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Abstract 

Translating prediction models into practice and supporting clinicians’ decision-making demand demonstration of 

clinical value. Existing approaches to evaluating machine learning models emphasize discriminatory power, which is 

only a part of the medical decision problem. We propose the Applicability Area (ApAr), a decision-analytic utility-

based approach to evaluating predictive models that communicate the range of prior probability and test cutoffs for 

which the model has positive utility; larger ApArs suggest a broader potential use of the model. We assess ApAr with 

simulated datasets and with three published medical datasets. ApAr adds value beyond the typical area under the 

receiver operating characteristic curve (AUROC) metric analysis. As an example, in the diabetes dataset, the top model 

by ApAr was ranked as the 23rd best model by AUROC. Decision makers looking to adopt and implement models can 

leverage ApArs to assess if the local range of priors and utilities is within the respective ApArs.  

Introduction 

Clinical predictive models are increasingly the focus of research, implementation, and digital health 

entrepreneurship1,2. Beyond calls for evaluation, in general3, leaders in machine learning (ML) in medicine call for 

considering “clinically acceptable performance characteristics for the targeted application”4. The reason for this call 

is that current methods do not incorporate the notion of “clinical acceptance” either in the derivation of the model or 

in its evaluation. 

The decision faced by an institution considering a statistical or ML model (SMLM) is whether their patients would 

benefit from the model. From this perspective, the SMLM is a test, and the question is whether the utility of the 

population is maximized, at the prevalence of the disease they are treating, using this test. As such, the decision would 

be governed by a measure of “clinical acceptance”, which would indicate the fit of SMLM for use or otherwise. To 

establish “clinical acceptance,” proper utility tradeoffs should be articulated in the model construction and the model 

evaluation, coherent with the medical decisions faced by an institution5.  

Regarding model constructions, at the heart of the derivation of any SMLM is a loss function that the learning 

algorithm uses to judge whether the model being developed is “close” to the training data6. These loss functions pit 

false positives (FPs) against false negatives (FNs) and, almost always, implement the assumption that those costs are 

the same7,8. While such symmetry has nice statistical properties, it is a false, and possibly dangerous, representation 

of the clinical context. For instance, treating 1 patient with antibiotics for a deadly infection they did not have is much 

more acceptable than having a patient with such an infection die because they were not treated, and even 50 patients 

unnecessarily treated might be acceptable9. One aspect of “clinically acceptable,” then, is to honestly elicit and 

incorporate that asymmetry in the SMLM creation process. We presume that the deciding clinician can make such an 

assessment and that individual patients may have different assessments. 

Regarding model evaluation, the current standard evaluation of an SMLM is its discriminatory power, as assessed by 

the area under the receiver operating characteristic (AUROC) curve. The AUC also presumes that the cost of FPs and 

FNs is the same10,11. Furthermore, an AUC does not account for the disease prevalence in the population precisely 

because it evaluates the performance of a cutoff within each group (diseased and non-disease).  However, the 

performance of a test, which role an SMLM plays in clinical practice, does depend on prevalence. Furthermore, each 

patient has a unique set of risk factors at the point of care (demographics, medical history, social determinants of 

health, etc.), which yield a different prior probability of disease; thus, any local population of patients contains a range 

of priors collectively rather than a single number. Hence, a “clinically acceptable” measure should account for ranges 

of priors as well as ranges of preferences.  

Decision Curve Analysis (DCA) is one popular approach that integrates preferences into model evaluation12,13. DCA 

evaluates the model by calculating the net benefit over ranges of probability thresholds, keeping the prevalence 

constant. This constant prevalence does not account for the variability in prevalence within a site, let alone across 

different sites, where the SMLM is poised to be implemented. We present here a novel approach consistent with the 

SMLM implementation context, accounting for ranges of preferences and prevalence. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2023. ; https://doi.org/10.1101/2023.07.06.23292124doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.07.06.23292124
http://creativecommons.org/licenses/by-nc/4.0/


   

 

   

 

In this paper, we demonstrate that decision analysis provides the necessary theory to address model evaluation, 

deriving a novel measure called Applicability Area and demonstrating the implications of this measure, which turn 

out to upend several results based on AUCs. The objective of this paper is to illustrate the novel approach to model 

evaluation and compare it against the AUC traditional model performance metric. Additionally, we demonstrate the 

value of the novel approach with simulated data and with three medical datasets.  

The rest of the paper is as follows: First, we present the decision analytic setup and the derivation of our measure. The 

following section presents the methods employed to demonstrate the use of our measure, including both simulated 

and real-world medical datasets. Then, we present the results and discuss the findings comparing AUC and our 

approach. Lastly, we compare the approach against DCA, a popular alternative that shares a similar goal. 

Decision Analytic Setup 

A proper decision analysis entails making the best decision based only on information available at the time of making 

the decision, and the “best” decision is the one that maximizes the decision maker’s overall utility14. We demonstrate 

this approach using The Kassirer–Pauker formulation of threshold-based decision-making15. Although these decisions 

affect patients, who should be the decision maker for a single decision, in our model, we take the perspective of a 

provider contemplating applying the SMLM to their population of patients, with the valuation of outcomes based on 

patients’ expected utility (preference valuations under uncertainty16-21). In a simple decision model, either all patients 

are treated, or all patients are not treated, resulting in 4 health states: 1a) Treated and Disease (RxD), 1b) Treated and 

No Disease (RxNoD), 2a) Not treated, Disease (NoRxD), and 2b) Not Treated, No Disease (NoRxNoD) (the top two 

branches in Figure 1a). Of the 4 states, NoRxD is the worst, and NoRxNoD is the best. Utilities16-21 are assigned by 

the decision-maker to each state. The utility of NoRxD (uNoRxD) is usually 0 and that of NoRxNoD (uNoRxNoD), 

is usually 1; however, the recommendations of the model are the same under a linear transformation of the utilities. 

 
(a) 

 

 

(b) 

Figure 1. Kassirer–Pauker framework. (a) Alternatives of Treat All, Treat None, Test. Parameters are the probability, 

pDisease (probability of disease) and the utilities, Benefit, and cTreatment (cost (burden) of treatment) (b) Sensitivity 

analysis for pDisease, where the model was recalculated for several values across all possible values of pDisease (0 

to 1). These calculations result in 3 thresholds, across which, the optimal strategy changes: for pDisease < the Treat 

None/Test threshold, “Treat None” is the optimal strategy; for pDisease > Test/Treat All threshold, “Treat All” is the 

optimal strategy; and for pDisease between the two thresholds, “Test” (that is, use the model), is optimal. The values 

of the thresholds are functions of the cost asymmetry and the sensitivity and specificity of the test. Since each cutoff 

on the ROC generates a different sensitivity and specificity, there will be a different “Test” line (and therefore, a set 

of thresholds) for each cutoff on the ROC curve. For some cutoffs, those points may result in a line that crosses the 

threshold vertical, pDisease = p* below where the lines for Treat None and Treat All cross. For those cutoffs, the 

model (test) is not useful. dTest is the cost (burden, disutility) of the test. 

In a simple decision tree (Treat All or Treat None) one calculates the expected utility of each option. In this case, the 

key probability is p (disease probability) and is the same for both subtrees. Expected utility is calculated as the sum 

of the product of a subtree’s probability and its utility. In this case EU(Treat All) = p × uRxD + (1–p) × uRxNoD, and 

EU(Treat None) = p × uNoRxD + (1–p) × uNoRxNoD. The model then reports which expected utility is higher. Since 

higher utility is preferred, the model then “recommends” the decision maker take the action with the higher expected 
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utility. There is a probability,  p*, where the expected utilities are the same. This probability, p*, is derived by setting 

the two expected utilities as equal. 

𝑝∗ =  
(𝑢𝑁𝑜𝑅𝑥𝑁𝑜𝐷 − 𝑢𝑅𝑥𝑁𝑜𝐷)

(𝑢𝑁𝑜𝑅𝑥𝑁𝑜𝐷 − 𝑢𝑅𝑥𝑁𝑜𝐷) + (𝑢𝑅𝑥𝐷 − 𝑢𝑁𝑜𝑅𝑥𝐷)
=  

𝐻

𝐻 + 𝐵
 

( Eq. 1 ) 

uNoRxNoD – uRxNoD is the difference to a non-diseased patient between not being treated and being treated 

(unnecessarily), so is labeled, H, the harm of treatment (to the non-diseased patient). The quantity uRxD –uNoRxD is 

the difference to a diseased patient between being treated and not, and so is labeled, B, the benefit of treatment (to the 

diseased patient). The ratio, B/H, will provide us with the asymmetry factor we need. For instance, 𝑝∗ =  
1

1+𝐵 𝐻⁄
. If 

harms were the same as benefits, the threshold would be 0.5. The “clinical context” is therefore represented by the 

prior and the asymmetric costs. This choice fits with the recurring recommendations that models need to be checked 

against local constraints5,22-25.  

An SMLM is used clinically as a test. To accommodate this “test,” we need to add a third subtree to the initial model 

(see the bottom branch in Figure 1a). The utility formula is more complicated because it needs to consider 4 states: 

Test “positive” (resulting in true positives (TP) and false positives (FP)) and Test “negative” (resulting in true 

negatives (TN) and false negatives (FN)). The 4 test states correspond to the 4 health states (Test “+” Treated and 

Disease, Test “+” Treated and No Disease, Test “-” Not treated and Disease, and Test “-” Not Treated and No Disease). 

Thus, the benefit of the test is the difference between the utility of a TP and the utility of an FN (uTP – uFN), and the 

harm of the test is the difference between the utility of a TN and the utility of an FP (uTN – uFP). The probabilities 

are now different because Bayes’ Theorem provides the positive and negative predictive values (P(D+|Test +) and 

P(D–|Test –), respectively). One can add in the (dys)utility of the test itself (dTest).  

𝐸𝑈(𝑇𝑒𝑠𝑡) = TP ×  𝑢𝑇𝑃 + 𝐹𝑁 ×  𝑢𝐹𝑁 +  FP ×  𝑢𝐹𝑃 + 𝑇𝑁 ×  𝑢𝑇𝑁 − 𝑑𝑇𝑒𝑠𝑡 
( Eq. 2 ) 

𝑝𝐿 =  
𝐹𝑃𝑅 ×  𝐻 − 𝑑𝑇𝑒𝑠𝑡

𝐹𝑃𝑅 ×  𝐻 + 𝑇𝑃𝑅 ×  𝐵
 𝑝𝑈 =  

(1 − 𝐹𝑃𝑅) ×  𝐻 + 𝑑𝑇𝑒𝑠𝑡

(1 − 𝐹𝑃𝑅) ×  𝐻 + (1 − 𝑇𝑃𝑅) ×  𝐵
 

Figure 1b shows a sensitivity analysis with 2 thresholds: The lower one between Treat None and Test (pL) and the 

upper one, between Test and Treat All (pU). These thresholds are functions of sensitivity, specificity, and the utilities 

(H, B), and dTest. For a test to be useful, there must be two thresholds, which is equivalent to saying that the utility 

line for EU(Test) must cross the line p= p* above where the lines for EU(Treat All) and EU(Treat None) cross. For a 

test to be useful, furthermore, the current prior must be within the bounds of the two thresholds. 

Derivation of Applicability Area 

The formula for the ideal cutoff of a test is well-known 5,9, 𝑐∗ =  
1−𝑝

𝑝
 
𝐻

𝐵
. The test cutoff is different from the probability 

threshold p*, treat all or treat none. In an SMLM that produces a probability as its output, the test cutoff, which is the 

probability that separates a positive from a negative class, is the same as the posterior probability threshold. This 

formula makes clear that the ideal cutoff for an SMLM depends on local priors (p) and asymmetric costs. While this 

formula tells us how to apply an SMLM, most developers want a metric to show that their model is better than other 

models and to show that their model works in a range of settings, that is both a range of priors and a range of posterior 

probability thresholds26. 

We call the range of priors and posterior probability thresholds in which an SMLM is useful, its area of applicability. 

A model’s applicability is the cumulative range of priors in which the overall utility of the model is greater than that 

of the alternative treat-none and treat-all strategies. Outside this area, the decision maker knows what to do: either to 

treat or not. The applicability of a model incorporates the relative cost tradeoffs for each outcome and model 

discrimination (sensitivity and specificity).  

Given a ROC, each cutoff, c, generates its own FPR(c) and TPR(c), and, therefore, its own Treat None/Test and 

Test/Treat All thresholds: 

𝑝𝐿(𝑐) =  
𝐹𝑃𝑅(𝑐) ×  𝐻 − 𝑑𝑇𝑒𝑠𝑡

𝐹𝑃𝑅(𝑐) ×  𝐻 + 𝑇𝑃𝑅(𝑐) ×  𝐵
 𝑝𝑈(𝑐) =  

(1 − 𝐹𝑃𝑅(𝑐)) ×  𝐻 + 𝑑𝑇𝑒𝑠𝑡

(1 − 𝐹𝑃𝑅(𝑐)) ×  𝐻 + (1 − 𝑇𝑃𝑅(𝑐)) ×  𝐵
 

 ( Eq. 3 ) 
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The thresholds are functions of the costs and benefits. There will be a minimum cutoff, cmin, below which there is no 

lower threshold, and a maximum cutoff, cmax, above which there is no upper threshold. Similarly, there is a minimum 

prior, πmin, and a maximum prior, πmax, the regions between which, the SMLM remains “useful.” Thus, the 

Applicability Area is formulated as Eq. 4: 
 

𝑇𝑜𝑡𝑎𝑙 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐺𝑎𝑖𝑛  =   ∫ ∫
𝑝𝑈(𝑐)

𝑝𝐿(𝑐)

 

𝑅𝑂𝐶(𝑐)

 𝐸𝑈(𝑇𝑃𝑅(𝑐),  𝐹𝑃𝑅(𝑐),   𝑝) − 𝐸𝑈(𝑝) 𝑑𝑝𝑑𝑐 
( Eq. 4) 

Total Utility Gain is calculated as a double integral, first, across all cutoffs of the ROC, then between the two 

thresholds, for a given cutoff, of the difference between the expected utility using the SMLM and the expected utility 

without the SMLM. To speed the calculation and to make ApArs more comparable across models, we simply give 

“credit” for positive utilities. In other words, the integrand would be 1 if the difference in utility between using and 

not using the SMLM is greater than 0, and 0 otherwise. 

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑟𝑒𝑎  =   ∫ ∫ 1
𝑝𝑈(𝑐)

𝑝𝐿(𝑐)

 

𝑅𝑂𝐶(𝑐)

 𝑑𝑝𝑑𝑐 
 

𝐴𝑝𝐴𝑟  = ∫ (𝑝𝑈(𝑐)  −  𝑝𝐿(𝑐)) 𝐻(𝑝𝑈(𝑐)  −  𝑝𝐿(𝑐))𝑑𝑐
𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛

 
( Eq. 5 ) 

The criterion, 𝑝𝑈(𝑐) > 𝑝𝐿(𝑐), is equivalent to specifying that the differences, EU(model) – EU(Treat All) and 

EU(model) – EU(Treat None), are both positive. As we showed in Figure 1c and Eq. 3, the model is only useful 

when there are two test-related thresholds, i.e.,  𝑝𝑈(𝑐) > 𝑝𝐿(𝑐). Thus, we integrate over only the region satisfying 

this condition. Figure 2 shows an example of a model’s applicability area. Since the maximum possible ApAr 

spanning priors and posterior probabilities is 1, the ApAr would be less than or equal to 1. The larger the ApAr, the 

model is applicable over wider ranges of priors and 

posterior probability thresholds.  

A different set of utility curves such as the one shown in 

Figure 1b can be generated for each cutoff point on the 

ROC. As established earlier, each utility graph contains 2 

thresholds (the testing threshold, pL, and the treatment 

threshold, pU). The applicability metric involves 1) 

calculating the range of priors from the two thresholds 

(𝑝𝑈(𝑐)  −  𝑝𝐿(𝑐)) and 2) integrating over the entire ROC 

to obtain the cumulative ranges of applicable priors (Eq. 

5). Hereon, “applicable priors” refer to the range of priors 

under which the model will have positive utility or is 

preferred over the alternative strategies. For AUC, points 

closest to the upper left are generally presumed to suggest 

preferred cutoffs11. Indeed, in our results, probability 

thresholds closer to the upper left corner of the ROC have 

larger ApArs. However, such a high-AUC model may not 

be useful elsewhere along the ROC. Our approach 

considers all the ranges of priors for which the model is useful. It describes the model performance in terms of 

aggregated applicable priors under all cutoffs rather than a single cutoff in the upper-left corner.  We eliminate the 

need to determine the prior beforehand, which can be difficult16,27. A model with an applicability area (ApAr) of 

zero indicates employing the model as a test for the probability of disease has no value compared to a treat-none or 

treat-all strategy. On the other hand, high applicability indicates that the model is useful as a test for the probability 

of disease over greater ranges of priors.  

 
Figure 2. Example of a model’s applicability area, 

where 𝑝𝑈(𝑐) > 𝑝𝐿(𝑐). ApAr is the area bounded by the 

blue and orange curves when the blue curve is above 

the orange (in this case, between cutoffs of about .1 

and .85). 
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Method 

Simulation 

The simulation aimed to assess the circumstances in which the ApAr gives results different from the standard ROC 

AUC. After discussion with colleagues and a review of the literature28, we settled on 5 factors that might affect the 

measure’s performance: sample size, number of variables, class proportion, covariance, and class separation. In this 

fully factorial simulation, we varied cost asymmetry and the 5 factors. Cost asymmetry, which represents the cost ratio 

between a minority and a majority class, carried 4 discrete values (1, 2, 5, and 10). The 5 factors were specified as the 

following: 

1. The sample size: 100, 5000, and 10,000 (small to large).  

2. The number of variables: 2, 5, and 15 (few to many).  

3. Covariance among the predictors: 0.05, 0.1, and 0.2 (low to mild).  

4. Class proportion: 0.1%, 1%, 10%, and 30% (uncommon to frequent)29.  

5. Class separation: 0.05, 0.1, and 0.2 (small to modest).  

Scikit-learn library’s method, make_classification, was modified to admit covariance as an additional 

parameter30. Then, all 5 factors were fed into this modified method. A total of 1296 simulated datasets were generated.  

Statistical analysis. Each dataset was fitted to 5 SMLM: logistic regression (LR), xgBoost, decision trees (DT), 

random forest (RF), and support vector machine (SVM). Performance metrics were ROC AUC and ApAr. With a true 

negative as the best outcome and a false negative as the worst outcome, the relative values of uTN and uFN were 1 

and 0 respectively. We assigned uTP a typical value of 0.8 to represent a relatively beneficial disease treatment 

outcome. We assigned the population disease prevalence to 20%. Note that this prevalence reflects the external real-

world condition, while “class proportion” reflects the prevalence of the real-world condition in the dataset. uFP is 

dervied from B/H and B. 

Medical Datasets 

We also used three imbalanced medical datasets to evaluate our approach: the Pima Indians Diabetes (PID), Cervical 

Cancer Risk Factors (CC), and Chronic Kidney Disease Risk Factor datasets (CKD)31-34. The PID dataset was selected 

from a larger database created by the National Institute of Diabetes and Digestive and Kidney Diseases. It was created 

to develop diagnostic prediction models for diabetes. All patients in this dataset were females of Pima Indian heritage 

and over the age of 21. The predictors in this dataset include age, the number of pregnancies, glucose concentration, 

blood pressure, skin thickness, insulin level, Body Mass Index (BMI), and diabetes pedigree function score. The CC 

dataset originates from the University Hospital of Caracas in Venezuela. The dataset captures 858 patients and includes 

data on demographics, medical history, and lifestyle. Like other studies that used this dataset, we used the set of 

features from the study led by Fernandes et al.32. The CKD dataset, originating from the Apollo Hospitals in India, 

was collected over 2 months. The dataset captures 400 patients, and it includes patients’ age, comorbidity, diet, and 

laboratory test values such as red and white blood cell concentration. 

Statistical analysis. No missing values existed in the PID dataset. However, both the CC and CKD datasets contained 

missing values for some of the predictors. Without the facility to check for missingness not at random, we used K-

nearest neighbor imputation with default hyperparameters (n = 5 and metric = Euclidean distance) from the scikit-

learn library to impute missing data35. Categorical predictors in the CKD dataset were also recoded as numeric 

variables and rescaled.  

Each dataset was fitted to 5 SMLM: LR, xgBoost, DT, RF, and SVM. The cost ratio between the minority and majority 

classes varied among 1, 2, 5, 10, 20, 50, 100, and including the inverse of the class proportions as a heuristic for the 

relative misclassification costs8,36. 40 different models were created. As in the simulations, the relative values of uTN 

and uFN were 1 and 0, and uTP had a value of 0.8. uFP is dervied from B/H and B. Three repeats of 10-fold cross-

validation were used to evaluate the models. Model performance was compared using the AUC and the ApAr. For 

each medical dataset, we compared the top ten models ranked by AUC along with the top 10 models ranked by the 

ApAr. All simulation programming and computations were performed using Python 3.7 and the scikit-learn ML 

library. 

The code for Applicability Area is available on GitHub at: https://github.com/StarLiu1/ApplicabilityArea-ApAr 
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Results 

Simulation results 

From the simulation, 6480 classification models were generated from the 1296 datasets. Figure 3. plots each model’s 

AUC and ApAr to assess the level of agreement between the two metrics. While in general, ApAr increased as AUC 

increased, there was a lack of agreement between the AUC and the ApAr, as some of the models with the highest 

AUCs had the lowest ApArs, with agreement worsening as the asymmetry in costs increased. Conversely, several 

models with different AUCs had the same ApAr. Breakdown by each SMLM shared the same pattern. 

We obtained the test cutoff that gave the largest range of 

useful priors for each model and compared the model’s AUC 

and ApAr (Figure 3). Models with the largest range of 

applicable priors had the highest AUCs. However, after 

incorporating tradeoffs (B, H), some of the models in the 

upper-left corner had the lowest ApAr, despite their high 

AUCs (Figure 4). 

 

 

 

 

 

 

 

 

 
Figure 4. Comparing models’ applicability area (left) and AUC (right) at the cutoff with the largest range of applicable 

priors. The color indicates each model’s ApAr on the left graph and the AUC on the right graph. 

Medical Datasets 

As shown in Table 1, there lacked agreement in the PID dataset models’ AUC and ApAr. Only 4 of the top 10 models 

were considered useful models by the ApAr metric. The model with the highest AUC (0.835) had the second-highest 

ApAr (0.252), and another model with the same AUC had the 6th-highest ApAr (0.178). In contrast, the best model 

ranked by ApAr had the 23rd-highest AUC. Similarly, we observe the same pattern in the CC dataset models’ AUC 

and ApAr (Table 1b). Despite universally high AUCs (> 0.94), only 4 out of the top 10 models were considered useful 

models by the ApAr metric. The model with the highest AUC (0.964) had the 16th-highest ApAr (0.010). The model 

with the second-highest AUC had the third-highest ApAr (0.350). In contrast, the model with the highest ApAr had 

the 15th-highest AUC (0.945). Lastly, we observe the same pattern in the CKD dataset models (Table 1c). Although 

the models had near-perfect AUCs (0.998-1.000), not all the models with perfect AUCs were considered useful by the 

ApAr metric. Even among perfect discriminators, ApAr ranged from 0.553 to 0.810. 

  

 
Figure 3. AUCs vs. applicability areas for each 

model as a point. Each of the four curves 

corresponds to a different B/H cost asymmetry. 
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Table 1. Comparing the models’ area under the curve (AUC) and applicability area (ApAr) using 3 datasets.* 

(a)  Using the Pima Indians Diabetes dataset 
Ordered by AUC Ordered by ApAr 

Model  Classifier B/H  AUC ApAr Model Classifier B/H AUC  ApAr 

0 LR 1 0.835 0.252 2 xgBoost 1 0.795 0.286 
5 LR 2 0.835 0.178 0 LR 1 0.835 0.252 
15 LR 5 0.835 0.025 4 SVM 1 0.824 0.227 

20 LR 10 0.835 0 3 RF 1 0.822 0.217 

10 LR 2.87 0.835 0.114 7 xgBoost 2 0.793 0.207 

25 LR 20 0.834 0 5 LR 2 0.835 0.178 

30 LR 50 0.833 0 9 SVM 2 0.827 0.160 
35 LR 100 0.832 0 8 RF 2 0.827 0.148 

8 RF 2 0.827 0.148 12 xgBoost 2.87 0.792 0.135 

9 SVM 2 0.827 0.160 1 DT 2.87 0.665 0.116 

(b) Using the CC dataset 
Model  Classifier B/H AUC ApAr Model Classifier B/H AUC ApAr 

23 RF 10 0.964 0.010 2 xgBoost 1 0.945 0.420 
3 RF 1 0.961 0.350 7 xgBoost 2 0.948 0.363 

28 RF 20 0.961 0 3 RF 1 0.961 0.350 

13 RF 15.6 0.961 0 1 DT  1 0.772 0.332 

33 RF 50 0.958 0 0 LR 1 0.921 0.255 

8 RF 2 0.955 0.249 8 RF 2 0.955 0.249 
38 RF 100 0.953 0 5 LR 2 0.919 0.235 

18 RF 5 0.952 0.088 6 DT 2 0.768 0.212 

17 xgBoost 5 0.949 0.161 9 SVM 2 0.914 0.201 

7 xgBoost 2 0.948 0.363 4 SVM 1 0.875 0.180 

(c) Using the CKD dataset 
Model  Classifier B/H AUC ApAr Model Classifier B/H AUC ApAr 

39 SVM 100 1.000 0 3 RF 1 1.000 0.810 
29 SVM 20 1.000 0 4 SVM 1 0.999 0.776 

3 RF 1 1.000 0.810 8 RF 2 1.000 0.765 

8 RF 2 1.000 0.765 2 xgBoost 1 0.999 0.755 

13 RF 2.67 1.000 0.726 0 LR 1 0.998 0.742 
24 SVM 10 1.000 0.256 9 SVM 2 0.999 0.731 

19 SVM 5 1.000 0.553 13 RF 2.67 1.000 0.726 

34 SVM 50 1.000 0 5 LR 2 0.998 0.720 

32 xgBoost 50 0.999 0 7 xgBoost 2 0.999 0.712 

37 xgBoost 100 0.999 0 14 SVM 2.67 0.999 0.693 

* Green highlights indicate the same set of models that appeared in the top ten ordered by each metric. B/H = Benefit/Harm; LR = Logistic 

Regression; DT = Decision Trees; RF = Random Forest; SVM = Support Vector Machine 

Discussion 

In this paper, we presented the motivation, derivation, and performance of a novel metric, ApAr, for evaluating 

predictive-model performance. In contrast to the traditional AUROC, it reports the range of priors for which the 

SMLM might be useful and bakes asymmetric cost into its formulation. We applied the approach to a simulated dataset 

as well as 3 medical datasets.  

Our findings from the simulated dataset showed that, at the same Benefit/Harm tradeoff, models with the same 

AUROC did not have the same ApAr. Despite having the same AUC, the two models would have different tradeoffs 

in sensitivity and specificity in different regions on the ROC. The traditional procedure of model selection almost 

always selects the model with the highest AUC; however, in our simulations, this selection did not equate with the 

most applicable/practical/useful model overall. By representing asymmetric tradeoffs in model evaluation, the ApAr 

highlights models that are useful over ranges of priors (disease prevalence) and test cutoffs (posterior probabilities, in 

the case of SMLMs) thresholds. The ApAr approach evaluates model performance under contexts that are consistent 

with the decision-making.  

We had similar findings from three medical datasets. Some of the models with the highest AUC were the least useful 

models given certain tradeoffs and priors. Conversely, some of the models with the highest ApArs had the lowest 

AUCs. Under the typical selection procedure, only the best-performing model would be selected. Thus, models with 

the highest ApAr would not have been selected if AUC were used as the metric, overlooking models that would have 

been more useful under certain ranges of local prevalence and posterior probability thresholds. As evidenced by 

models generated from the CKD dataset, even models with near-perfect AUCs (0.999-1.000) could lack applicable 
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contexts given certain asymmetric tradeoffs and priors. In other words, choosing models based on discrimination only 

without considering the decision-analytic setup could lead to harmful decisions. 

Models with the same ApAr would differ in either the range of applicable priors or in the range of posterior probability 

thresholds. For example, the top two models with the highest ApAr using the PID datasets had different AUCs (0.793 

vs. 0.835) and near identical ApAr (0.024 and 0.025). However, if we plot the ApAr, we see that the models were 

applicable over different ranges of priors and posterior probability thresholds (Figure 5). As the AUC increases, the 

ApAr becomes more rectangular like that of Figure 6. Higher AUC would equate with greater separation in the 

posterior probabilities. Thus, a model with a high AUC would be applicable over ranges of prior along the entire ROC 

regardless of the classification cutoff. Two models with the same AUCs and ApArs could have different ranges of 

applicable priors and posterior probability thresholds. A detailed breakdown of the two models is needed before 

selecting the most appropriate one. Finally, the best cutoff depends on the 𝑐∗ formula9.  

 

Figure 5. Comparing the Applicability Areas of models with nearly the same ApAr (Left: 0.024; Right: 0.025) 

Another decision-analytic-based approach, DCA, has gained traction in recent years.12,13 DCA has been a popular 

method that attempts at evaluating models by incorporating harms and benefits. Like the DCA, we show that the AUC 

can be misleading beyond discrimination and can even lead to choosing an underperforming model. The major 

difference is that DCA keeps the prior constant and varies the threshold, p*, implicitly being B/H; ApAr keeps a 

population-level cost asymmetry B/H constant and reports the ranges of priors and thresholds for which the model is 

useful. These ranges account for individual patients having different pre-test probabilities and different assessments 

of cost asymmetry than the policy-making clinician. The next step in developing the ApAr is showing the ranges of 

population-level B/H assessments for which a model is useful. 

APLUS is a novel framework that simulates care management workflows to assess the usefulness of ML models for 

deployment and integration37. It models nearly any workflow by defining workflows as sets of discrete states and 

transitions. It models patients’ trajectories and allows for utility tradeoffs and cost parameter specifications. Lastly, 

APLUS also enables human-readable outputs. However, the core limitation of APLUS is that it requires significant 

effort in defining the workflow steps and in involving multiple stakeholders to accurately represent the workflows, 

tradeoffs, and uncertainties.   

We might suggest the ApAr, by reporting ranges of priors and thresholds, helps decide whether to consider a model 

at all. DCA helps decide whether local thresholds imply net benefit. APLUS helps with the final local adapatation22,38. 

Strengths 

The advantage of the novel applicability approach is several folds. First, the utility-based approach clearly articulates 

the tradeoffs behind a decision that the SMLM model is designed for. The approach ensures a transparent cost structure 

consistent with the represented decision problem. Second, the approach redefines the usefulness or impact of an 

SMLM model based on utilities rather than heuristics and enables meaningful comparisons across models. A useful 

model under the applicability approach is one associated with practical and cumulative ranges of priors. Third, 

considering the ranges of applicable priors eliminates the need to choose a prior before conducting the analysis, which 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2023. ; https://doi.org/10.1101/2023.07.06.23292124doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292124
http://creativecommons.org/licenses/by-nc/4.0/


   

 

   

 

has long been a challenge25. Fourth, the ApAr approach is SMLM agnostic because it requires only the ROC, which 

can be generated from any prediction model. Lastly, the utility-based approach directly addresses two questions central 

to adopting an SMLM: 1) is the model useful at all? 2) when is the model useful? (as priors and utilities vary locally). 

Institutions looking to implement SMLM in clinical decision support tools can use this approach to compare models 

and select the one that best fits the institution’s take on cost asymmetry and the implicit priors in the target population.  

Limitations 

There remain several limitations to our approach. First, model developers have pointed out the challenge of 

quantifying the tradeoffs and have avoided explicit representations. Our approach was not intended to provide a 

solution, but rather highlight the need to clearly articulate the tradeoffs because such articulation changes the 

conclusion about using a particular model. Second, the current ApAr approach does not provide uncertainty estimation, 

but there is an ongoing effort to provide confidence bounds, to better enable empirical comparison of models. Third, 

we have explored the application of our approach to binary classification problems only and have not studied 

multiclass problems. Fourth, the current approach holds fixed utility tradeoffs. Fifth, the current approach focuses on 

utility. Health system decision-makers may prefer a metric that includes financial considerations, such as net monetary 

benefit, as DCA does. Future work will aim to include ranges of tradeoffs and alternative utility formulations in the 

model evaluation. In establishing a clinically relevant performance characteristic, model construction also demands 

coherence between asymmetric costs in the model-development loss function and the asymmetric cost used in ApAr 

evaluation. Future work will investigate the role of asymmetric cost in different ML modeling approaches. We also 

aim to incorporate more state-of-the-art deep learning models to understand how ApAr and cost asymmetry might be 

of value in image analysis for instance. Lastly, our approach is not yet computationally optimized. 

Conclusions 

The Applicability Area is a novel metric that addresses the next phase of SMLM adoption: Not only does it perform 

well, statistically, but will it be useful in the decisional contexts for which it is intended. Given the considerable 

number of such models being developed, attention to this adoption phase is crucial. We hope that our principle-based 

metric will be of use to such decision-makers. 
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