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Abstract10

Sexual networks often have heavy-tails, where a small number of exceptional individuals in a11

population have many more sexual partners than the average (e.g., more than five standard12

deviations). Heavy-tails pose challenges when surveying this group, as these exceptional in-13

dividuals are uncommon in the population (and so hard to detect), but have disproportionate14

impact on epidemiological questions, such as those related to the spread of sexually transmit-15

ted diseases. In essence, omitting these individuals is a severe error. In this modeling study,16

we use prior estimates of the distribution of sexual partners amongst men who have sex with17

men to explore the implication of different sample sizes on survey estimates. We find that18

even large surveys consistently fail to capture the variance of the sexual network. Surveys of19

heavy-tailed sexual networks should be designed with this high variance in mind so as not to20

underestimate the disease dynamics. The failure to adequately capture the variance within21

a heavy-tailed network has strong implications for infectious disease dynamics and modeling22

as disease dynamics are often driven by the heavy-tail.23
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Introduction24

In early 2022, mpox (formerly known as monkeypox) emerged out of traditionally endemic25

areas of eastern and central Africa and was identified across the world [1]. Monkeypox virus,26

the virus which causes mpox, was traditionally thought to have lower epidemic potential due27

to low rates of human-to-human transmission [2]. Human-to-human transmission typically28

occurs by close and prolonged skin-to-skin contact, in addition to fomites and respiratory29

droplets [3]. Prior epidemiological analysis and modeling studies had estimated basic repro-30

duction numbers less than 1, indicating low potential for epidemic growth [2, 4]. However,31

many gay, bisexual, and other men who have sex with men were being diagnosed after re-32

ported sexual contact [5], suggesting sustained mpox spread. Mathematical modeling studies33

were conducted to explain mpox spread despite the thought that the disease should stutter34

to a stop. These studies indicated that the highly diffuse sexual networks among men who35

have sex with men may allow for the virus to achieve a basic reproduction number greater36

than one [6]. Furthermore, Endo and colleagues have referred to their findings as evidence37

of ”heavy-tailed sexual contact networks”, a concept related to probability distributions in38

which probability density for larger values is higher than that of the exponential distribution.39

This phenomena relates to the superspreader phenomena which has been observed in other40

infectious disease processes where a few infections generate a large number of infections due41

to large variations in individual infectiousness[7, 8]. In the context of sexual networks, there42

is extremely high variability between reported sexual partners with a very small proportion43

of individuals having accounting for most sexual partners (Fig. 1). These few, exceptional44
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individuals, greatly increase the population-level basic reproductive number. The outbreak45

of mpox has shown that understanding the role of these sexual networks is vital in modeling46

the potential for infectious disease transmission.47

The role of sexual networks on the transmission dynamics of infections and sexually48

transmitted transmitted infections more specifically has been well understood [9–12]. As49

more contacts are made, there are more opportunities for infected hosts to transmit the50

pathogen to their contacts. These insights have been integrated into many mathematical51

models estimating how infections move within sexual networks [13, 14]. However, many of52

the data used to generate the network models are limited in the number of participants due53

to the private nature of the data and the vast heterogeneity in sexual practices. As shown by54

Endo et al., the heavy-tail of the number of partners complicates understanding these unseen55

networks [6]. Furthermore, the role that sample size plays in appropriately capturing the56

heterogeneity of these heavy-tailed networks remains largely unexplored. Achieving proper57

estimates for modeling sexual networks is vital in developing strategies for disease control58

and outbreak prevention. In this paper we explore the implications of different sample sizes59

given existing literature on sexual networks.60

Material and Methods61

Data sources62

Following the work of Endo et al. we examine the truncated discrete Weibull distributions63

which were fitted to empirical data from sexual partnerships from the National Surveys of64
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Sexual Attitudes and Lifestyles (NATSAL) from three survey waves: Natsal-2 (1999–2000;65

12,110 participants) (26), Natsal-3 (2010–2012; 15,162 participants) [6, 15]. The NATSAL66

data includes information on the reported number of sexual partners over a given year for67

those aged 18-44. In this analysis we considered only the distribution of partners amongst68

men who have sex with other men (MSM) which were estimated from 409 participants in69

the combined data sets. The Weibull distribution, a continuous probability distribution70

with support for positive real numbers, has two parameters: a scale parameter α and shape71

parameter β. The shape of the distribution is primarily governed by the scale parameter72

with values less than one resulting in more mass towards zero while scale values greater73

than one have more mass in the tails. However, the mass in the tails is greater than that74

of the exponential distribution. When the scale parameter is one, the Weibull distribution75

reduces to the exponential distribution, a distribution which is commonly used to model76

the number of contacts in social networks. In order to account for the discrete nature of77

sexual partners, we passed the continuous estimates generated from the Weibull distribution78

through a Poisson distribution in order to account for the discrete nature of sexual contacts.79

We utilized the parameter estimates for MSM sexual networks from Endo et al. in (Table80

1). These parameters result in a mean number of annual sexual partners of 9.24 amongst81

MSM, however, nearly 70% of the population has fewer than 5 partners, but nearly 5% have82

more than 30 (Fig. 1). The estimates for this distribution are broadly consistent with the83

findings from the 4,904 participant study by Weiss and colleagues who found a mean number84

of annual active partners of 8.5 [13].85
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α β
0.1 1.36e-9

Table 1: Weibull distribution parameters estimates from Endo et al.

Estimation of survey representativeness86

To understand the role of sample size on estimates of the number of sexual partners within an87

MSM network, we generated a synthetic population of 100,000 participants using a truncated88

Weibull distribution to represent the population of MSM and their number of sexual partners89

in a given geography. Similar methods have been described previously [6, 16] to approximate90

the distribution of contacts. We then sampled this synthetic population with increasing91

sample sizes and calculated summary statistics. This process was repeated for 1,000 different92

synthetic populations.93

For each sample size, we calculated several summary statistics including the statistical94

coverage of the true mean number of sexual partners, the mean absolute error (MAE), and95

mean absolute percent error (MAPE). In order to assess the statistical coverage, the sam-96

pled values were fit using a Poisson model and the estimated rate parameter was recorded.97

The use of the Poisson distribution for contacts approximates an Erdos-Renyi model for98

the distribution of contacts in a random network [17]. Erdos-Renyi models are often used99

to parameterize network models for random network connections an have been used exten-100

sively in modeling sexual partnerships [13, 18]. To examine the results in the context of101

epidemiological estimates, we then used the properties of the sample to estimate the basic102

reproduction number, R0, given a recover rate, γ, of 10 days and a contact rate, β, of 0.1%.103

Assuming that sexual partnerships are formed at random and in proportion to their count,104
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we utilized the methodology described in Keeling and Rohani to estimate the contact rate105

using the mean, M, and variance, V, of the number of contacts in the network as shown in106

equation 1 [19].107

R0 =
M2 +V

M

β

γ
(1)

When generating synthetic populations, the heavy-tailed distribution was observed in the108

quantity of individuals who have a greater number of partners(Figure 1).109

Figure 1: Distribution of sexual partners drawn from a truncated Weibull distri-
bution.
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Results110

We found that poor coverage of the true mean number of partners was observed under all111

sampling strategies (Figure 2).112

When examining the estimates, we find that surveys with smaller sample sizes consistently113

underestimated the true number of sexual partners (Figure 5, panel A). Similarly, because114

of this underestimation of the mean number of partners as associated smaller estimated115

variance, the true basic reproduction number was generally underestimated (Figure 5, panel116

B). In essence, it is much more likely to sample individuals with below average number of117

sexual contacts than above average sexual contacts, which consistently biases estimates of118

the mean to be lower than the true value.119

When investigating the average expected bias of the estimate across all iterations of120

a given sample size, we found that there was no clear convergence to a single value for121

bias (Figure 4, panel A). Similarly when examining the average proportion of the true122

variance captured compared to the true variance, we find that the variance was consistently123

underestimated (Figure 4, panel B).124

However as the sample size increased both the mean absolute error and the mean absolute125

percent error began to converge after samples of 2,000 individuals were reached (Figure 3,126

panels A and B).127
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Figure 2: Statistical coverage of the true mean number of sexual partners in the
synthetic population based on survey sample size.

Discussion128

In our study of different surveying approaches of heavy-tailed networks, we found poor129

statistical coverage of the mean number of partners. We found that the average error,130

both on absolute (MAE) and proportional scales (MAPE) decreased rapidly after 2,000131

individuals were sampled. Given the poor statistical coverage and consistent underestimation132

of the true variance of the network, estimates of the basic reproduction number for contact133

networks expected to have heavy tails are bound to be biased far below their true value.134

And the heavier the tail, the larger the bias in estimation of the basic reproductive number135

specifically and transmission rates more generally. In essence, the individuals most influential136
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Figure 3: The estimated and true values of the mean number of sexual partners,
95% confidence intervals from a Poisson regression shown (A). The calculated
and true contact rate given synthetic epidemiological parameters (B).

on transmission are scarce in the population and are unlikely to be sampled.137

These findings suggest that when surveying heavy-tailed social networks, many more138

individuals need to be sampled than is standard in most approaches assuming distributions139

closer to normal. As such, care must be taken to sample a sufficient number of the population140

in order to properly characterize these networks. These findings have strong implications for141

future field surveillance and modeling efforts.142
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Figure 4: The mean value of the bias for the average number of sexual partners
based on the sample size (A). The mean proportion of the variance in the number
of sexual partners recovered as a function of the sample size (B).

Challenges of heavy-tailed distributions143

A key finding of this analysis is that because of extreme events, here sexual partners, the144

mean degree of the network will be poorly measured if insufficient samples of the population145

are taken. As demonstrated in our modeling study, this is further complicated by the fact146

that there did not appear to be convergence to a consistent value of bias as the sample size147

increase. Additionally, because of the large samples required to capture comparatively rare,148

extreme events, the variance estimates in smaller samples will fail to capture the true, larger149

variance of the population. As the proportion of the population in the heavy-tail of the150

distribution increases, the total variance will increase. Thus for the same estimator, more151
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Figure 5: The estimated and true values of the mean number of sexual partners,
95% confidence intervals from a Poisson regression shown (A). The calculated
and true contact rate given synthetic epidemiological parameters (B).

samples will be required in heavy-tailed distributions than distributions with thinner tails.152

Use of the Poisson distribution to model these effects will result in overconfidence in the153

uncertainty surrounding the estimates of the rate parameter due to the high variance of the154

true parameter despite growing sample sizes.155

Infectious disease dynamics156

Early studies of the dynamics of sexually transmitted infections in social networks resulted in157

discovery of reservoirs of infectious diseases due to heterogeneous mixing patterns of partners158

[20, 21]. Dense, heavy-tailed sexual networks allow for higher persistence of infection due159
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to their scale free nature [22–24]. This is in contrast to so called ”small-world” networks160

which are best displayed as ring lattice where local connections tends to die out because161

of local pockets of immunity [16]. Additionally, sexual networks have been shown to be162

highly diffuse with partners traveling across domestic and international boundaries [25, 26].163

Providing reliable estimates for these networks is vital in forming interventions to reduce the164

likelihood of outbreaks and controlling infection. Importantly, the role these networks play165

extends to understanding the dynamics of multi-drug resistance organisms such as Neisseria166

gonorrhoeae [27] and sexually transmitted Shigella flexneri [28]. It is because of the long167

tails of these distributions that there is a higher potential risk for explosive outbreaks and168

persistence with the human population.169

Better characterization of these networks could be performed to supplement the informa-170

tion regarding the number of partners. Information about demographics, travel history, and171

other potential features of a given population could be used to supplement partner informa-172

tion to better capture the true network dynamics. For example, knowledge of participation173

in group sexual activities could allow modelers to better capture information about the174

long tail of sexual activities, estimate this population size and thus inform not only survey175

approaches but also better understand how disease may move within the network.176

Implications for modelers177

These findings suggest that higher rates of survey participants may be needed in order to178

more fully capture the dynamics of these heavy-tailed network. Because the infectious disease179

dynamics of these networks is largely driven by the heavy-tail of the distribution is it vital180
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that care is taken to adequately capture the bias and variance. As we have shown in our181

simulation, depending on the sample size, the estimated basic reproduction number from a182

sample for a pathogen could be 5 times lower than the true value (Figure 5, panel A). This183

has large implications for the anticipated number of cases, potential number of hospitals, and184

depending on the virulence, the number of deaths. Furthermore, different control strategies185

might be adopted with information regarding the basic reproduction number [29].186

Furthermore, modeling studies have shown that when risk-based models are used, the187

binning strategy for risk can have an impact on the inferences [30]. Furthermore, there188

are likely additional spatial, behavioral, and psycho-social phenomena that may need to be189

captured in order to capture how these social networks are connected. We did not assess the190

role of assortative mixing or homophily where those who are more like one another associate191

more strongly. Studies have shown that outbreak dynamics and effectiveness of different192

intervention strategies may differ depending on the overall contact structure and the degree193

of assortative mixing [31, 32]. As more data become available, these demographic, social,194

and spatial features could be user to better capture the tail behavior in models considering195

dense sexual networks. In the absence of data, modeler should be sensitive to the fact that196

existing data may categorically underestimate the true variance in networks and conduct197

sensitivity analyse to capture the fuller range of possibilities.198
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