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Genetic associations with macroscopic brain networks can pro-
vide insights into healthy and aberrant cortical connectivity
in disease. However, associations specific to dynamic func-
tional connectivity in Alzheimer’s disease are still largely un-
explored. Understanding the association between gene expres-
sion in the brain and functional connectivity may provide use-
ful information about the molecular processes underlying vari-
ations in impaired brain function. Given the potential of dy-
namic functional connectivity to uncover brain states associated
with Alzheimer’s disease, it is interesting to ask: How does gene
expression associated with Alzheimer’s disease map onto the dy-
namic functional brain connectivity? If genetic variants associ-
ated with neurodegenerative processes involved in Alzheimer’s
disease are to be correlated with brain function, it is essential
to generate such a map. Here, we investigate how the rela-
tion between gene expression in the brain and dynamic func-
tional connectivity arises from nodal interactions, quantified by
their role in network centrality (i.e., the drivers of the metasta-
bility), and the principal component of genetic co-expression
across the brain. Our analyses include genetic variations as-
sociated with Alzheimer’s disease and also genetic variants ex-
pressed within the cholinergic brain pathways. Our findings
show that contrasts in metastability of functional networks be-
tween Alzheimer’s and healthy individuals can in part be ex-
plained by the two combinations of genetic co-variations in the
brain with the confidence interval between 72% and 92%. The
highly central nodes, driving the brain aberrant metastable dy-
namics in Alzheimer’s disease highly correlate with the magni-
tude of variations of the two combinations of genes expressed
in brain. These nodes include mainly the white matter, parietal
and occipital brain regions, each of which (or their combina-
tions) are involved in impaired cognitive function in Alzheimer’s
disease. In addition, our results provide evidence of the role of
genetic associations across brain regions in asymmetric changes
in ageing. We validated our findings on the same cohort using
alternative brain parcellation methods. This work demonstrates
how genetic variations underpin anomaly in dynamic functional
connectivity in Alzheimer’s disease.
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Introduction

Brain network analysis from resting-state functional MRI
(fMRI) has advanced our understanding of the cortical or-
ganization in healthy brain (1). Recently, dynamic brain

networks’ analysis, which considers temporal fluctuations in
the resting-state fMRI signal, has revealed patterns of ac-
tivity, that are usually averaged out by conventional func-
tional network analysis. These patterns of activity, termed
dynamic networks, reveal transient (meta-stable) dynamical
states, likely involved in cognitive processing (2). In this con-
text, dynamic functional networks analysis from fMRI data
has shown a potential to unveil clinically relevant information
(1, 3). Capturing the evolving architecture of brain networks
over short periods of time might also provide pathophysio-
logical insights into neurological and neurodegenerative con-
ditions, and will provide better diagnostic or prognostic indi-
cators.

The non-stationary nature of the brain organization and the
differences across healthy and diseased cohorts, have been
widely investigated by means of variations of the dwell time
within different sub-network configurations (4). For ex-
ample, a study that investigated the evolution of dynami-
cal Functional Connectivity (dFC) disruptions across the AD
spectrum, has shown differences in patients with dementia
compared to Mild Cognitive Impairment (MCI) in terms of
local dFC within the temporal, frontal-superior and default-
mode sub-networks. Moreover, the decreased global metasta-
bility between functional states has also been reported (5, 6).
Consistently, studies showed a progressive loss of whole-
brain metastability according to the severity of cognitive im-
pairment along the AD continuum, reaching statistical signif-
icance only in patients with dementia, when compared with
healthy controls (7, 8). These findings support the hypothesis
that global patterns of brain activity in AD are progressively
altered, and eventually lead to a loss of ’"dynamic complexity’
(i.e., the decrease in possible functional networks configura-
tions). However, neurobiological correlates of such differ-
ences have remained elusive.

Alzheimer’s disease is a complex, an irreversible neuro-
degenerative disorder, which causes cognitive impairments
leading to dementia. Age is the greatest risk factor, but many
other risk factors have been identified and associated with AD
(9). Genome-wide association studies (GWAS) have identi-
fied numerous genetic variants with small cumulative effects,
which have been aggregated into a polygenic risk score (PRS)
that may explain up to 58-79% of AD heritability and early-
onset AD showing over 90% (10). In addition, it has been
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suggested that the significant polygenic component of AD
risk, could be "a valuable research tool complementing ex-
perimental designs" (11). Any of these genes contribute to
amyloid accumulation, tau protein misfolding, the innate im-
mune response, regulation of endocytosis, and proteasome-
ubiquitin activity (12—14). This pathology propagates along
predefined neuronal pathways (15). Indeed, functional brain
imaging (fMRI and PET) and spatial patterns of neurodegen-
eration in AD mirror the anatomy of functional brain net-
works (16-19), of which the Braak staging is the most promi-
nent candidate (20). Based on the tau protein aggregation
pattern along interconnected neuronal pathways, they have
defined 6 severity stages. Stages >3 present with the onset of
AD-like symptoms and correlate with pathology in entorhinal
and hippocampal areas, from which further cortical spread
leads to increased deterioration of the patients. We there-
fore here explored whether any genetic associations related
to AD are explainable by functional brain networks analysis
and, in particular, their non-stationary nature. This selective
pattern of neurodegeneration can be seen in anatomical MRI
studies from AD patients (16, 21), which have confirmed the
Braak staging with the onset of tissue loss in the entorhi-
nal area, the hippocampus, the ventral striatum and the basal
part of the forebrain in early stages of AD (22). Especially
the latter brain structures are well known for their high con-
tent of cholinergic neurones (23) with long-reaching afferents
terminating in the cortical mantle and hippocampus. These
projections play a critical role in learning and memory pro-
cesses (24, 25) and are severely diminished in patients with
AD (26, 27), which prompted the development of cholinergic
treatments as therapy for AD patients. The two views are not
mutually exclusive as tau also aggregates in cholinergic cells
(28) and presumably terminals (29) thereby compromising
cholinergic tone in these target structures. Since these also
comprise cortical elements their inclusion in and correlation
with the dFC network metrics appears warranted.

Methods

A. Participants and Cohorts. Data used in this study
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data base. We downloaded demographic,
clinical and MRI data from N = 315 participants. The main
inclusion criteria was that the fMRI datasets were acquired
using the same resting-state protocols (see the Imaging
Datasets Section). The 315 participants were selected from
Healthy Controls (HC), Mild cognitive Impairment (MCI),
and Alzheimer’s Disease (AD) groups. Demographic and
clinical characteristics of the participant averaged across
each group were shown in Table 1.

Imaging Datasets and Processing. We analysed resting-
state functional MRI (rs-fMRI, or fMRI in the text) data from
315 individuals. fMRI were acquired using the ADNI-3 basic
EPI-BOLD protocol (details at ADNI Imaging Protocol) and
in (30). In short, the participants had their scans taken for up
to 10 minutes using the same two-time accelerated 37" scan-
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Table 1. Participants demographic and clinical characteristics.

Demographics Healthy MCI AD
Number 141 128 46

Sex (F/M) 68/73 52/76 17/29
Age (sd) — years 80(6) 77(5)* 80(6)
Clinical Scores

MMSE 28(4) 27(3) 22(4)%9

Abbreviations: AD — Alzheimer’s Disease, MCI — Mild Cognitive Impairment; F — Fe-
males; M — Males; sd — standard deviation. * significant difference (i.e., p < 0.01)
when comparing with HC. o significant difference (i.e., p < 0.01) when comparing
with MCI.

ners, following an even/odd interleaved axial-slicing (inferior
to superior) of 3.4mm with (3.4375mm)? pixels (FOV =
220 x 220 x 163mm; P >> A phase encoding; TE = 30ms;
TR = 3000ms).

Image pre-processing, including brain extraction, registration
to standard MNI space, and brain tissue segmentation was
carried using FMRIB’s pipeline £s1_anat (31) at its de-
fault settings. Pre-processing of fMRI was done by apply-
ing the FMRIB’s Expert Analysis Tool, FEAT, resulting in
voxel-wise Blood-Oxygen Level-Dependent (BOLD) signals
of N7 = 197 data points, or in 197 x TR acquisition times.

Construction of Dynamic Functional Networks. Corti-
cal regions — defining the network nodes — are based on ei-
ther the Juelich (JBA) (32) or the Harvard-Oxford (H-OBA)
(33) Brain Atlas for each participant’s fMRI. This resulted in
2 cortical parcellations of N,,,q. = (48 +21) or 121 nodes
(regions/parcels), respectively. Details of the atlases in Ta-
ble 5. JBA is a three-dimensional atlas containing cytoarchi-
tectonic maps of cortical areas and subcortical nuclei. The
atlas is probabilistic, which enables it to account for varia-
tions between individual brains. The signal of each node is
determined by averaging fMRI BOLD signals across the re-
gional voxels. We then define a functional link by the Pear-
son’s correlation coefficient, p; ;, between all possible node
pairs (node - ¢; and node - j). See for example our earlier
work (2), for details on networks construction from resting-
state fMRI data. We also set a 99% significance threshold
to the value of each pair-wise correlation to remove spuri-
ous correlations. That is, all pair-wise correlations that were
not significant at p < 0.01 were excluded from any further
analyses. This definition of functional links as a pair-wise
correlation between regional BOLD time-series, results in a
single-subject, symmetric (undirected), weighted (with posi-
tive and negative weights), functional network that was build
on statistically significant (temporal) interactions between its
nodes.

In more details, the dynamic functional network (dFN) of
each participant, was built using half-overlapping sliding
windows of the node signals. Specifically, t,, = mAt/2,
with m =0,1,... < Np/At, and At = 20 data points — ac-
counting to 1 minutes of scan time. The exploration of win-
dow length on dFC networks and their characteristics, as well
as optimal window-length for the analysis of fMRI data has
been described previously (34). Here, t,, is a sliding time-
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window, whose (sliding) properties were defined by a multi-
plication factor (m) of the window length (At), and the full
length of the BOLD signal (N7). As aresult, p; ; changes
in time depending on the start ¢,,—g of the sliding window.
We use the significance threshold from the FC on the entire
BOLD time series, given by p; ;(t7) for each participant, to
threshold the dFN p; ;(ty,). This corresponds to the sliding-
window correlations being higher or equal than the corre-
sponding correlations on the window from the entire BOLD
signal (i.e. t7 = 197+ TR ). Consequently, when using the
H-OBA and a sliding window of At = 20 points (resulting
in 18 windows over the total signal), the average percentage
of links discarded was 28%, whereas when using the JBA,
the average percentage of discarded links per participant was
30%.

Characterisation of Functional Networks. We charac-
terised functional connectivity in three study groups depend-
ing on the importance of the network nodes. A straightfor-
ward method of assessing the importance of a network node
is to compute its centrality. The centrality of a node is a
measure that quantifies how important or influential a node
is within a network. Centrality can be expressed in various
ways; thus there are multiple types of centrality measures.
We characterised the importance of each node in the dynamic
functional networks of HC, MCI, and AD individuals by cal-
culating the node strength and eigenvector centrality. We
analyse these two, basic centrality network measures from
the N, odes X Npodes correlation matrices of each participant,
based on using the sliding window approach described in the
section above.

A.1. Node Strength. The simplest measure of network cen-
trality is the so called degree centrality, or simply node de-
gree, which represents the number of connections of a node
to other nodes in the network. In weighted networks, this
corresponds to the node strength, which is a measure of the
strength of the functional connections of a node 7 (for a sin-
gle Nyodes X Npodes network). For dFC networks, the node
strength is calculated using the equation below:

Npode

Z Pt (Za.]) (1)
j=1

Iﬁ:tA (Z) =

Where i and j are node indices, tA =t € [tg, to + At] slid-
ing time window of the size At. p;, is an element of the
correlation matrix representing the strength of the pair-wise
correlation between pairs of nodes (¢, ) within a sliding win-
dow tA.

A.2. Eigenvector Centrality. Eigenvector centrality is the cen-
trality measure which is based on the assumption that con-
nections to more influential nodes are more important than
connections to less relevant nodes, the measure also takes the
centrality of the neighbours into account (). In simple terms,
nodal eigenvector centrality is decided based on the princi-
pal eigenvector, which explains most variance in data. The
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main principle is that links from important nodes (as mea-
sured by weighted degree centrality) are worth more than
links from unimportant nodes. All nodes start off equal,
but as the computation progresses, nodes with more links
start gaining importance. Their importance also influences
the nodes to which they are connected. After re-computing
many times, the values stabilize, resulting in the final values
for eigenvector centrality. Eigenvector centrality was calcu-
lated according to the equation below, where A denotes the
largest eigenvalue and e(7) denotes the corresponding princi-
pal eigenvector, that is a centrality score e(j) for each node 4
in an undirected network.

Nnpode

ein (D) =A"" D7 pialing)eld) 2)
j=1

From the above equation, the eigenvector centrality e(7) of a
node i is given by the sum of the values within the principal
eigenvector corresponding to direct neighbours proportional
to the sum of the scores of the node’s network neighbours,
where A is a constant and the sum is over all nodes. Eigen-
vector centrality is scaled by the proportionality factor A~!.
Here pic(to,49+a¢ 18 an element of the correlation matrix
representing the strength of the pair-wise correlation between
pairs of nodes (z, j) within a sliding window. Defining a vec-
tor € whose elements are the e(4), results in gé = A€, meaning
that the vector of centralities is an eigenvector of the correla-
tion matrix.

B. Genetic Data. Microarray gene expression data from
post-mortem healthy human brains were downloaded from
the Allan Human Brain Atlas (AHBA) (35). The atlas con-
sist of 926 brain regions; each region tested using an array
of 58,692 probes that correspond to 29,181 distinct genes.
Among all genes and regions we analysed those of interest
for this study. The 926 regions were downsampled to 121
regions of the JBA, using the detailed anatomical labels pro-
vided by AHBA. Genes of interest were selected fromThe
Human Protein Atlas (HPA) database, which generates inte-
grated human gene-associations from curated databases and
text mining. The Human Protein Atlas consists of ten sep-
arate sections, each focusing on a particular aspect of the
genome-wide analysis of the human proteins. We selected
for further analysis 71 (out of 84 found in the database) genes
associated with Alzheimer’s disease (ADG), which were also
mapped by AHBA. Using this procedure we also obtained 13
(out of 17 from the database) genetic variants associated with
the cholinergic system AChG. Given the involvement of the
cholinergic system in the early stages of AD, we sought to ad-
dress the question: How do genetic variants associated with
the brain cholinergic system contribute to functional network
involvement in AD? It should be noted that, the difference
between the number of genes found in the HPA and genes
used in the analysis comes from the fact that not all genes
identified in the database were found in the AHBA atlas.

Using this procedure, we obtained either 121 x 71 or
121 x 13 gene-variants’ matrix, for ADG and AChG vari-
ants respectively. These matrices were used for further anal-
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Fig. 1. Cortical maps of gene expression across the Juelich Atlas regions. (upper panel) The first principal component of the ACh gene co-variations with the JBA regions.
(lower panel) The first principal component of the AD gene co-variations with the JBA regions. In both panels cortical maps of positive coefficients of the PCA are given on
the left side and negative on the right. List of regions and their ranks is summarised in Table 2. Common regions for positive coefficients: amygdala group, hippocampal-
amygdaloid transition area, corticospinal tract, fornix, lateral and medial geniculate and mamillary body and insular cortex. Differential regions: uncinate fascicle and superior

occipito-frontal fascicle (both found only in AD-associated-gene maps).

ysis. To obtain a single vector that explains the most vari-
ations in genetic data across brain regions, we performed a
principal component analysis (PCA) on the ADG and AChG
matrices. We then used the first principal component, for
further detailed analysis and the comparisons with the net-
work metrics derived from the fMRI data. To this end, we
correlated the first principal component to the node strength
and eigenvector centrality cortical maps. In a final step,
we selected genes whose expression correlated to the net-
work metrics and visualised common and distinct trends
across the measures. Specifically, we constructed N, oges X

Nyenes /propertics matrix [Fig. 2(A: left panel)].

C. Statistical Analysis. Our functional networks were con-
structed on Pearson’s correlation (p), which represents
strength of correlation between regional BOLD signals (time
series of regional activity). Due to non-uniform distribution
of functional correlations in the brain, network models like
ours also show non-normal distribution. Hence, we used non-
parametric statistical test to differentiate between nodal mea-
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sures across individual networks. Changes at the nodal level
across cohorts were analysed by means of the non-parametric
Kruskal-Wallis (KW) test (36). In addition, to carry this
test, we created 100 independent cohort realisations, where
each realisation randomly selects 50 participants (with re-
placement and using a 35 : 15 male-to-female ratio) of each
cohort (AD, MCI, and HC). Thus, for each realisation and
pair of cortical regions (4, j), there are 50 + 50 + 50 = 150
sampled correlations Pi?po,towt] (i,7) (with s =1,...,150)
representing the (7,7)-th functional-link’s weight distribu-
tion across the cohorts. The KW null hypothesis is that
this data come from the same continuous distribution — i.e.,
prw (i,7) > 0.05 — whereas the alternative is that it comes
from multiple distributions — i.e., pxw (¢,7) < 0.05. As a
result, we have a pr (4, 7) matrix for the static correlations
(Peefo, Ny (i,5)) for each realisation (sampled participants)
and a set of prw (4, 4; to, At) matrices for the dynamic cor-
relations (pye(ry, 1+t (4:7))-
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Fig. 2. Principal component analysis of gene co-expression across the Juelich Brain Atlas (JBA). (A) Right panel: Heat maps of the first principal component of the AChG
and ADG gene co-variations within the JBA regions. List of regions and their ranks is given in S| Table 2. Left panel: Heat map of association between all 13 ACh genes
and JBA regions. (B) Plot of the first principal component of the AChG and ADG gene co-variations within the JBA regions. (C) A scatter plot of the correlation between 1°5¢
principal component of AChG and ADG polygenic scores for cortical associations. p=0.95 p << 10~¢.

Results

Our main analyses were based on fMRI data from a sam-
ple of 315 individuals from three clinical groups: healthy
controls, mild cognitive impairment and Alzheimer’s dis-
ease. Dynamic functional networks were analysed across the
three groups using a sliding window approach applied to the
Juelich Brain Atlas regional BOLD-signal time series. The
replication analysis was performed on the same subjects us-
ing another brain parcellation, with a lower spatial resolu-
tion. Genetic variants associated with Alzheimer’s disease
and the cholinergic brain pathways were mapped onto brain
regions (of 2 brain atlases), and correlated with the dynamic
functional brain networks’ metrics to highlight different mea-
sures of cortical organization across different modalities and
scales.

D. Gene Expression. To test the hypothesis that the expres-
sion of the genes of interests in the brain is associated with
the observed differences in dFC between the three groups, we
utilised gene expression maps from the Allan Human Brain
Atlas. We used two sets of gene co-expression maps in the
brain: one that consists of genes implicated with Alzheimer’s
disease (71 genes) and one that consists of gene variants as-
sociated with the cholinergic brain pathways (13 genes). To
reduce the dimensionality of the genetic data we used their
respective principal components, which capture the over-
all association patterns of the genes x brain regions maps.
Fig. 1 shows brain maps of the first principal component
coefficients for ADG and AChG co-expression in JBA re-
gions. Here, for the purpose of brevity we show only the
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first 10 nodes (with the highest coefficient) for both maps.
Although, visually very similar, the two maps differ in the
regions mapped out. Interestingly, most of the regions are
spatially very close to one another. Common regions for pos-
itive coefficients: amygdala group, hippocampalamygdaloid
transition area, corticospinal tract, fornix, lateral and medial
geniculate and mamillary body and insular cortex. Differen-
tial regions: uncinate fascicle and superior occipito-frontal
fascicle (both found only in AD-associated-gene maps).

Based on 71 genes associated with AD, we found that the first
principal component of gene expression explains 51.16% of
co-expression variance. Adding of further four components
explained 72.20% of total variance. Interestingly, 13 ge-
netic variations associated with the cholinergic system in the
brain explained 72.33% of co-variations across the JBA cor-
tical parcellation (where the first five components explained
92.06% of the total variance in data). Figure 2 depicts heat-
maps of AChG x JBA regions co-variations and coefficients
of the first principal component of AChG and ADG associa-
tions. Their correlations with the dFC measures are described
section "Association between Functional Networks and Gene
Expression".

The first principal component coefficients of ADG and AChG
patterns of variations associated with H-OBA cortical re-
gions is shown in Supplementary Fig. 5. Given that only
sub-cortical H-OBA regions’ labelling is lateralised, separate
analysis was performed on either sub-cortical or cortical re-
gions of this atlas. The patterns of associations, in terms of
their left-right asymmetry are very similar to those obtained
for the JBA (see Fig. 1). It should be also noted that the sep-
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Table 2. Regions of the Juelich Atlas showing either strong positive or negative associations with gene expression of the cholinergic pathways (AChg) in the brain or

Alzheimer’s disease (ADD) A percentage of first 10% regions is shown.

AChG-positive PC coeff.

ADG-positive PC coeff.

Amygdala-centromedial group L
Amygdala-centromedial group R
Amygdala-superficial group L
Hippocampus hippocampal-amygdaloid transition area L
Corticospinal tract R
Corticospinal tract L

Fornix

Lateral geniculate body R
Lateral geniculate body L
Mamillary body

Medial geniculate body R
Medial geniculate body L
InsulaIgl L

Amygdala-centromedial group L
Amygdala-superficial group L
Hippocampus hippocampal-amygdaloid transition area L
Corticospinal tract R

Corticospinal tract L

Fornix

Lateral geniculate body R

Lateral geniculate body L
Mamillary body

Medial geniculate body R
Superior occipito-frontal fascicle L
Uncinate fascicle L

Insula Igl L

AChG-negative PC coeff.

ADG-negative PC coeff.

Broca’s area BA45 L

Inferior parietal lobule PFm L

Primary auditory cortex TE1.2 L

Primary somatosensory cortex BA2 R

Secondary somatosensory cortex / Parietal operculum OP2 L
Secondary somatosensory cortex / Parietal operculum OP2 R
Superior parietal lobule SM R

Superior parietal lobule 7A R

Superior parietal lobule 7M L

Superior parietal lobule 7PC L

Superior parietal lobule 7P R

Visual cortex V2 BAI8 R

Visual cortex V3V R

Inferior parietal lobule PFm L

Primary somatosensory cortex BA2 R
Primary somatosensory cortex BA3a R
Secondary somatosensory cortex / Parietal operculum OP2 L
Superior parietal lobule SM R
Superior parietal lobule 7PC L
Superior parietal lobule 7P R

Visual cortex V1 BA17R

Visual cortex V2 BAI§ R

Visual cortex V3V L

Visual cortex V3V R

Visual cortex V3V R

Visual cortex V3V R

Abbreviations: L-left; R—right; BA-Brodmann Area; PC—principal component.

arate mapping of cortical and sub-cortical regions of the H-
OBA showed that AChG are predominately associated with
more central regions, such as parahippocampus and cingulate
cortices, and ADG are predominately associated with the cor-
tical surface regions of the, e.g, occipital and temporal lobes
(see Supplemant Table 4).

E. Association between Functional Networks and
Gene Expression. In addition to the brain-gene-expression
maps, we also examined the relationship between maps and
dFC metrics of interest. In particular, building on the emerg-
ing gene-expression and cortical-architecture relations, we
examined association between the dFC metrics (the node
strength and eigenvector centrality) and the first principal
component of the ADG and AChG cortical variations. This
was done by correlating the first principal components of
genetic X regional co-variations with the pair-wise contrast
between either the node strength or eigenvector centrality
across the three groups, providing in total of 6 values for each
measure indicating weights of correlations. Table 3 shows
correlations between the first principal component and the
two network measures, for the polygenic risk (ADG) and for
the cholinergic pathway genes (AChG). As an illustration,
Figure 3, shows the correlation between AD/HC contrast for
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eigenvector centrality and AChG and ADG principal com-
ponents. Given the high similarity in the two graphs we also
calculated correlation between the two principal components,
which reached a value of 0.95 (p << 10%). We focused only
on the first principal component, because in both cases they
explain the highest portion of the variance in gene expres-
sion in the brain. We argue that the relatively high AChG co-
expression in the brain (quantified by the 1st PC) most likely
reflects a property of the JBA parcellation, which includes
the superficial white matter fibers just beneath the specific cy-
toarchitecturally defined cortical areas. Another, equally pos-
sible explanation is the division of the hippocampus into 10
sub-regions, where the 1st PC of AChG co-expression across
the JBA, could map cholinergic signaling in the hippocampus
(see for example (37)).

F. Dynamic Functional Networks by Clinical Groups.
Finally, we briefly describe behaviour of the dFC networks
in the three groups using the two centrality measures: the
node strength and eigenvector centrality. Fig. 4 shows the 2
network metrics across 121 regions (nodes) of the JBA, when
averaged across the sliding windows. We observed statistical
differences between the groups at the local (nodal) level: The
dFC node strength across the white matter JBA regions differ
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Table 3. Correlation analysis for the first principal component (z-score) of gene
expression data and the two dFC metrics, eigenvector centrality (z-score) and node
strength (z-score).

e K
AChG ADG AChG ADG
AD/MCI .30® .33 .27¢ 27°¢
AD/HC .36° .36% .26 .26¢
MCI/HC 214 168 —.084 —.11¢

Abbreviations: e — eigenvector centrality; x — node strength;
AD - Alzheimer’s Disease, MCI — Mild Cognitive Impair-
ment; AChG — genetic variants of the Cholinergic system;
ADG - genetic variants associated with AD; A — eigenvec-
tor centrality; x — node strength; correlation coefficients and
their respective significance values (p) are given in the brack-
ets where @ : p << 179, b p << 1674 ¢ p <= .003;¢ :
p=.02;¢:p>.1
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Fig. 3. The correlation between dFC eigenvector centrality and genetic variations.
Contrast in eigenvector centrality (z-score) between AD and HC group was corre-
lated with the first principal component (z-score) of gene expression associated with
AD (upper panel) and cholinergic system (lower panel).
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Fig. 4. Dynamic functional connectivity network metrics in in AD, MCI and HC
groups. (Upper panel) eigenvector centrality and (lower panel) node strength,
shown when averaged over the 121 Juelich Brain Atlas regions.

between the AD and MCI and AD and HC groups, where the
AD subjects show higher values than the other two groups.
Similar statistical differences also exists for the JBA visual
cortex areas, but the AD subjects showed lower node strength
than the other two groups. The eigenvector centrality re-
vealed more ’irregular’ differences, with the parietal and the
occipital nodes’ being consistently different when compar-
ing AD and MCI and HC subjects. A more comprehensive
analysis of the dFC in the three groups (38), showed how the
fluctuations in the dFC pair-wise links evolve over the acqui-
sition time. Here, we only show the averaged values of these
measures for the purpose of visualising their values across
the JBA regions.
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Discussion

Here, we examined putative associations between genetic
variations associated with Alzheimer’s disease and dynamic
functional connectivity from data of 315 individuals from
three age-matched and sex-balanced clinical groups: AD,
MCI, and healthy seniors. Our results provide evidence of
the relationship between dynamic functional connectivity
and the gene expression in the brain associated with AD,
especially those co-expressed in the cholinergic pathways.
We show that measures of centrality of any given node across
the dynamic functional connections, correlate with the level
of gene expression. Higher gene expression is associated
with higher positive contrast in nodal importance between
AD and MCI and HC, and this was most prominent in white
matter regions. Lower genetic risk is associated with the
higher (by absolute value) negative contrast between the AD
and MCI/HC groups in the parietal and visual areas.

Dynamic functional connectivity has been identified as a
better predictor of cognitive impairment in AD patients,
compared to conventional static FC analysis. Numerous
studies have provided compelling evidence that the clas-
sification of AD from MCI or HC subjects significantly
improved when using the dFC networks as a defining feature
of altered brain activity in AD (5, 39-41). However, despite
this evidence for its utility, how dFC relate to the brain
biology at the microscale remains elusive. In this study,
we investigated dFC network metrics and genetic variations
associated with AD, in an attempt to identify how large-scale
network dynamic in AD relates to the microscale properties
of cortical vulnerability to the disease, i.e., to variations in
the regional gene expression. Our aim was to add a new,
genetic dimension to the differences in dFC, which has been
established between AD patients and healthy subjects, yet
only in terms of dynamic metastability and nodal importance
in the dFC. We aimed specifically to compare, dynamic
metastability and nodal importance using the parcellation
of the Juelich cytoarchitectonic atlas. This is a multimodal
brain atlas created to delineate white matter fibres’ pathways
with known associated functions, as well as major white
matter tracts and grey matter regions (32).

An important question in mapping neurodegenerative pro-
cesses in AD remains — how the brain maps of gene expres-
sion are related to brain functional connectivity maps. By
incorporating information about regional gene expression in
the brain to annotate dFC changes in AD and MCI subjects,
neural gene expression maps have been created as innova-
tive tools explaining sources of variations in neuroimaging
features across a range of neurodegenerative disorders, in-
cluding Parkinsonism and dementia (42-44). Here, we pro-
vide the first attempt to explore this issue mapping genes
and functional connectivity in the AD continuum. For this,
we incorporated information about regional gene expression
in the brain to annotate dFC changes and contrasted these
with MCI and control subjects. First, we produced gene
expression maps onto the JBA regions, using genetic vari-
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ants associated with AD (71 genes in total). Secondly, we
also mapped genes associated with the cholinegic brain path-
ways (13 genes). This is based on the rationale that during
MCT and AD there is a progressive loss of forebrain choliner-
gic neurons giving rise to a widespread cortical dysfunction
(for review see (45, 46)). Interestingly, the regions show-
ing AD-related-polygenic association largely overlap with
those showing cholinergic-pathways-related genetic associa-
tion and include: amygdala group, hippocampal-amygdaloid
transition area, corticospinal tract, fornix, lateral and medial
geniculate and mamillary body and insular cortex. That is,
the maps are similar at the regional level, but they usually
show differences in the regional sub-areas and/or their inter-
hemispheric homologous. While regions associated with the
cholinergic pathways gene co-expression are highly sym-
metrical and found in both hemisphere equally, regions as-
sociated with AD-related genetic variations are asymmetri-
cally distributed across the hemispheres (see Table 2). Areas
with highly emotional functions are more associated with AD
genes in the left hemisphere, sensory information processing
is more in the right. This is the first study of this kind to link
cholinergic genetic associations with fMRI. The data there-
fore suggest that there is no hemisphere-selective vulnerabil-
ity to cholinergic degeneration and functional loss, but rather
both hemispheres are affected in the same manner in AD.
Our findings are consistent with early reports on the extent of
left-right symmetry in the cholinergic deficits in AD brains,
which was found to be symmetrically distributed compared to
more asymmetrical morphological lesions (47, 48). Table 2
shows that it is the ADG variants which predominantly map
out regions in the left hemisphere. In patients with AD, the
left hemisphere is more severely affected, both structurally
and metabolically (49-51). In addition, a trend for faster grey
matter loss in the left hemisphere was also observed in age
matched controls (52). Our results indicate that the variations
in lateralisation of the brain tissue loss in healthy ageing, but
also in AD, may be explained by AChG and ADG variants
expression across the brain structures. As supported by early
studies in AD, such loss is more symmetrical at the early
stages, while becoming predominantly associated with the
left hemisphere as the disease progresses (20). We have pre-
viously reported similar heterogeneity in brain atrophy across
the cortical surface, albeit in different from of dementia (16)
as well as in healthy ageing (53). This was validated across
the H-OBA sub-cortical regions (see Table 4), where seven
out of ten regions associated with ADG variants are in the
left hemisphere. However, given the differences in the res-
olutions, but also in labelling the regions in the two atlases,
these results should not be considered as 1:1 mapping at the
regional level.

Conclusion

In summary, we aimed to investigate the relationship be-
tween genetic variations and dynamic functional connec-
tivity in Alzheimer’s disease, mild cognitive impairment
and healthy individuals. Linking gene expression and cor-
tical regions provided evidence of variations in terms of
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hemisphere-selected vulnerability to AD. Furthermore, our
findings indicated similarity in genetic variations associated
with Alzheimer’s disease and also associated with the brain
cholinergic pathways and the drivers of dynamic functional
connectivity aberrations in the disease. The results may pro-
vide a possible genetic substrate for changes in the metastable
dynamic of cortical networks in AD, and provide evidence of
genetic associations with asymmetric changes in the cortical
surface in healthy ageing and Alzheimer’s disease. Our work
uncovers a fundamental feature of the brain connectivity or-
ganization at differential scales.
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Supplementary Note 1: Supplementary Mate-
rial

A. Gene expression mapped onto the Harvard-Oxford
Atlas regions. Validation of gene expression in the JBA re-
gions, was performed using the Harvard-Oxford Atlas (H-
OBA), one of the atlases implemented in FSL that is based
on similar probability maps but with the lower resolution.
The H-OBA is a probabilistic atlas covering 48 cortical and
21 subcortical structural areas, derived from structural data
and segmentation, provided by the Harvard Center for Mor-
phometric Analysis (see for example (54)). Given that the
labelling of the H-OBA, which does not differentiate left and
right cortical regions, but only sub-cortical, we performed
analysis on either 48 cortical or 21 sub-cortical regions sepa-
rately. This was done using the same approach as described
in Section B.

We used two different polygenic data sets, whose variations
were mapped onto the brain: one that consists of genes impli-
cated in Alzheimer’s disease (71 genes in total) and the oter
one that consists of gene variants implicated in the cholin-
ergic brain pathways (13 genes in total). To reduce the di-
mensionality of the genetic data, we used their respective
principal components, which capture the overall association
patterns genes X brain regions (for 2 brain atlases). Based
on 71 genes associated with AD (or ADG in the text), we
found that the first principal component explains 41.69% of
co-expression variance (while the first three components have
explained 66.71% variances). Similarly to the gene expres-
sion analysis for JBA regions, 13 genetic variations associ-
ated with the cholinergic system in the brain (AChG), ex-
plained 50.39% of co-variations across the JBA cortical par-
cellation (where the first two components explained 19.06%
of the total variance in data). In the subsequent analysis
of gene expression across 48 cortical and 21 subcortical re-
gions separately, the following patterns emerged: The first
principal component of AChG associations with the H-OBA
regions explained 68.68% (across 48 cortical regions) and
48.89% (across 21 subcortical regions) of variance. The first
principal component of ADG associations with the H-OBA
regions explained 41.68% (across 48 cortical regions) and
52.22% (across 21 subcortical regions) of variance.
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Fig. 5. First principal components of gene expression association with (upper panel)
48 cortical regions of the Harvard-Oxford Atlas and (lower panel) 21 subcortical
regions of the H-O brain atlas. Abbreviations: ADG — AD-associated genes; AChG
— Cholinergic-pathways genes .

Table 4. Sub-cortical and cortical regions of the Harvard-Oxford Brain Atlas which
show strong positive associations with gene expression of the cholinergic pathways
(AChG) in the brain or Alzheimer’s disease (ADG). The first 10 regions are listed for
both divisions.

ACh-positive PC coeff.
sub-cortical hubs

ADG-positive PC coeff.

left pallidum right pallidum
right pallidum left caudate
left caudate left pallidum
right caudate right accumbens
left putamen right caudate

right lateral ventricle

right putamen

right accumbens

left lateral ventrical

left thalamus

brain-stem

cortical hubs

parahippocampal gyrus, anterior

left putamen

left accumbens
right putamen

left lateral ventrical
left thalamus

left amygdala

occipital pole

subcallosal intracalcarine
parahippocampal gyrus, posterior supracalcarine
occipital fusiform gyrus cuneal
insular occipital fusiform gyrus
lingual gyrus lingual gyrus

cingulate gyrus, anterior
temporal fusiform, posterior
cingulate gyrus, posterior
temporal occipital fusiform
temporal fusiform, anterior

parietal operculum
lateral occipital, inferior
postcentral gyrus
precuneous

lateral occipital, superior
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A Gene expression mapped onto the Harvard-Oxford Atlas regions

Table 5. Juelich Brain Atlas regions. The mid lines indicate border between
grey and white matter regions.

Indices Region
172 Anterior intra-parietal sulcus hIP1 L/R
3/4 Anterior intra-parietal sulcus hIP2 L/R
5/6 Anterior intra-parietal sulcus hIP3 L/R
7/8 Amygdala centromedial group L/R
9/10 Amygdala laterobasal group L/R
11/12 Amygdala superficial group L/R
13/14 Broca’s area BA44 L/R
15/16 Broca’s area BA45 L/R
17/18 Hippocampus cornu ammonis L/R
19/20 Hippocampus entorhinal cortex L/R
21/22 Hippocampus dentate gyrus L/R
23/24 Hippocampal-amygdaloid transition area L/R
25/26 Hippocampus subiculum L/R
27/28 Inferior parietal lobule PF L/R Indices Region
29/30 Inferior parietal lobule PFcm L/R 92/93 Acoustic radiation R/L
31/32 Inferior parietal lobule PFm L/R 94 Callosal body
33/34 Inferior parietal lobule PFop L/R 95/96 Cingulum R/L
35/36 Inferior parietal lobule PFt L/R 97/98 Corticospinal tract R/L
37/38 Inferior parietal lobule Pga L/R 99 Fornix
39740 Inferior parietal lobule PGp L/R 100/101  Inferior occipito-frontal fascicle RL
41/42 Primary auditory cortex TE1.0 L/R 102/103 Lateral geniculate body R/L
43/44 Primary auditory cortex TE1.1 L/R 104 Mamillary body
45/46 Primary auditory cortex TE1.2 L/R 105/106 Medial geniculate body R/L
47/48 Primary motor cortex BA4a L/R 107/108 Optic radiation R/L
49/50 Primary motor cortex BA4p L/R 109/110 Superior longitudinal fascicle R/L
51752 Primary somatosensory cortex BAI L/R 111/112  Superior occipito-frontal fascicle R/L
53/54 Primary somatosensory cortex BA2 L/R 113/114 Uncinate fascicle R/L
55/56 Primary somatosensory cortex BA3a L/R 115/116 Insula Id1 L/R
57/58 Primary somatosensory cortex BA3b L/R 117/118 Insula Igl L/R
59/60 Sec som cortex/Parietal operculum OP1 L/R 119/120 Insula Ig2 L/R
61/63 Secondary SC/OP2 L/R
63/64 Secondary SC/OP3 L/R
65/66 Secondary SC/OP4 L/R
67/68 Superior parietal lobule 5Ci L/R
69/70 Superior parietal lobule SL L/R
T1/72 Superior parietal lobule SM L/R
73/74 Superior parietal lobule 7A L/R
75176 Superior parietal lobule 7M L/R
77178 Superior parietal lobule 7PC L/R
79/80 Superior parietal lobule 7P L/R
81/82 Visual cortex V1 BA17 L/R
83/84 Visual cortex V2 BAI§ L/R
85/86 Visual cortex V3V L/R
87/88 Visual cortex V4 L/R
89/90 Visual cortex V5 L/R
91/92 Premotor cortex BA6 L/R
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