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Abstract 

With continued advances in gene sequencing technologies comes the need to develop better 

tools to understand which mutations cause disease. Here we validate structure-based network 

analysis (SBNA)1,2 in well-studied human proteins and report results of using SBNA to identify 

critical amino acids that may cause retinal disease if subject to missense mutation. We 

computed SBNA scores for genes with high-quality structural data, starting with validating the 

method using 4 well-studied human disease-associated proteins. We then analyzed 47 inherited 

retinal disease (IRD) genes. We compared SBNA scores to phenotype data from the ClinVar 

database and found a significant difference between benign and pathogenic mutations with 

respect to network score. Finally, we applied this approach to 65 patients at Massachusetts Eye 

and Ear (MEE) who were diagnosed with IRD but for whom no genetic cause was found. 

Multivariable logistic regression models built using SBNA scores for IRD-associated genes 

successfully predicted pathogenicity of novel mutations, allowing us to identify likely causative 

disease variants in 37 patients with IRD from our clinic. In conclusion, SBNA can be 

meaningfully applied to human proteins and may help predict mutations causative of IRD. 
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Introduction 

 As genetic sequencing has become increasingly available and less costly, a growing 

number of patients with clinical presentations of suspected genetic origin are undergoing 

targeted or whole exome sequencing. Despite improved accessibility, the genetic basis of 

disease for a considerable proportion of these patients remains unclear following sequencing3. 

Inherited retinal diseases (IRD), whereby rod and cone photoreceptors degenerate, are a group 

of Mendelian disorders that represent an important causes of vision loss4. With the 

advancement in availability of genetic testing5-8, the lower cost of exome sequencing and the 

prospect of gene therapy for several diseases8, it is becoming a field with increasing promise 

and possibility. However, among patients with IRD, approximately 30% are not assigned a clear 

genetic basis despite classic retinal changes and decrease in visual and retinal function9. 

Though the field of IRD is one of the most advanced in terms of gene therapy trials, patients 

without a genetic diagnosis are not candidates for treatment. For these patients, additional tools 

are needed to better understand the phenotypic impact of identified genetic variants that are not 

among the group of known causal mutations (i.e. variants of uncertain significance -- VUS). 

 Numerous computational tools that aim to predict the phenotype of genetic variants have 

previously been described10-12, many of which were trained based on existing variant 

classifications or combine multiple metrics that use this type of training data13-21. These data can 

be limited by the sparsity of available annotations22, and previous studies suggest that some of 

these algorithms may have considerable false discovery rates23,24. The clinical applicability of 

these approaches has been limited as a result25. Another class of methods uses sequence 

conservation to estimate the likelihood that a particular mutation will have a deleterious 

phenotypic effect26,27. However, sequence conservation is an imperfect proxy for the functional 

importance of a particular amino acid position within a protein of interest; this has been 

previously demonstrated within the context of human immunodeficiency virus (HIV), which has a 

per-base mutation rate approximately 104 times that of the human genome and thus serves as a 
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model for an accelerated rate of genomic evolution1,28,29. Functional in vitro assays can be very 

helpful, such as a high content assay for the RHO gene to characterize genetic variants30. 

These approaches are crucial tools to test each variant, but on a large scale the setup is costly 

and not always feasible for the entire volume of patient-genotype combinations as they require 

the appropriate experimental setup, tissue-type and readout for the particular mutation of 

interest. 

 Structure-based network analysis (SBNA) leverages the application of network theory to 

protein structure data with the goal of quantifying local residue connectivity, bridging 

interactions, and ligand proximity in order to identify amino acid residues that are topologically 

important1,31. Using x-ray crystallography data, it models proteins as networks of connected 

amino acids to quantitatively estimate the topological importance of each amino acid as it 

relates to others in the protein, protein complex or protein-ligand interaction. This approach is 

distinct from prior computational tools that use structural information because it is not reliant on 

pre-defined secondary structure elements; rather, it simply analyzes the crystallized tertiary 

structure of the folded protein as a network. Results from SBNA have been previously used to 

identify highly mutationally constrained CD8+ T cell epitopes within the context of both HIV and 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2. In the case of HIV, these 

epitopes were found to be preferentially targeted by individuals able to suppress HIV replication 

in the absence of antiretroviral therapy1. Within the context of SARS-CoV-2, highly networked 

regions in the virus were found to lack mutation in broadly circulating strains and were thus 

promising targets for mutation-resistant vaccinees potentially capable of conferring broad 

protection against sarbecovirus infection2.  

Despite its promise in multiple viral families, SBNA has not been previously applied to 

human proteins which exist within a far more complex system of biological interactions. Such an 

application would potentially aid in a better understanding of which genetic variants discovered 

through sequencing are pathogenic. Since such a sizable number of patients with IRD harbor 
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VUSs, we therefore sought to investigate whether this approach could generate meaningful 

results for IRD proteins of interest to estimate the phenotypic impact of missense mutations. 

After establishing that this approach could generate meaningful results in well-studied human 

proteins, we then applied SBNA to IRD genes in ClinVar, a large database of reported 

pathogenic and benign genetic variation. Finally, we addressed a cohort of 65 patients in our 

clinic at MEE who are affected by an IRD but for whom a genetic cause has yet to be 

discovered to investigate the use of SBNA in real-world clinical scenarios.  

Results 

Structure-based network analysis predicts mutations in human proteins associated with in vitro 

loss of function and pathogenic clinical phenotypes 

 Four well-studied human proteins – BRCA1, HRAS, PTEN, and ERK2 – were selected 

for analysis to evaluate whether the structure-based network analysis pipeline could be 

meaningfully applied to human proteins despite the increased complexity of humans compared 

to viruses. In addition to available high-quality full or partial structural data, in vitro saturation 

mutagenesis experiments were previously published for each of these proteins; we therefore 

extracted the functional consequence of all missense mutations32-35. We generated network 

scores for amino acid residues included in the available protein structures (Fig. 1A) and 

evaluated the correlation with the saturation mutagenesis functional scores (Fig. 1B). All four 

proteins showed a strong inverse correlation between network and functional scores, which was 

consistent with previous findings for viral proteins1.  

We next compared network scores to pathogenicity categorizations derived from human 

data using the ClinVar and gnomAD genetic databases for these same four proteins (Fig. 1C). 

Missense variants in all subsequent analyses were categorized with respect to human clinical 

data in line with the American College of Medical Genetics and Genomics (ACMG)25 as benign 

(encompassing ‘benign’ or ‘likely benign’ within ClinVar), VUS or pathogenic (encompassing 

‘pathogenic’ or ‘likely pathogenic’ within ClinVar). We restricted our analysis to ClinVar missense 
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mutations with at least two-star level evidence, and gnomAD was used to identify relatively 

benign missense mutations (variants with ≥1% allele frequency which are unlikely to be the 

driver in an IRD). Across all four proteins, network scores assigned to pathogenic variants were 

significantly greater than those assigned to benign variants (median network scores for benign 

missense mutations -0.936 and pathogenic mutations 0.866, P=1.836e-5, Fig. 1C). Scores 

assigned to VUSs fell in between those assigned to benign and pathogenic variants. Looking 

more closely at network scores corresponding to individual proteins, the trend of pathogenic 

variants being assigned greater network scores than benign variants held, though this was not 

statistically significant in smaller sample sizes (Fig. 1D). Overall, network scores correlate with 

available clinical phenotype data for the four well-studied human proteins (Spearman correlation 

coefficient 0.228, p=2.116e-23), suggesting that structure-based network analysis can be 

meaningfully applied to human proteins despite the complexity of the biological systems within 

which they exist. 

 

Structure-based network analysis predicts mutations in inherited retinal disease genes 

associated with pathogenic clinical phenotypes 

 Having established that structure-based network analysis could be meaningfully applied 

to 4 canonical well-studied human proteins with saturation mutagenesis data, we analyzed the 

relationship between network scores and pathogenicity designations from high-quality ClinVar 

variants and benign gnomAD variants (≥1% allele frequency) for 47 human genes associated 

with IRD. We found that pathogenic mutations were assigned significantly greater network 

scores compared to both benign mutations and VUSs (median benign -0.841, median VUS -

0.188, median pathogenic 0.947 p=3.140e-29 for benign vs. pathogenic, p=1.753e-60 for VUS 

vs. pathogenic; Fig. 2A), which mirrors the pattern previously observed in the well-studied 

canonical human proteins. The magnitude of these differences was robust in the setting of 

differing levels of available clinical data across genes up to a point: the results were consistent if 
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restricting to genes with fewer than 100 high-quality variants, and the distinction between benign 

and pathogenic was detectable down to 40 high-quality entries per gene (Fig. 2B-D).  

 Network score comparisons were also considered at the level of individual genes, as 

aggregate metrics provide limited clinical insights. For those genes with at least one benign 

variant and one pathogenic variant, 28/30 contain pathogenic variants with higher median 

network scores compared to benign variants (Fig. S1). However, the ability to assess statistical 

significance is limited on a per-gene basis due to fewer high-evidence mutations. 

 

Incorporating structure-based network analysis scores into multivariable logistic regression 

models successfully predicts variant pathogenicity  

 To facilitate the prediction of pathogenicity using network scores, we constructed a 

multivariable logistic regression model that incorporates not only the importance of a particular 

position within a protein (the SBNA score) but also the degree of chemical dissimilarity between 

the reference and mutant amino acid at that position. To capture the latter effect, we used the 

BLOSUM62 matrix as a covariate that accounts for the chemical similarity of a given amino acid 

change36. Models with network scores alone, BLOSUM62 scores alone, and both network and 

BLOSUM62 scores were tested for each of the three datasets previously considered in 

pathogenicity comparisons.  

 For each logistic regression model, we tested 500 iterations of a 70%/30% train-test split 

and calculated receiver operating characteristic (ROC) curve statistics for high-quality ClinVar 

variants and benign gnomAD variants. Based on mean area under the curve (AUC), models 

incorporating network scores outperformed BLOSUM62 alone. The logistic regression model 

incorporating both network scores and BLOSUM62 scores had the best performance across the 

inherited retinal disease genes (AUC 0.835, Fig. 3A). Based on these results, we determined 

that the regression with both network and BLOSUM62 scores was most likely to provide 
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clinically relevant pathogenicity predictions. A leave-one-out logistic regression training 

approach displayed a similar pattern (Fig. S2). 

 Polyphen2 is currently the most widely used computational prediction tool for variant 

pathogenicity37. Because PolyPhen2 is used by the ACMG to assign the pathogenicity 

designations that then are used in databases such as ClinVar and HumDiv, comparing the 

performance of SBNA to PolyPhen2 is inherently biased. We therefore decided to test whether 

SBNA predictions aligned with Polyphen2. Pathogenicity probability estimates from the 

70%/30% train-test split regression including both SBNA and BLOSUM62 scores were 

compared to results generated using PolyPhen2 trained on two different datasets, HumDiv and 

HumVar14,37. The SBNA regression pathogenicity probability estimates assigned to both benign 

and pathogenic variants as determined by ClinVar and gnomAD correlated with the PolyPhen2 

probability estimates, but the PolyPhen2 results clustered more strongly at 0 and 1 (Fig. S3A). 

Despite this, the HumDiv-trained PolyPhen2 results, the HumVar-trained PolyPhen2 results, and 

the structure-based network analysis regression results showed a significant difference between 

the pathogenicity probabilities assigned to known pathogenic variants as compared to known 

benign variants (p=9.066e-64, p=2.747e-58, p=4.781e-44, respectively; Fig. S3B). The 

Spearman correlation between SBNA probabilities and PolyPhen2 probabilities was 0.445 for 

the HumDiv-trained PolyPhen2 results (p=5.13e-57) and 0.476 for the HumVar-trained 

PolyPhen2 results (p=4.11e-66).  

 

Homology modeling 

 As crystal structures are snapshots in time, we tested whether homology modeling, an in 

silico approach that allows proteins conformational flexibility, improves the performance of the 

SBNA pipeline. In addition, homology modeling has the added benefit of predicting human 

structure from non-human protein data. We implemented the well-documented tool Modeller38-41, 

and network scores were averaged across 50 homology models (Fig. S4A). Homology 
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modelling yielded consistent improvement in the correlation between in vitro functional data 

across 9 bacterial and viral proteins that were previously used to benchmark the SBNA 

algorithm1 (Fig. S4B). We then applied this model to the 47 IRD genes. There was a statistically 

significant improvement in AUC with homology modelling as compared to without homology 

modeling (non-homology modeled AUC = 0.835 (95% confidence interval: 0.833, 0.837), 

homology modeled AUC = 0.850 (95% confidence interval: 0.848, 0.852), p < 0.0001, Fig. 3B). 

However, this difference is relatively small in magnitude and is unlikely to be clinically 

significant. Furthermore, this improvement was not consistently observed across individual 

proteins (Fig. S5). We therefore used the regression model fitted to the data without homology 

modeling for downstream analysis. 

 

Structure-based multivariable logistic regression model solves patients with unclear genetic 

basis for clinical disease 

A significant percentage of patients with clinical presentations consistent with inherited 

retinal diseases (IRD) lack an identified genetic basis for their phenotype, and this pattern holds 

within the set of patients who receive care at Massachusetts Eye and Ear (MEE). We evaluated 

455 patients who were diagnosed with an IRD at MEE based on visual acuity, visual field 

testing, clinical exam, fundus autofluorescence imaging, optical coherence tomography and 

electroretinogram and underwent targeted or whole exome-sequencing but lacked the canonical 

genetic mutation pattern to explain clinical findings. Mitochondrial causes of IRD were excluded. 

Missense variants of interest were defined based on allele frequency and residence in one of 

250 known IRD genes. There were 3,727 identified variants in total (2,948 unique variants) 

residing in 51 genes and these were categorized as either pathogenic, "likely pathogenic” (LP), 

VUS or benign based on known mutational consequence in the literature using ACMG criteria42 

and ClinVar designations22 (Fig. S6). Variants were further categorized in the context of 

individual patients as “likely solving” if they were pathogenic or LP, the clinical presentation was 
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consistent with the known consequence of the affected gene and the zygosity was consistent 

with known modes of inheritance. Of the 455 patients reviewed, before applying SBNA, 355 

were found to have variants that were “likely solving” while 65 patients harbored one or more 

VUSs that prohibited a molecular diagnosis. The remaining 35 patients had non-missense 

variants as well as missense variants or variants in a protein or region of a protein without 

available structural data. Therefore, SBNA could not be applied comprehensively to these 

patients. 

Using a multivariable logistic regression model incorporating both network and 

BLOSUM62 scores that was trained on ClinVar data for the 47 IRD genes, we generated 

pathogenicity predictions for the 2,948 genetic variants identified in all 455 patients (Fig. 4A). 

Substitutions were then considered based on likelihood of pathogenicity determined using the 

fitted SBNA multivariable logistic regression model, and these pathogenicity probabilities were 

considered in the context of the identified genetic variants in known IRD genes for each patient 

with a clinical presentation consistent with IRD. Variants were matched with any phenotypic data 

available in ClinVar to roughly benchmark the quality of the pathogenicity likelihood estimates. 

The distribution of pathogenicity probabilities assigned to known pathogenic and benign variants 

is shown in Fig. S7A-B. Similar to the ClinVar analysis of IRD genes, there were observable 

differences between the SBNA pathogenicity probabilities assigned to known pathogenic 

variants as compared to benign variants and VUS/variants without any available clinical data 

(benign median 0.352, VUS median 0.645, pathogenic median 0.958; benign vs. pathogenic 

p=2.528e-26). Rankings were performed using a multivariable logistic regression model fitted to 

the IRD-associated gene data with and without homology modelling, and the results were found 

to be highly coordinated (Fig. S7).  

For the 355 patients who harbored known pathogenic variants sufficient to cause 

disease, the SBNA pathogenicity probability estimates were concordant with these pathogenicity 

categorizations in 97.2% of cases (Fig. 4B).  For the 65 patients with VUSs as categorized by 
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ACMG standards42 and/or ClinVar who were not already solved, the SBNA probability estimates 

offered support for a genetic cause of disease for 37 patients (22 unique variants, Fig. 4C-E). 

Modes of inheritance included autosomal recessive (in combination with a known pathogenic 

variant or a second VUS with a high estimated probability of pathogenicity; n = 15), autosomal 

dominant (n = 2), and X-linked recessive (n = 5). For example, a patient with autosomal 

recessive ABCA4-related disease (typically a recessive inheritance pattern) was found to have 

variants Pro1380Leu (known pathogenic) and Arg1097Ser (VUS). Arg1097Ser scored highly 

within the multivariable logistic regression model (SBNA score 3.672, BLOSUM62 score -1, 

pathogenicity probability 0.965), suggesting it is likely pathogenic and thus completing the 

genetic solution for this patient. Similarly, the VUS Cys302Tyr in RPGR was found in a male 

hemizygous patient with phenotypic findings consistent with X-linked IRD and also scored highly 

within the multivariable logistic regression model (SBNA score 2.154, BLOSUM62 score -2, 

pathogenicity probability 0.956) (Fig. S8). The structure-based network analysis regression 

results may also have contributed towards identifying a possible genetic cause for an additional 

24 patients. In these cases, there may have only been one identified heterozygous VUS, or 

there were multiple VUS identified but an SBNA score could only be generated for one of them 

due to the limitations of the available structural data. Finally, for the remainder of patients, SBNA 

was not possible due to lack of crystal structure data for these proteins or due to the presence 

of non-missense mutations.  

Discussion 

 In this study, we demonstrated that applying SBNA to human proteins yields results that 

correlate strongly with existing clinical phenotype data. We leveraged those scores, in 

combination with BLOSUM62 substitution scores, to generate estimates of the likelihood that a 

particular missense mutation was pathogenic. Using these estimates, we were able to nominate 

putative genetic solutions for 37 patients with clinical evidence of IRD. These results suggest 
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that SBNA may be able to provide similarly meaningful insights for patients with an unclear 

genetic basis for their clinical symptoms, particularly for patients with inherited retinal diseases. 

 Numerous computational tools for prediction of variant pathogenicity have been 

developed17,43-54. Virtually all of these tools use sequence conservation and protein secondary 

structure or domain information. These two categories of features work well, especially in 

conjunction with one another, because they harness both a nonspecific but sensitive measure 

(sequence conservation) and a more specific measure of structural constraint. However, SBNA 

is distinct in that it captures the structural topology of individual amino acids in the context of the 

protein as a whole and does not rely on pre-existing annotations. With so many methods 

available now, it is important to note that none of these tools will independently capture the 

phenotypic consequence of all coding mutations in human disease. Rather, the most successful 

approach likely will be to incorporate information from several tools when analyzing patient data. 

 Strengths of this approach include the lack of dependence on pre-existing clinical 

phenotype labels to generate network scores, which limits susceptibility to bias22. However, this 

approach is limited by the availability of high-quality structural data, a requirement for SBNA1. 

Numerous proteins, including the majority that correspond to known genetic variants associated 

with IRD, lack available x-ray crystallography or cryogenic electron microscopy structures 

altogether. In some cases, structures are available but are not of sufficient resolution to facilitate 

downstream network analysis. Furthermore, this approach will only be applicable to mutations 

that result in a negative structural change. Other types of mutations – such as splice site 

mutations – will not be captured with this approach. 

Software that leverages artificial intelligence to predict protein structure, such as 

AlphaFold or RoseTTAFold, could potentially help to compensate for the lack of available 

structural data55,56. However, these approaches remain highly limited in their ability to capture 

biological interactions between proteins57, and in our experience the performance of de novo 

structure predictions is poor in cases where a homologous structure does not already exist. 
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While even high-quality structural data faces practical limitations in terms of the extent to which 

it can accurately represent the full spectrum of biological interactions, forgoing this valuable 

information entirely limits the utility of these structures for downstream applications such as the 

one described here. We therefore restricted our analysis to structural data available in the 

Protein Data Bank, but this in turn limited the number of proteins we were able to consider for 

this analysis. 

In conclusion, SBNA provides an alternative approach to estimating the likely extent of 

phenotypic impact of protein variants that relies on modelling intramolecular and intermolecular 

interactions. We demonstrated that this technique could be meaningfully applied to human 

proteins and showcased the use of SBNA in IRD patients who lack a clear genetic diagnosis. 

Looking ahead, these types of insights could contribute to the design of novel gene therapies 

targeted at implicated genetic variants58-60.  

Methods 

Structural Data 

 All structural data was downloaded from the Protein Data Bank31. Individual accession 

numbers for the well-studied human proteins and inherited retinal disease proteins are listed in 

Table S1. For the non-human benchmark proteins, the same files were used as previously 

described1. In cases where multiple human structures were available, the highest oligomeric 

state of the protein with resolution of ~3 angstroms or better was used. In cases where no 

human structure was available, the structure of one or more homologs was used. If multiple 

chains were present within the PDB file due to crystal packing rather than true oligomerization, 

only one of these chains was used for SBNA. Solvent and water molecules were removed from 

all PDB files prior to SBNA, but ligands and protein binding partners were included in the 

analysis. Only he protein of interest was designated to have a network score calculated by 

SBNA. 

Structure-based Network Analysis 
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 Structure-based network analysis was used to calculate network scores as previously 

described1,2. The details of this method have been described previously. As before, in cases 

where multiple conformations of a structure were used, network scores were averaged for each 

amino acid position. Where indicated, homology modelling was implemented using the 

previously described Modeller package38-41. In cases where no human structure was available, 

the structures of one or more non-human homologs as listed in Table S1 were inputted into 

Modeller. When homology modelling was not used, only one of these homologous structures 

was considered. 

Data Analysis and Visualization 

 Data analysis was performed using Python (version 3.8.2), with visualizations generated 

using the “matplotlib” package. Logistic regressions were performed using the “glm” package in 

R (version 4.0.4). Intercepts were set to zero for all logistic regression models. Network score 

visualizations were generated in R (version 4.0.4) using the “rgl” package to implement 

OpenGL. The backbone centroid (nitrogen, alpha carbon, and carbon) positions were plotted 

along x, y, and z axes, and nodes were colored and given sphere radii corresponding to network 

scores. The protein structure backbone was then plotted, connecting the alpha carbons. Plotted 

structures were manually rotated, and two-dimensional views of interest were downloaded for 

inclusion.  

Phenotype Data 

 Clinical phenotype data was downloaded from ClinVar. Clinical evidence at with a 2-gold 

star level designation (meaning that “two or more submitters with assertion criteria and evidence 

(or a public contact) provided the same interpretation”) or better was included in the published 

analyses22. Pathogenicity designations from ClinVar were binned into Benign ("Benign", 

"Benign/Likely benign", "Likely benign"), VUS ("Uncertain significance", "not provided", 

"Conflicting interpretations of pathogenicity"), and Pathogenic ("Pathogenic", "Pathogenic/Likely 

pathogenic", "Likely pathogenic") categories for analysis. 
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Additionally, allelic variation data from gnomAD61 was considered for each gene. Loci 

with at least 250 available allelic variants in gnomAD were considered as benign variants. 

Results from ClinVar and gnomAD for each gene were considered in combination for these 

analyses. 

Functional Data 

 Functional data for the four well-studied human proteins – BRCA132, ERK235, PTEN33, 

and HRAS34 – that had been previously published was used for this analysis. In cases where 

functional scores were assigned to multiple amino acid mutations at the same position (e.g., if 

different functional scores were calculated for Ala101Pro and Ala101Gln), the arithmetic mean 

of all functional scores at that position was used.  

 For the non-human benchmark proteins used to analyze the impact of homology 

modelling, functional data was also obtained from previously published data62-74. These data 

were processed for comparison with network scores as previously described1. 

Patient Data 

 Patient data was gathered from among those presenting to the Inherited Retinal 

Disorders Service at Massachusetts Eye and Ear. Appropriate consent was obtained from all 

included patients, and ethical approval was granted by the Mass General 

Brigham/Massachusetts Eye and Ear Institutional Review Board. 

Statistical Analysis 

 Statistical analysis, including generation of ROC curves, was performed using the 

“scipy.stats” package in Python as well as GraphPad Prism (version 9). Comparisons between 

three or more categories were made using the non-parametric Kruskal-Wallis test with Dunn’s 

post hoc analysis corrected for multiple comparisons with a Bonferroni correction. Comparisons 

between two categories were performed using the non-parametric Mann-Whitney U test. 

Correlation between two datasets was calculated using non-parametric Spearman correlation 

coefficients. Spearman correlation coefficients between network scores and ClinVar 
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pathogenicity designations was calculated by assigning 0 to benign variants, 1 to VUS, and 2 to 

pathogenic variants. 
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Figure 1. Structure-based network analysis highlights pathogenic variants in well-studied 

human proteins. (A) Structural representations show network scores at each residue. Sphere 

radius corresponds to network score magnitude at a particular position. (B) Comparison 

between functional data from saturation mutagenesis experiments and network scores, with 
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Spearman correlation coefficients and p-values displayed for each plot. Points are colored 

based on available clinical phenotype data. (C) Pooled comparison between network scores for 

variants with available clinical phenotype data for all four well-studied human proteins. (D) 

Individual comparisons between network scores for variants with available clinical phenotype 

data for all four well-studied human proteins. 
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Figure 2. Structure-based network analysis highlights pathogenic variants in inherited 

retinal disease proteins. (A) Pooled comparison between network scores for variants with 

available clinical phenotype data for all 47 inherited retinal disease proteins. (B) Distribution of 

available high-quality evidence in ClinVar across all 47 inherited retinal disease proteins. (C) 
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Comparison between network scores and clinical phenotypes grouped by level of available 

high-quality evidence in ClinVar for each inherited retinal disease protein. (D) The statistical 

significance of the difference in network scores between benign and pathogenic variants is lost 

between 20 and 40 high-quality ClinVar evidence entries.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.05.23292247doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.05.23292247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 3. Logistic regression-based modelling using SBNA and BLOSUM62 is superior to 

univariate models. (A) Application of univariate and multivariable logistic regression to the 

inherited retinal disease protein datasets. All regressions were performed using a 70%/30% 

train/test data split with 500 iterations, and a representative ROC curve with AUC closest to the 

mean is shown for each regression model. AUC values are displayed as the mean followed by a 

95% confidence interval. (B) Comparison of homology modelling versus no homology modelling 

over 500 iterations of a 70%/30% train/test data split for the inherited retinal disease protein 

dataset. ROC curves for each iteration are shown. 
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Figure 4. SBNA helps identify pathogenic variants in patients with inherited retinal 

disease. (A) Categorization of results from application of structure-based network analysis 

(SBNA) regression to a dataset of possibly solving patient variants. Results were further 

subdivided into those from patients with known putative genetic causes of disease (B) and 

those from patients with only VUSs in known inherited retinal disease-associated genes (C). (D) 

Representation of network scores for a sample structure with putative solving genetic mutations. 
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Sphere radius corresponds to network score magnitude at a particular position. A patient with 

clinical evidence of ABCA4 disease (D) but with no complete genetic explanation was fully 

solved using SBNA which highlighted two mutations (Pro1380Leu and Arg1097Ser) that score 

highly in the ABCA4 protein structure (E). Arg1097Ser was a VUS and is indicated in red within 

the structure. 
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