogate 3 heart rate, Supplementary Figure 1); (iv) the other in 
which alpha: heart rate ratios were calculated with surrogate alpha data randomly assigned between 
8 and 14 Hz, and original heart rate data (surrogate 4 alpha, Supplementary Figure 2). 

Surrogate 1, permutated heart rate across conditions. In Figure 4, the average distribution of the 1000 
surrogate calculations are shown for the breath focus and arithmetic conditions. During the breath 
focus condition (Figure 4A), cross-frequency ratios followed a normal distribution, similar across the 
entire scalp, with a maximal percentage at ratio 8.5 (11.12%, averaged across electrodes). Also, during 
the arithmetic condition, cross-frequency ratios followed a normal distribution with maximal 
occurrence at ratio 9 (11.1%) (Figure 4B).  

Based on the heart rate surrogate data, only 61 times out of the 1000 repetitions (Figure 4 C and D), a 
significant negative cluster was identified – overlapping with the positive cluster identified in the 
original analysis –, indicating a higher occurrence of cross-frequency ratios, comprehended between 7 
and 8.5, in the breath focus, compared to the arithmetic condition. Only in 12 times out of the 1000 
surrogates, a positive cluster overlapping with the negative cluster of the original analysis was found, 
indicating a higher occurrence of ratios between 9.5 and 13 in the arithmetic, compared to the breath 
focus condition. This surrogate analysis therefore demonstrates that randomizing the time series of 
the heart rate data poses a significant impact on the identified condition-related differences in alpha : 
heart rate cross-frequency ratios between the breath focus and arithmetic condition, abolishing any 
condition-related effects.  

A direct exploration, comparing the original permutation test t-value grid (presented in Figure 3D) with 
the surrogate 1000 t-value distribution, confirms the robustness of specific elements in the identified 
clusters of the original analysis, compared to the surrogate 1000 t-value distribution (see Statistical 
Analyses section). Particularly, after FDR correction (Figure 4E), t-values pertaining to ratio 10.5 in 
electrodes T7 and 02, ratio 11 in Fp1 and F7 and ratio 12 in C3 remained significant. This analysis 
therefore confirms that an intact heart rate time series forms a necessary prerequisite for yielding the 
identified significant condition-related effects in alpha: heart rate cross-frequency ratios.  

Surrogate 2 permutated alpha across conditions. In Figure 5A and B, the average distribution of the 
1000 surrogate calculations are shown for the breath focus condition and the arithmetic condition. 
During the breath focus condition (Figure 5A), cross-frequency ratios followed a normal distribution, 
similar across the entire scalp, with a maximal percentage at ratio 9.5 (10.71% averaged across 
electrodes). During the arithmetic condition, cross-frequency ratios followed a normal distribution 
with maximal occurrence at ratio 8 (12.77%) (Figure 5B).  
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Figure 4. Condition-related differences in alpha : heart rate cross-frequency ratios with heart rate surrogate data. A) visualizes the average 
distribution, across 1000 surrogate generations, of the percentage of each ratio occurrence for the breath focus condition, separately for 
each electrode (y-axis) and cross-frequency ratio (x-axis) (ratios ranging between 4 and 24). B) visualizes the distribution of the percentage 
of each ratio occurrence for the arithmetic condition. C) visualizes the colormap of the average t-values across the 1000 surrogate calculations 
and permutation tests estimating the condition-related effect (arithmetic versus breath focus condition), separately for each electrode (y-
axis) and surrogate cross-frequency ratio (x-axis). Permutation analyses are visualized for ratios ranging between 4 and 19, since the 
occurrence of ratios below 4.5 or above 18.5 was < 0.01 %. D) visualizes the accumulated times that each of the cells (electrode-ratio t-test 
value) was significant, i.e., over the 1000 surrogate data generations, E) shows the significance of the original t-values (plotted in Figure 2D) 
against the t-value distribution derived from the 1000 surrogate generations. 

Across the 1000 surrogates, a significant positive cluster (p<.025) was found 1000 times, with 
boundaries comprehended between the ratios 5 and 9, and typically spanning the entire scalp (Figure 
5D). Negative clusters were also found 1000 times, between the ratios 9.5 and 15 across the entire 
scalp. Next, we tested the original permutation test t-value grid with the surrogate 1000 t-value 
distribution. After FDR correction, only t-values pertaining to the negative cluster (i.e. ratios 
significantly more frequent during breath focus compared to arithmetic) between ratios of 10 and 15 
remain significant, indicating the robustness of that condition-related difference when tested against 
a condition of alpha surrogate data altering the physiological instantaneous relationships between 
heart rate and alpha frequency as well as abolishing the condition differences in alpha frequency. 
Figure 5E shows the two-tailed significance (p<.025) of the t-values, FDR corrected for multiple 
comparisons. 
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Figure 5. Condition-related differences in alpha : heart rate cross-frequency ratios with alpha surrogate data. A) visualizes the average 
distribution, across 1000 surrogate generations, of each ratio occurrence for the breath focus condition, separately for each electrode (y-
axis) and cross-frequency ratio (x-axis) (ratios ranging between 4 and 24). B) visualizes the distribution of the percentage of each ratio 
occurrence for the arithmetic condition. Note that the percentage of occurrence of each ratio was calculated separately per participant and 
electrode, and subsequently averaged across participants. C) visualizes the colormap of the average t-values across the 1000 surrogate 
calculations and permutation tests estimating the condition-related effect (arithmetic versus breath focus condition), separately for each 
electrode (y-axis) and surrogate cross-frequency ratio (x-axis). Permutation analyses are visualized for ratios ranging between 4 and 19, since 
the occurrence of ratios below 4.5 or above 18.5 was < 0.01 %. D) visualizes the accumulated times that each of the cells (electrode-ratio t-
test value) was significant, i.e., over the 1000 surrogate data generations, E) shows the significance of the original t-values (plotted in Figure 
2D) against the t-value distribution derived from the 1000 surrogate generations. 

Together, these surrogate analyses demonstrate that permutating originally measured heart rate time 
series across conditions, but not alpha frequencies, abolishes identified condition-related effects in 
alpha: heart rate cross-frequency arrangements. This indicates that the condition-related difference in 
alpha: heart rate ratios rely heavily on instantaneous condition-specific changes in heart rate, and to a 
lesser extent on instantaneous condition-specific changes in alpha.  

Omitting the physiologically relevant characteristics of the distribution of heart rates (surrogate 3, see 
supplement Figure 1), by randomly selecting heart rates between 0.6-2 Hz but with intact alpha 
frequency time series, was also sufficient to abolish the identified condition-related effects in alpha: 
heart rate cross-frequency arrangements. However, when generating random alpha frequencies 
between 8-14 Hz (surrogate 4, see supplement Figure 2), both positive and negative clusters were 
significant 100% of the permutations. Due to the difference in variability in the ratio distributions, with 
higher spread for the breath focus condition, the clusters that turn significant for the breath focus 
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distribution, vary across permutations, whereas for the arithmetic task, the same turn significant every 
permutation (indicated in dark red). This indicates that, while condition-specific instantaneous 
physiological changes in alpha might contribute little to the observed condition-related changes in the 
original alpha: heart rate ratios (as seen in Figure 4), the overall distribution of physiologically recorded 
alpha appears to carry relevant information. 

Accordingly, the participant-specific features of the physiologically alpha peak frequency distributions 
are likely relevant in relation to the participant-specific heart rate distributions for yielding the 
observed condition-related changes in alpha: heart rate cross-frequency arrangements. 

3.5| Relationships between condition-related changes from breath focus to arithmetic task  

Changes in alpha peak frequency or IAF from breath focus to arithmetic did not correlate with changes 
in heart rate or ratios (all correlations r < 0.15, p > 0.05). Regarding correlations with heart rate, 
participants showing a stronger increase in heart rate in the arithmetic, compared to the breath focus 
condition, also showed a more pronounced increase in the occurrence of ratios between 6 and 8.5 (r 
(19) = 0.75; p < .001) and inversely, a more pronounced decrease in ratios between 10 and 13.5 (r (19) 
= -0.73; p < .001) in the arithmetic, compared to the breath focus condition. Correlations between all 
reported variables are visualized in Supplementary Figure 3.  

4| DISCUSSION  

In this study we investigated neural and cardiac electrophysiology in the context of a breath focus 
period and a stress-inducing arithmetic task in 21 young adults, who had no prior experience with 
meditation practices. Besides evaluating neural and cardiac domains individually, we analyzed the 
relationship between both signals across conditions. To that end, we analyzed cross-frequency 
relationships between the alpha oscillations (8-14 Hz) and heart rate (0.65-2 Hz). Overall, significant 
differences between conditions were evident both in the cardiac and neural systems, as well as in 
terms of their relationship.  

Regarding condition-related changes in the cardiac domain, heart rate was consistently lower during 
the breath focus task compared to the arithmetic task. These results are in line with previous literature 
showing increased heart rate during stressful tasks such as arithmetic calculations (Sun et al., 2019; 
Watford et al., 2020), but also other tasks including speech stressors (Woody et al., 2017) and the trier 
social stress test (TSST, Hoge et al., 2018). Several studies have also explored the effects of meditation 
practices on cardiac physiology, yielding contradictory findings. In a study by Sun et al., (2019), 
individuals with no experience in mindfulness practices took part in a stress-inducing mental arithmetic 
task followed by a breathing space meditation task, which resulted in a significant decrease in mean 
heart rate. Similarly, other studies have found reductions in heart rate from baseline to meditation 
practices based on the breath in novices (Bortolla et al., 2022; Ooishi et al., 2021). Lumma and 
colleagues (2015) reported varying effects on cardiac activity depending on the type of trained and 
practiced meditation. In the case of breathing meditation, heart rate slightly, but non-significantly, 
increased from the initial weeks of training to the last, whereas for two other types of meditation 
(observing thoughts and loving-kindness meditation), there was a significant increase, also significantly 
higher than for breath focus. In the latter study, assessed experienced effort across mediation practices 
correlated with changes in heart rate (Lumma et al., 2015). Other studies, however, did not discover 
differences in heart rate during meditation compared to baseline (Guo et al., 2022; Jiang et al., 2020), 
in Tibetan Buddhist monk practitioners with extensive meditation experience, or between monks and 
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controls during rest (Jiang et al., 2020). In terms of relaxation effects, Balban et al., (2023) recently 
compared a typical breath focus meditation practice with specific breathwork exercises (i.e., cyclic 
sighing, box breathing, cyclic hyperventilation with retention) aimed at relaxation. Whereas a 
reduction in heart rate was found consistently across exercises, the effects were more pronounced for 
the exercises aimed at relaxation compared to the meditation practice.  

With respect to the neural domain, our results showed faster individual alpha frequencies during the 
arithmetic task compared to the breath focus condition, at right- and central-frontal locations (Fz, F4, 
Cz). According to the literature, alpha peak frequency accelerates during tasks involving increasing 
cognitive effort (Haegens et al., 2014; Mierau et al., 2017), including arithmetic tasks performed by 
novice (Rodriguez-Larios & Alaerts, 2019) and expert meditators (Rodriguez-Larios, Faber, et al., 2020). 
Similar to our results, previous studies have found alpha peak frequency to decelerate during 
meditation practices (Aftanas & Golocheikine, 2002; Irrmischer et al., 2018; Mierau et al., 2017; Saggar 
et al., 2012), and also compared  to an arithmetic task (Rodriguez-Larios, Faber, et al., 2020) and rest 
in highly experienced meditators (Rodriguez-Larios et al., 2021). 

Studies investigating the electrophysiological correlates of different states and tasks such as 
meditation practices and mental arithmetic, have commonly explored signals in isolation to each other, 
thereby failing to account for the complex interaction that takes place between the cardiac and neural 
systems in the human body. Here, we applied the cross-frequency ratio paradigm proposed by 
Klimesch (2018), whereby a functionally relevant task-specific architecture of human physiological 
oscillators is proposed. During performance of our arithmetic task, participants displayed a significantly 
higher occurrence of ratios between 6 and 8.5 across the entire scalp. In contrast, the frequency of 
occurrence of ratios between 10 and 13.5 was significantly higher during the breath focus period. 
Hence, our results demonstrate that there are task-specific alpha: heart rate cross-frequency 
relationship profiles. In particular, the profile found for the arithmetic task includes the integer ratio 
8. It is emphasized by Klimesch (2018), that such harmonic cross-frequency relationship between the 
neural and cardiac domains enables the possibility of phase-coupling between the signals, yielding a 
functionally relevant arrangement for cognitively demanding tasks. To date, only one other study has 
examined Klimesch’s framework with respect to neural and visceral rhythms across different tasks, 
including a memory task, rest and sleep (Rassi et al., 2019). In that study, while alpha, heart rate and 
breathing frequencies exhibited harmonic cross-frequency relationships during a memory task, non-
harmonic relationships were found during sleep. Interestingly, the authors interpret the lack of 
harmonicity between neural and bodily rhythms during sleep as a lack of body awareness. Regarding 
non-harmonic interactions between alpha and heart rate, the value proposed to exert maximal 
decoupling between these oscillators results from multiplying the integer 8 by the irrational number 
golden mean (1.618…), which yields the value 12.94 (Klimesch, 2018). This value and its multiples have 
been proposed as the most mathematically effective configuration to avoid spurious phase meetings 
between pairs of oscillators (Klimesch, 2018; Pletzer et al., 2010). During our breath focus task, 
participants displayed low percentages of values close to 12.94, but nonetheless, statistically higher 
percentages of occurrence when compared to the arithmetic task. Considering that for the breath 
focus task the highest percentages collapse at values clustered around 9, caution needs to be taken 
when interpreting the significant cluster pertaining to values closer to 12.94. Taking into account that 
during both the arithmetic and the breath focus task, both integer and non-harmonic values are 
present to a similar extent, it is challenging to determine whether our measure aids in distinguishing 
neural-cardiac functional differences between tasks. It is observable however, that for the breath focus 
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task, ratios cluster to higher values than for arithmetic, and at the right edge of the distribution (around 
the value 13), there are significantly higher percentages of ratios compared to the arithmetic task. 
Considering that our participants were novices, this could be interpreted as an early stage 
approximation to the proposed non-harmonicity neural-cardiac profile. It is possible that considering 
their lack of expertise with meditation practices, the participants found the task cognitively challenging 
which could yield mixed results. It would therefore be necessary for future studies to investigate the 
degree of difficulty and effort experienced by participants with such task, as implemented in previous 
studies (Lumma et al., 2015). Additionally, future studies would benefit from comparisons with a 
sample of expert meditators, since it is typical for contemplative neuroscientific studies to find 
differences depending on the degree of expertise with meditation practices of the sample (Berkovich-
ohana et al., 2016; Brandmeyer & Delorme, 2018; Rodriguez-Larios et al., 2021; Rodriguez-Larios, 
Wong, et al., 2020) 

Considering that our primary measure of cross-frequency interactions derives from a frequency ratio 
calculation (dividing alpha by its simultaneous heart rate value), and that significant differences in both 
heart rate and alpha were observed across conditions, we conducted surrogate data analyses to assess 
the robustness of the cross-frequency ratio results. When generating new heart rate time series 
combining data of both conditions, we found that the significant ratio differences between conditions 
were fairly abolished. These findings demonstrate that an intact heart rate time series is required for 
yielding the identified condition-related effects in alpha: heart rate cross-frequency ratios. 
Permutating physiologically observed alpha time series across conditions, on the other hand, did not 
completely eliminate identified condition-related effects in alpha: heart rate cross-frequency ratios, 
indicating that the condition-related difference in these ratios relies more heavily on instantaneous 
changes in heart rate, and to a lesser extent on instantaneous changes in alpha. Also, conducting 
additional surrogate analyses that completely disregard the physiologically relevant characteristics of 
the alpha frequency distributions -by randomly selecting alpha peak frequencies (between 8-14 Hz) 
while keeping the heart rate time series intact- did not fully eliminate condition-related effects 
observed in alpha: heart rate cross-frequency ratios. This indicates that, while instantaneous changes 
in alpha frequency might contribute little to the observed condition-related changes in alpha: heart 
rate ratios, physiologically recorded alpha frequency variations (as opposed to randomly generated) 
are a prerequisite for condition-related changes in alpha: heart rate relationships to become evident.  

Other studies have used alternative analysis approaches to investigate brain-heart interactions across 
different tasks. For example, Zanetti and colleagues (2019) studied information dynamics during rest, 
a mild stress-inducing game and a stress inducing arithmetic task. They found an increase in neural-
cardiorespiratory connectivity during mental stress as compared to the other tasks, which they 
interpret as an increase in the network connections enabling regulatory mechanisms necessary during 
stressful events. In a later study (Pernice et al., 2021) exploring the same dataset with a different 
analysis approach, multivariate correlations, an increase in brain-heart interactions was consistently 
found during the mental arithmetic task, localized in frontal electrode sites. Along the same pattern of 
results, in a recent study, Candia-rivera et al., (2023) investigated bidirectional neural-cardiac 
interactions during different levels of mental stress and rest. In sum, the authors found that stress 
modulates the ascending interaction between cardiac activity and the alpha frequency band, as well 
as with delta, beta and gamma. This collection of studies show an increase in the interaction between 
the neural and cardiac subsystems under conditions of mental stress, aligning with our finding that, 
during the stress-inducing arithmetic task, alpha and heart rate display cross-frequency relationships 
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closer to the integer 8, also proposed to facilitate information exchange between the two physiological 
subsystems (Klimesch, 2018).  

A previous study also explored brain-heart interactions via heartbeat evoked potentials (Jiang et al., 
2020) during meditation practice in a group of long-term Tibetan Buddhist meditation practitioners 
and meditation-naïve matching controls. This study found expert meditators to exhibit lower HEP 
amplitudes during meditation compared to rest, in a cluster comprising right central and frontal 
sensors, at 340-360 ms after the R-peak. The authors also performed source reconstruction analyses 
to elucidate the neural origins of the observed changes, and found the bilateral anterior cingulate 
cortex (ACC) and superior medial frontal gyrus to be involved. Interestingly, resting state heart rate, in 
both monks and controls, as well as during meditation in monks, did not differ (see Supplementary 
materials, Jiang et al., 2020). It is also relevant to note that, besides the expertise in meditation, the 
here compared studies also differ with respect to the studied type of meditation. Whereas Jiang and 
colleagues (2020) studied practices involving mantra reciting or light focus on a mental object or image, 
we studied breath focus. Interestingly, while our type of meditation focuses on monitoring bodily 
signals, the objects of focus are different from visceral signals in the other study. In fact, Jiang and 
colleagues (2020) interpret their HEP amplitude difference based on the lack of attention to one’s body 
signals during their meditation condition. Considering the role of ACC, the authors suggest that there 
is a reduction of internal conflict derived from the lack of attention to potentially distracting internally 
generated physiological signals (e.g., cardiac activity) during meditation as opposed to rest. 
Alternatively, instead of reflecting increased heart-brain interactions, recent systematic reviews have 
also linked increased HEP to modulations of arousal (Coll et al., 2021). For example, fronto-central 
HEPs around 200-300 ms after the R wave (Coll et al., 2021), as well as HEPs >400 ms after the R peak 
(Di et al., 2015; Gray et al., 2007; Schulz et al., 2013) have been found to be associated with 
modulations of arousal.  

In order to further investigate the contributions of heart rate and alpha condition-differences, we 
explored relationships between individual physiology (heart rate and alpha) and cross-frequency 
ratios. Pearson correlations revealed significant relationships with heart rate differences across 
conditions. Increases in heart rate from breath focus to the arithmetic task were accompanied by 
increases in the occurrence of ratios within the cluster associated to higher occurrences during the 
arithmetic task (ratios between 6.5 and 9). Conversely, the increase in heart rate was associated to 
decreases in the occurrence of ratios within the cluster associated to the breath focus task (ratios 
between 10 and 13.5).  

Some limitations are worth considering within the current study. Although changes in individual alpha 
frequency had a specific topographic distribution, our result pattern with the cross-frequency ratio 
approach yielded very similar results across the entire scalp. Besides the portrayed relevance of 
changes in heart rate to yield these widespread condition-related differences, the available amount of 
electrodes in our EEG setup (21) did not reliably allow for a source localization analysis, therefore not 
enabling a characterization of different brain regions showing differential cross-frequency ratio effects. 
Future research in this direction would benefit from employing higher density EEG setups or 
magnetoencephalography to study cross-frequency interactions. Additionally, the here investigated 
breath focus condition did not allow for separation of breath focus from mind-wandering episodes, 
thus potentially entailing a mix of two distinct cognitive states within the same condition. However, 
research with our same participants during an experience sampling task (Rodriguez-Larios & Alaerts, 
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2020) revealed that mean alpha frequency was significantly higher during mind-wandering compared 
to breath focus periods. Considering that mind-wandering is proposed to share neural correlates with 
effortful cognition (Rodriguez-Larios & Alaerts, 2020) like arithmetic tasks (Rodriguez-Larios, Faber, et 
al., 2020; Rodriguez-Larios & Alaerts, 2019), and that we found a consistent decrease in alpha peak 
frequency during the breath focus condition, we hypothesize that a potential division between breath 
focus and mind-wandering periods would have in fact yielded stronger results in the same direction 
we found here. Lastly, as indicated in previous studies (Jiang et al., 2020), considering that other 
visceral rhythms such as the gastric rhythm have been shown to account for alpha rhythm changes 
(Richter et al., 2017), future studies should include a more comprehensive assessment of physiological 
relationships including gastric activity. 

5| CONCLUSION  

The current study elaborates on the identification of relevant physiological markers during conditions 
of mental stress and meditation practices. In a pursue to acknowledge the systemic nature of 
physiological and cognitive processes, we place an emphasis on analyses addressing the interaction 
between the neural and cardiac subsystems, and find informative profiles depending on the condition. 
This is, to our knowledge, the first study addressing relationships between neural and cardiac 
physiology during meditation in novice practitioners. Our results can help elucidate which processes 
underlie the benefits of meditation practices at early stages of training, as well as can be used to inform 
novel parameters for the development of neuro- and biofeedback protocols for self-regulation 
trainings. 

CREDIT STATEMENT 

Javier R. Soriano: Conceptualization, Methodology, Software, Formal Analysis, Writing-Original Draft, 
Visualization, Supervision, Project Administration. Julio Rodriguez-Larios: Software, Validation, Formal 
Analysis, Investigation, Resources, Data Curation, Writing-Review & Editing. Carolina Varon: 
Supervision, Writing-Review & Editing. Nazareth Castellanos: Supervision, Writing-Review & Editing. 
Kaat Alaerts: Conceptualization, Writing-Review & Editing, Supervision, Funding Acquisition. 

FUNDING STATEMENT 

This work was supported by grants from the Flanders Fund for Scientific Research (FWO projects 
G079017N and G046321N), an Interdisciplinary network project of the KU Leuven (IDN21022) and the 
Branco Weiss fellowship of the Society in Science–ETH Zurich granted to KA.  

DECLARATION OF COMPETING INTEREST 

The authors declare no competing interests. 

DATA AND CODE AVAILABILITY STATEMENT 

Raw EEG and ECG data as well as MATLAB code will be made publicly available in the KU Leuven 
Research Data Repository upon request and/or after acceptance for publication. 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292291doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292291
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 

Aftanas, L. I., & Golocheikine, S. A. (2002). Non-linear dynamic complexity of the human EEG during meditation. 
Neuroscience Letters, 330, 143–146. 

Arshamian, A., Iravani, B., Majid, A., & Lundström, J. N. (2018). Respiration modulates olfactory memory 
consolidation in humans. Journal of Neuroscience, 38(48), 10286–10294. 
https://doi.org/10.1523/JNEUROSCI.3360-17.2018 

Azevedo, R. T., Garfinkel, S. N., Critchley, H. D., & Tsakiris, M. (2017). Cardiac afferent activity modulates the 
expression of racial stereotypes. Nature Communications, 8. https://doi.org/10.1038/ncomms13854 

Balban, M. Y., Neri, E., Kogon, M. M., Weed, L., Nouriani, B., Jo, B., Holl, G., Zeitzer, J. M., Spiegel, D., & 
Huberman, A. D. (2023). Brief structured respiration practices enhance mood and reduce physiological 
arousal. Cell Reports Medicine, 4(1), 100895. https://doi.org/10.1016/j.xcrm.2022.100895 

Bartsch, R. P., Liu, K. K. L., Bashan, A., & Ivanov, P. C. (2015). Network physiology: How organ systems 
dynamically interact. PLoS ONE, 10(11), 1–36. https://doi.org/10.1371/journal.pone.0142143 

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., & Ivanov, P. C. (2012). Network physiology reveals 
relations between network topology and physiological function. Nature Communications, 3. 
https://doi.org/10.1038/ncomms1705 

Benjamini, Y., & Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing under 
Dependency. Annals of Statistics, 29(4), 1165–1188. 
https://doi.org/https://www.jstor.org/stable/2674075 

Berkovich-ohana, A., Harel, M., Hahamy, A., Arieli, A., & Malach, R. (2016). Data in Brief Data for default 
network reduced functional connectivity in meditators , negatively correlated with meditation expertise. 
Data in Brief, 8, 910–914. https://doi.org/10.1016/j.dib.2016.07.015 

Bortolla, R., Galli, M., Spada, G. E., & Maffei, C. (2022). Mindfulness Effects on Mind Wandering and Autonomic 
Balance. Applied Psychophysiology Biofeedback, 47(1), 53–64. https://doi.org/10.1007/s10484-021-
09527-x 

Brandmeyer, T., & Delorme, A. (2018). Reduced mind wandering in experienced meditators and associated EEG 
correlates. Experimental Brain Research, 236(9), 2519–2528. https://doi.org/10.1007/s00221-016-4811-5 

Candia-Rivera, D., Catrambone, V., Barbieri, R., & Valenza, G. (2022). Functional assessment of bidirectional 
cortical and peripheral neural control on heartbeat dynamics: A brain-heart study on thermal stress. 
NeuroImage, 251(February), 119023. https://doi.org/10.1016/j.neuroimage.2022.119023 

Candia-Rivera, D., Catrambone, V., Thayer, J. F., Gentili, C., & Valenza, G. (2022). Cardiac sympathetic-vagal 
activity initiates a functional brain–body response to emotional arousal. Proceedings of the National 
Academy of Sciences of the United States of America, 119(21). https://doi.org/10.1073/pnas.2119599119 

Candia-rivera, D., Norouzi, K., Valenza, G., Clara, S., & States, U. (2023). Dynamic fluctuations in ascending heart 
– to – brain communication under mental stress. American Journal of Physiology-Regulatory, Integrative 
and Comparative Physiology. https://doi.org/https://doi.org/10.1152/ajpregu.00251.2022 

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive 
Sciences, 14(11), 506–515. https://doi.org/10.1016/j.tics.2010.09.001 

Chiesa, A., & Serretti, A. (2009). Mindfulness-based stress reduction for stress management in healthy people: 
A review and meta-analysis. Journal of Alternative and Complementary Medicine, 15(5), 593–600. 
https://doi.org/10.1089/acm.2008.0495 

Coll, M. P., Hobson, H., Bird, G., & Murphy, J. (2021). Systematic review and meta-analysis of the relationship 
between the heartbeat-evoked potential and interoception. Neuroscience and Biobehavioral Reviews, 
122, 190–200. https://doi.org/10.1016/j.neubiorev.2020.12.012 

Critchley, H. D., & Garfinkel, S. N. (2018). The influence of physiological signals on cognition. Current Opinion in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292291doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292291
http://creativecommons.org/licenses/by-nc-nd/4.0/


Behavioral Sciences, 19, 13–18. https://doi.org/10.1016/j.cobeha.2017.08.014 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open sorce toolbox for analysis of single-trail EEG dynamics 
including independent component anlaysis. Journal of Neuroscience Methods, 134, 9–21. 
https://doi.org/10.1016/j.jneumeth.2003.10.009 

Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron, 88(1), 220–235. 
https://doi.org/10.1016/j.neuron.2015.09.034 

Goldin, P. R., & Gross, J. J. (2010). Effects of Mindfulness-Based Stress Reduction (MBSR) on Emotion Regulation 
in Social Anxiety Disorder. Emotion, 10(1), 83–91. https://doi.org/10.1037/a0018441 

Gotink, R. A., Meijboom, R., Vernooij, M. W., Smits, M., & Hunink, M. G. M. (2016). 8-week Mindfulness Based 
Stress Reduction induces brain changes similar to traditional long-term meditation practice – A 
systematic review. Brain and Cognition, 108, 32–41. https://doi.org/10.1016/j.bandc.2016.07.001 

Guo, X., Wang, M., Wang, X., Guo, M., Xue, T., Wang, Z., Li, H., Xu, T., He, B., Cui, D., & Tong, S. (2022). 
Progressive increase of high-frequency EEG oscillations during meditation is associated with its trait 
effects on heart rate and proteomics: a study on the Tibetan Buddhist. Cerebral Cortex (New York, N.Y. : 
1991), 32(18), 3865–3877. https://doi.org/10.1093/cercor/bhab453 

Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J., & Nobre, A. C. (2014). Inter- and intra-individual variability in 
alpha peak frequency. NeuroImage, 92, 46–55. https://doi.org/10.1016/j.neuroimage.2014.01.049 

Heck, D. H., Kozma, R., & Kay, L. M. (2019). The rhythm of memory: How breathing shapes memory function. 
Journal of Neurophysiology, 122(2), 563–571. https://doi.org/10.1152/jn.00200.2019 

Heckenberg, R. A., Eddy, P., Kent, S., & Wright, B. J. (2018). Do workplace-based mindfulness meditation 
programs improve physiological indices of stress? A systematic review and meta-analysis. Journal of 
Psychosomatic Research, 114, 62–71. https://doi.org/10.1016/j.jpsychores.2018.09.010 

Herrero, J. L., Khuvis, S., Yeagle, E., Cerf, M., & Mehta, A. D. (2018). Breathing above the brain stem: Volitional 
control and attentional modulation in humans. Journal of Neurophysiology, 119(1), 145–159. 
https://doi.org/10.1152/jn.00551.2017 

Hoge, E. A., Bui, E., Palitz, S. A., Schwarz, N. R., Owens, M. E., Johnston, J. M., Pollack, M. H., & Simon, N. M. 
(2018). The effect of mindfulness meditation training on biological acute stress responses in generalized 
anxiety disorder. Psychiatry Research, 262, 328–332. https://doi.org/10.1016/j.psychres.2017.01.006 

Hölzel, B. K., Hoge, E. A., Greve, D. N., Gard, T., Creswell, J. D., Brown, K. W., Barrett, L. F., Schwartz, C., Vaitl, D., 
& Lazar, S. W. (2013). Neural mechanisms of symptom improvements in generalized anxiety disorder 
following mindfulness training. NeuroImage: Clinical, 2(1), 448–458. 
https://doi.org/10.1016/j.nicl.2013.03.011 

Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How Does Mindfulness 
Meditation Work? Proposing Mechanisms of Action From a Conceptual and Neural Perspective. 
Perspectives on Psychological Science, 6(6), 537–559. https://doi.org/10.1177/1745691611419671 

Hsu, S. M., Tseng, C. H., Hsieh, C. H., & Hsieh, C. W. (2020). Slow-paced inspiration regularizes alpha phase 
dynamics in the human brain. Journal of Neurophysiology, 123(1), 289–299. 
https://doi.org/10.1152/jn.00624.2019 

Hyafil, A., Giraud, A. L., Fontolan, L., & Gutkin, B. (2015). Neural Cross-Frequency Coupling: Connecting 
Architectures, Mechanisms, and Functions. Trends in Neurosciences, 38(11), 725–740. 
https://doi.org/10.1016/j.tins.2015.09.001 

Irrmischer, M., Houtman, S. J., Mansvelder, H. D., Tremmel, M., & Ott, U. (2018). Controlling the Temporal 
Structure of Brain Oscillations by Focused Attention Meditation. Human Brain Mapping, 1825–1838. 
https://doi.org/10.1002/hbm.23971 

Jiang, H., He, B., Guo, X., Wang, X., Guo, M., Wang, Z., Xue, T., Li, H., Xu, T., Ye, S., Suma, D., Tong, S., & Cui, D. 
(2020). Brain-Heart Interactions Underlying Traditional Tibetan Buddhist Meditation. Cerebral Cortex 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292291doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292291
http://creativecommons.org/licenses/by-nc-nd/4.0/


(New York, N.Y. : 1991), 30(2), 439–450. https://doi.org/10.1093/cercor/bhz095 

Kabat-Zinn, J. (1990). Full Catastrophe Living: Using the Wisdom of Your Body and Mind to Face Stress, Pain, 
and Illness. Dell Publishing. https://doi.org/10.1037/032287 

Klimesch, W. (2018). The frequency architecture of brain and brain body oscillations: an analysis. In European 
Journal of Neuroscience. https://doi.org/10.1111/ejn.14192 

Kral, T. R. A., Schuyler, B. S., Mumford, J. A., Rosenkranz, M. A., Lutz, A., & Davidson, R. J. (2018). Impact of 
short- and long-term mindfulness meditation training on amygdala reactivity to emotional stimuli. 
NeuroImage, 181, 301–313. https://doi.org/10.1016/j.neuroimage.2018.07.013 

Lee, K.-J., Park, C.-A., Lee, Y.-B., Kim, H.-K., & Kang, C.-K. (2020). EEG signals during mouth breathing in a 
working memory task. International Journal of Neuroscience, 130(5), 425–434. 
https://doi.org/10.1080/00207454.2019.1667787 

Lewis, R. S., Weekes, N. Y., & Wang, T. H. (2007). The effect of a naturalistic stressor on frontal EEG asymmetry, 
stress, and health. Biological Psychology, 75(3), 239–247. 
https://doi.org/10.1016/j.biopsycho.2007.03.004 

Lumma, A. L., Kok, B. E., & Singer, T. (2015). Is meditation always relaxing? Investigating heart rate, heart rate 
variability, experienced effort and likeability during training of three types of meditation. International 
Journal of Psychophysiology, 97(1), 38–45. https://doi.org/10.1016/j.ijpsycho.2015.04.017 

Marshall, A. C., & Cooper, N. R. (2017). The association between high levels of cumulative life stress and 
aberrant resting state EEG dynamics in old age. Biological Psychology, 127, 64–73. 
https://doi.org/10.1016/j.biopsycho.2017.05.005 

Marshall, A. C., Cooper, N., Rosu, L., & Kennett, S. (2018). Stress-related deficits of older adults’ spatial working 
memory: an EEG investigation of occipital alpha and frontal-midline theta activities. Neurobiology of 
Aging, 69, 239–248. https://doi.org/10.1016/j.neurobiolaging.2018.05.025 

Mierau, A., Klimesch, W., & Lefebvre, J. (2017). State-dependent alpha peak frequency shifts: Experimental 
evidence, potential mechanisms and functional implications. Neuroscience, 360, 146–154. 
https://doi.org/10.1016/j.neuroscience.2017.07.037 

Moeyersons, J., Amoni, M., Huffel, S. Van, Willems, R., & Varon, C. (2019). R-DECO: An open-source Matlab 
based graphical user interface for the detection and correction of R-peaks. PeerJ Computer Science, 
2019(10). https://doi.org/10.7717/peerj-cs.226 

Ooishi, Y., Fujino, M., Inoue, V., Nomura, M., & Maria, B. De. (2021). Differential Effects of Focused Attention 
and Open Monitoring Meditation on Autonomic Cardiac Modulation and Cortisol Secretion. Frontiers in 
Physiology, 12, 1–16. https://doi.org/10.3389/fphys.2021.675899 

Palva, J. M., Palva, S., & Kaila, K. (2005). Phase synchrony among neuronal oscillations in the human cortex. 
Journal of Neuroscience, 25(15), 3962–3972. https://doi.org/10.1523/JNEUROSCI.4250-04.2005 

Park, H. D., & Blanke, O. (2019). Heartbeat-evoked cortical responses: Underlying mechanisms, functional roles, 
and methodological considerations. NeuroImage, 197, 502–511. 
https://doi.org/10.1016/j.neuroimage.2019.04.081 

Park, H. D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to 
heartbeats predict visual detection. Nature Neuroscience, 17(4), 612–618. 
https://doi.org/10.1038/nn.3671 

Perl, O., Ravia, A., Rubinson, M., Eisen, A., Soroka, T., Mor, N., Secundo, L., & Sobel, N. (2019). Human non-
olfactory cognition phase-locked with inhalation. Nature Human Behaviour, 3(5), 501–512. 
https://doi.org/10.1038/s41562-019-0556-z 

Pernice, R., Antonacci, Y., Zanetti, M., Busacca, A., Marinazzo, D., Faes, L., & Nollo, G. (2021). Multivariate 
Correlation Measures Reveal Structure and Strength of Brain – Body Physiological Networks at Rest and 
During Mental Stress. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.602584 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292291doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292291
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic 
independent component classifier, dataset, and website. NeuroImage, 198, 181–197. 
https://doi.org/10.1016/j.neuroimage.2019.05.026 

Pletzer, B., Kerschbaum, H., & Klimesch, W. (2010). When frequencies never synchronize: The golden mean and 
the resting EEG. Brain Research. https://doi.org/10.1016/j.brainres.2010.03.074 

Rassi, E., Dorffner, G., Gruber, W., Schabus, M., & Klimesch, W. (2019). Coupling and Decoupling between Brain 
and Body Oscillations. Neuroscience Letters, 711(June), 134401. 
https://doi.org/10.1016/j.neulet.2019.134401 

Richter, C. G., Babo-Rebelo, M., Schwartz, D., Tallon-Baudry, C., & Huizinga, J. D. (2017). Phase-amplitude 
coupling at the organism level: The amplitude of spontaneous alpha rhythm fluctuations varies with the 
phase of the infra-slow gastric basal rhythm. NeuroImage, 146, 951–958. 
https://doi.org/10.1016/j.neuroimage.2016.08.043 

Rodriguez-Larios, J., & Alaerts, K. (2019). Tracking Transient Changes in the Neural Frequency Architecture: 
Harmonic Relationships between Theta and Alpha Peaks Facilitate Cognitive Performance. The Journal of 
Neuroscience, 39(32), 6291–6298. https://doi.org/10.1523/jneurosci.2919-18.2019 

Rodriguez-Larios, J., & Alaerts, K. (2020). EEG alpha–theta dynamics during mind wandering in the context of 
breath focus meditation: An experience sampling approach with novice meditation practitioners. 
European Journal of Neuroscience. https://doi.org/10.1111/ejn.15073 

Rodriguez-Larios, J., Bracho, E. A., Oca, M. De, & Alaerts, K. (2021). The EEG spectral properties of meditation 
and mind wandering differ between experienced meditators and novices. NeuroImage, 245. 
https://doi.org/10.1016/j.neuroimage.2021.118669 

Rodriguez-Larios, J., Faber, P., Achermann, P., Tei, S., & Alaerts, K. (2020). From thoughtless awareness to 
effortful cognition: alpha - theta cross-frequency dynamics in experienced meditators during meditation, 
rest and arithmetic. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62392-2 

Rodriguez-Larios, J., Wong, K. F., Lim, J., & Alaerts, K. (2020). Mindfulness Training is Associated with Changes in 
Alpha-Theta Cross-Frequency Dynamics During Meditation. Mindfulness. 
https://doi.org/10.1007/s12671-020-01487-3 

Saggar, M., King, B. G., Anthony, P., Maclean, K. A., Aichele, S. R., Jacobs, T. L., Bridwell, D. A., Shaver, P. R., 
Rosenberg, E. L., Sahdra, B. K., Ferrer, E., Tang, A. C., Mangun, G. R., Wallace, B. A., Miikkulainen, R., 
Saron, C. D., Cahn, B. R., & Irvine, U. C. (2012). Intensive training induces longitudinal changes in 
meditation state-related EEG oscillatory activity. Frontiers in Human Neuroscience, 6, 1–14. 
https://doi.org/10.3389/fnhum.2012.00256 

Sauseng, P., Klimesch, W., Gruber, W. R., & Birbaumer, N. (2008). Cross-frequency phase synchronization: A 
brain mechanism of memory matching and attention. NeuroImage, 40(1), 308–317. 
https://doi.org/10.1016/j.neuroimage.2007.11.032 

Siebenhühner, F., Wang, S. H., Palva, J. M., & Palva, S. (2016). Cross-frequency synchronization connects 
networks of fast and slow oscillations during visual working memory maintenance. ELife, 5, 15–30. 
https://doi.org/10.7554/eLife.13451 

Stankovski, T., Petkoski, S., Raeder, J., Smith, A. F., McClintock, P. V. E., & Stefanovska, A. (2016). Alterations in 
the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with 
propofol and sevoflurane. Philosophical Transactions of the Royal Society A: Mathematical, Physical and 
Engineering Sciences, 374(2067). https://doi.org/10.1098/rsta.2015.0186 

Sun, S., Hu, C., Pan, J., Liu, C., & Huang, M. (2019). Trait mindfulness is associated with the self-similarity of 
heart rate variability. Frontiers in Psychology, 10, 1–11. https://doi.org/10.3389/fpsyg.2019.00314 

Tang, Y. Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews 
Neuroscience, 16(4), 213–225. https://doi.org/10.1038/nrn3916 

Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292291doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292291
http://creativecommons.org/licenses/by-nc-nd/4.0/


scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550 

Varga, S., & Heck, D. H. (2017). Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and 
embodied cognition. Consciousness and Cognition. https://doi.org/10.1016/j.concog.2017.09.008 

Watford, T. S., O’Brien, W. H., Koerten, H. R., Bogusch, L. M., Moeller, M. T., Sonia Singh, R., & Sims, T. E. 
(2020). The mindful attention and awareness scale is associated with lower levels of high-frequency heart 
rate variability in a laboratory context. Psychophysiology, 57(3), 1–12. 
https://doi.org/10.1111/psyp.13506 

Wilkinson, M., McIntyre, D., & Edwards, L. (2013). Electrocutaneous pain thresholds are higher during systole 
than diastole. Biological Psychology, 94(1), 71–73. https://doi.org/10.1016/j.biopsycho.2013.05.002 

Woody, A., Hamilton, K., Livitz, I. E., Figueroa, W. S., & Zoccola, P. M. (2017). Buccal telomere length and its 
associations with cortisol, heart rate variability, heart rate, and blood pressure responses to an acute 
social evaluative stressor in college students. Stress, 20(3), 249–257. 
https://doi.org/10.1080/10253890.2017.1328494 

Zanetti, M., Faes, L., Nollo, G., Cecco, M. De, Pernice, R., Maule, L., Pertile, M., & Fornaser, A. (2019). 
Information dynamics of the brain, cardiovascular and respiratory network during different levels of 
mental stress. Entropy, 21(3). https://doi.org/10.3390/e21030275 

Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., & Gottfried, J. A. (2016). Nasal respiration 
entrains human limbic oscillations and modulates cognitive function. Journal of Neuroscience, 36(49), 
12448–12467. https://doi.org/10.1523/JNEUROSCI.2586-16.2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292291doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292291
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY MATERIALS 

Supplementary Table 1. Available epochs per condition. 

Participant AR raw BF raw AR corrected BF corrected Final matched 
P1 186 298 171 281 171 
P2 238 304 238 291 238 
P3 216 302 119 273 119 
P4 220 305 196 266 196 
P5 289 300 181 205 181 
P6 101 312 44 305 44 
P7 88 297 86 272 86 
P8 385 298 379 297 297 
P9 112 299 95 273 95 
P10 133 307 122 284 122 
P11 195 298 134 190 134 
P12 279 320 239 314 239 
P13 127 300 120 249 120 
P14 234 299 195 243 195 
P15 175 318 76 226 76 
P16 149 299 72 296 72 
P17 199 296 168 223 168 
P18 263 299 184 183 184 
P19 112 299 110 296 110 
P20 119 304 99 302 99 

Supplementary table 1. Available epochs per condition. Number of Arithmetic (AR raw) and Breath focus (BF raw) available raw epochs, 

second and third columns respectively. Number of available epochs after correction for arithmetic (AR corrected) is shown in the fourth 
column and breath focus (BF corrected) in the fifth column. The last column (Final) indicates the total selected epochs for both conditions 
for analyses. 
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Supplementary Figure 1. Condition-related differences in alpha : heart rate cross-frequency 
ratios with randomly generated heart rate data. 

 
Supplementary Figure 1. Condition-related differences in alpha : heart rate cross-frequency ratios with randomly generated heart rate 
data. A) visualizes the distribution of the percentage of each ratio occurrence for the breath focus condition, separately for each electrode 
(y-axis) and cross-frequency ratio (x-axis) (ratios ranging between 4 and 24). B) visualizes the distribution of the percentage of each ratio 
occurrence for the arithmetic condition. Note that the percentage of occurrence of each ratio was calculated separately per participant and 
electrode, and subsequently averaged across participants. C) visualizes the colormap of the average t-values across the 1000 surrogate 
calculations and permutation tests estimating the condition-related effect (arithmetic versus breath focus condition), separately for each 
electrode (y-axis) and surrogate cross-frequency ratio (x-axis). Permutation analyses are visualized for ratios ranging between 4 and 19, since 
the occurrence of ratios below 4.5 or above 18.5 was < 0.01 %. D) visualizes the accumulated times that each of the cells (electrode-ratio t-
test value) was significant, i.e., over the 1000 surrogate data generations, E) shows the significance of the original t-values (plotted in Figure 
2D) against the t-value distribution derived from the 1000 surrogate generations. 
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Supplementary Figure 2. Condition-related differences in alpha : heart rate cross-frequency 
ratios with randomly generated alpha data. 

 

Supplementary Figure 2. Condition-related differences in alpha : heart rate cross-frequency ratios with randomly generated alpha data. 
A) visualizes the distribution of the percentage of each ratio occurrence for the breath focus condition, separately for each electrode (y-axis) 
and cross-frequency ratio (x-axis) (ratios ranging between 4 and 24). B) visualizes the distribution of the percentage of each ratio occurrence 
for the arithmetic condition. Note that the percentage of occurrence of each ratio was calculated separately per participant and electrode, 
and subsequently averaged across participants. C) visualizes the colormap of the average t-values across the 1000 surrogate calculations and 
permutation tests estimating the condition-related effect (arithmetic versus breath focus condition), separately for each electrode (y-axis) 
and surrogate cross-frequency ratio (x-axis). Permutation analyses are visualized for ratios ranging between 4 and 19, since the occurrence 
of ratios below 4.5 or above 18.5 was < 0.01 %. D) visualizes the accumulated times that each of the cells (electrode-ratio t-test value) was 
significant, i.e., over the 1000 surrogate data generations, E) shows the significance of the original t-values (plotted in Figure 2D) against the 
t-value distribution derived from the 1000 surrogate generations. 
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Supplementary Figure 3. Correlation matrix of average physiological values of the difference 
arithmetic minus breath focus condition 

 

Supplementary Figure 3. Correlation matrix of average physiological values of the difference arithmetic minus breath focus condition. 
Following the diagonal downwards, IAF indicates the distribution of average difference values of Individual Alpha Frequency per participant 
across electrodes, alpha indicates the average difference instantaneous alpha values per participant across electrodes and heart rate the 
average heart rate instantaneous difference values per participant. Ratp1 indicates the average difference in percentage of ratio occurrence 
(with respect to all possible alpha: heart rate ratios) for the positive significant cluster of ratios between 6.5 and 9, and Ratn1 the average 
difference in percentage of ratio occurrence (with respect to all possible alpha: heart rate ratios) for the negative significant cluster of ratios 
between 10 and 13.5. Red values inside scatterplots indicate significant correlations (p<0.05). 

 

In Supplementary Figure 3, IAF indicates the distribution of difference (from breath focus to 
arithmetic) values of IAF per participant across electrodes, alpha indicates the average difference 
instantaneous alpha values per participant across electrodes and heart rate the average heart rate 
instantaneous difference values per participant. Ratp1 indicates the average difference in percentage 
of ratio occurrence (with respect to all possible alpha: heart rate ratios) for the positive significant 
cluster of ratios between 6.5 and 9, and Ratn1 the average difference in percentage of ratio occurrence 
(with respect to all possible alpha: heart rate ratios) for the negative significant cluster of ratios 
between 10 and 13.5. 
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