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Abstract 

Background. Collaborative comparisons and combinations of multiple epidemic models are 
used as policy-relevant evidence during epidemic outbreaks. Typically, each modeller 
summarises their own distribution of simulated trajectories using descriptive statistics at each 
modelled time step. We explored information losses compared to directly collecting a sample of 
the simulated trajectories, in terms of key epidemic quantities, ensemble uncertainty, and 
performance against data. 

Methods. We compared July 2022 projections from the European COVID-19 Scenario Modelling 
Hub. Using shared scenario assumptions, five modelling teams contributed up to 100 simulated 
trajectories projecting incidence in Belgium, the Netherlands, and Spain. First, we compared 
epidemic characteristics including incidence, peaks, and cumulative totals. Second, we drew a 
set of quantiles from the sampled trajectories for each model at each time step. We created an 
ensemble as the median across models at each quantile, and compared this to an ensemble of 
quantiles drawn from all available trajectories at each time step. Third, we compared each 
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trajectory to between 4 and 29 weeks of observed data, using the mean absolute error to weight 
trajectories in consecutive ensembles. 

Results. We found that collecting models’ simulated trajectories, as opposed to collecting 
models’ quantiles at each time point,  enabled us to show additional epidemic characteristics, a 
wider range of uncertainty, and performance against data. Sampled trajectories contained a 
right-skewed distribution which was poorly captured by an ensemble of models’ quantile 
intervals. Ensembles weighted by predictive performance narrowed the range of plausible 
incidence over time, excluding some epidemic shapes altogether. 

Conclusions. Understanding potential information loss when collecting model projections can 
support the accuracy, reliability, and communication of collaborative infectious disease 
modelling efforts. The importance of different information losses may vary with each 
collaboration’s aims, with lesser impact on short term predictions compared to assessing 
threshold risks and longer term uncertainty. 

Data availability. All code and data available on Github: https://github.com/covid19-forecast-hub-
europe/aggregation-info-loss  
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Background 

One of the key challenges in infectious disease modelling is the representation of multiple 
sources of uncertainty, both within each model as well as across separate model projections [1], 
[2]. In public health decision-making, accounting for the full extent of uncertainty in future 
infectious disease incidence is critical to mitigate exposure to high impact vulnerabilities, such 
as health systems operating beyond surge capacity  [3], [4].  

A probabilistic infectious disease model characterises both epistemic and aleatoric uncertainties 
arising from complex and changing causes of disease transmission. In order to simulate this 
real-world process, modellers must handle stochasticity in transmission dynamics, typically 
using observed data to estimate model parameters that are themselves uncertain. Each 
probabilistic model can generate any number of simulated trajectories, and modellers choose at 
what point to conclude there are sufficient iterations to reach a stable distribution of possible 
outcomes. The output of these simulations can then be summarised to calculate quantities of 
interest (e.g., weekly incidence of infections or cases). 

When creating models to characterise the future, modellers have often drawn a distinction 
between forecasts and scenarios [5]. Forecasts are predictions of future epidemic trajectories, 
and the probabilities assigned to different outcomes quantify the belief of the forecaster that 
these may or may not happen. In addition to potential fundamental limits to predictability, 
forecasts are usually reliable for, at best, a few generations of transmission [6] because of 
unmodelled factors affecting future transmission such as behavioural or policy changes, 
heterogeneity in transmission risk, or the emergence of new variants of different transmissibility 
or severity.  

In contrast, scenarios are projections attuned to a particular context by being conditioned on 
specific qualitative factors whose futures may not be quantitatively predictable, such as options 
for policy interventions [7], [8]. Probabilities of future outcomes as stated by scenario models 
should be interpreted as valid only under the specific circumstances given by the scenario but 
not otherwise, without specifying any probability of the scenario itself occurring. Because of this 
difference, forecasts can be evaluated by confronting them with future data as it becomes 
available, while this evaluation is more challenging for scenarios where predictive performance 
will always depend on a combination of adequacy of the chosen assumptions (e.g. on pathogen 
biology, human behaviour and government policy), with adequacy of the model in reflecting 
these assumptions.  

Infectious disease modelling collaborations aim to bring together multiple models for projecting 
the future using a variety of different methods [9]. Each collaboration attempts to standardise 
epistemic uncertainty across different models by setting a single common target for projections 
and collecting results from multiple independent models. This allows a like-for-like comparison 
of the stochastic uncertainty produced by varying modelling methods. Ensemble methods can 
then combine across models to generate a more comprehensive and robust prediction [10] or 
reflection of expert judgement [11].  
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Formal, large-scale modelling collaborations have, so far, been used for influenza, Ebola, zika, 
dengue fever, and COVID-19 [9]. In the case of COVID-19, a number of policy-facing research 
groups have set up collaborations to collate forecasts and scenarios [12]–[15], and there is a 
substantial effort towards expanding the practice of ensemble projections of infectious disease 
spread and burden. Ongoing work evaluating these efforts has focused on evaluating the output 
of past and current ensemble modelling projects. This has included evaluating differing 
performance among individual models [16]–[18], and a variety of methods for creating 
ensembles from multiple models [10], [19], [15], [11]. 

However, to our knowledge so far no evaluation has been performed of how probabilistic 
models are represented before they are compared or combined in an ensemble. To comparably 
assess the output from multiple probabilistic models, the same set of statistics should be used 
to summarise each model’s distribution. One approach to this uses descriptive statistics taken 
across all simulated trajectories from each model at each given time step. In several COVID-19 
modelling hub efforts each modeller submits a common set of quantiles for each time point 
estimated from any number of trajectories.  

This approach may lose information pertinent to epidemic decision making, such as 
misrepresenting the size and timing of peak incidence [20]. This loss is particularly relevant 
when trying to capture the full extent of variability across multiple models. For the European 
COVID-19 Scenario Hub, the use of quantile summaries was replaced in mid-2022 by individual 
model trajectories that represent random samples from the collection of all possible trajectories 
of the model consistent with a given scenario and the data available up to the time at which the 
simulation was generated. 

We aim to explore three aspects of information loss associated with collecting a set of quantile 
intervals as a method of collecting multiple models’ projections of infectious disease incidence. 
Specifically, we explore the impact of information loss on policy-relevant epidemic 
characteristics, including cumulative totals and timing of peaks; the ability to capture the full 
extent of uncertainty across multiple models when creating an ensemble; and the information 
gained by comparing modelled epidemic trajectories to observed data. Understanding the 
potential sources of information loss in collecting multiple model projections may support 
improving the accuracy, reliability, and communication of collaborative infectious disease 
modelling efforts.  

Methods 

Study setting 

In this work we use projections from Round 2 of the European COVID-19 Scenario Modelling 
Hub [20]. The European COVID-19 Scenario Hub was launched in March 2022 to reflect 
demand for the ECDC to support longer term European policy planning. It used the existing US 
Scenario Hub [14] as a basis for Hub infrastructure and methods. Modelling teams were 
recruited by word of mouth to join a series of collaborative workshops, approximately fortnightly 
from March through June 2022. In these sessions both policy-focussed colleagues from the 
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ECDC and modelling-focussed researchers co-developed a set of four scenarios. Each scenario 
represented a combination of two possible epidemiological and policy changes that could 
impact the incidence of COVID-19 across Europe in the medium term. 

Teams were asked to project the incidence of COVID-19 infections, cases, deaths, and 
hospitalisations in 32 European countries over the next year. To facilitate comparison across 
models, we identified and agreed a common set of key assumptions and parameters to be used 
by all models in each scenario as well as standard data sets to which to compare the model 
outputs where available. Modellers uploaded projections to a Github repository, and we 
summarised results across models, with a focus on targets with three or more independent 
projections. Over 2022 this process was repeated four times to explore a variety of different 
scenarios. In total nine separate teams submitted projections, with six teams contributing to 
each round.  

Over June 2022 (Round 2), we specified four scenarios (A-D) as: an autumn second booster 
campaign among the population aged over 60 (scenarios A/C), or over 18 (scenarios B/D); and 
future vaccine effectiveness as ‘optimistic’ (equivalent to the effectiveness as of a booster 
vaccine against the Delta SARS-CoV-2 variant; scenarios A/B); or ‘pessimistic’ (as against 
variants Omicron BA.4/BA.5/BA.2.75; scenarios C/D). Modellers were asked to start their 
projections from 24th July 2022, meaning that even if data were available beyond this date they 
were not to inform calibration of the model. Modellers were asked to submit up to 100 
simulations, each reflecting a trajectory of weekly incidence of reported cases and deaths over 
time for a given projection target. Modellers were informed that data presented on the Johns 
Hopkins University dashboard was to be used for future comparison to data [21]. In practice 
some of the models were not calibrated to reported cases and therefore used symptomatic 
cases as a proxy. Simulations were to represent random samples from the distribution of 
simulation trajectories consistent with the given scenario that each modelling team produced. 
We have published full scenario details including shared parameters, all teams’ projections, and 
summary results online [22].  

Model aggregation 

This work specifically focuses on contrasting the sampled simulated trajectories with their 
representation in time-specific quantiles. We collected raw data in the form of up to 100 
trajectories from each model for each projection target. We used these data to retrospectively 
create a marginal fixed-time quantile representation of results from each model and target. 
Following the current submission procedure across COVID-19 Modelling Hubs for an individual 
model, we calculated a median and 22 further quantiles for each week using the values of the 
trajectories in that week, separately for each scenario. We processed all data in R with code 
available online [23]. 

Characterising information loss 

First we considered information about key epidemic characteristics. At the time the projections 
were in production, discussion with the ECDC modelling team led to an interest in estimates of 
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incidence over time, and cumulative number of distinct peaks, size, and timing of peak 
incidence over the projection period. When projections were available, we estimated these 
characteristics from the simulated trajectories. We summed incidence over time to produce a 
cumulative total from each trajectory. We assessed the size of the expected burden of each 
target relative to a known threshold by comparing the cumulative projected total to the 
cumulative total of the preceding year. We identified peaks in each simulated trajectory as the 
local maxima in a sliding window of five weeks, chosen to balance avoiding noise and capturing 
distinct weight. We assessed peaks both over the entire projection period, and over only the 
autumn-winter period (October 2022 through March 2023). We produced a real-time report of 
this summary at the time that projections became available in July 2022. 

In further retrospective analysis, we compared the use of a standard unweighted ensemble to 
express uncertainty across multiple models in the two representations. We created an ensemble 
projection from first combining all individual simulated trajectories with equal weight for each 
scenario, location, and outcome target. Next, we separately created a quantile ensemble 
created by first estimating model-specific quantiles from each model’s distribution of trajectories 
at each time point, for each scenario, location, and outcome target, before calculating the 
median across the different models’ values at each quantile and time step. This is the procedure 
that has been used before to produce ensemble projections across multiple epidemiological 
forecasts [10], [15]. To assess the difference in uncertainty across the two ensembles, we 
compared the mean of the values at each quantile across all time points, outcomes and 
scenarios.  

Lastly, we evaluated the performance of each simulated trajectory against proximity to observed 
data, and used this to weight an ensemble of trajectories (as above). To measure performance, 
we calculated the mean absolute error (MAE) for each trajectory, where the MAE is the average 
of the difference from observed data across all available time points for a single projection. We 
created a weighted ensemble from all trajectories for a country (not further separating by 
scenario or model) using the inverse MAE for each trajectory as a weight. To calculate weighted 
quantiles we used a Harrel Davis weighted estimator [22] from the cNORM R package (v3.0.2) 
[23]. As above, we calculated 23 quantiles including the median to express uncertainty. 

We repeated this process to create consecutive ensembles with changing weights over time. 
We created the first weighted ensemble after 4 weeks of observed data, and then created 
consecutive ensembles with weights re-calculated weekly to use up to the maximum available 
29 weeks of observed data (to 11 March 2023). This showed varying lengths of projections 
repeatedly conditioned on simulated trajectories' performance against increasing data over time.  

Results 

A total of six modelling teams contributed projections for various targets to the European 
COVID-19 Scenario Hub in Round 2. Here we focus on multi-model comparison and include 
only projection targets with three contributing models. These targets included 52 weeks’ case 
and death incidence for the Netherlands and Belgium, and 41 weeks’ case incidence for Spain.  
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Five teams contributed projections for these targets. Three teams used compartmental models, 
one an agent-based model, and one a machine learning method (see Supplement). Four 
models generated 100 simulated trajectories, and one 96 trajectories (implying a slightly smaller 
weight to this model in trajectory-based aggregates). In total, we consider 294,816 data points 
from 5,920 trajectories, where each data point is the estimated weekly incidence in a simulated 
trajectory of an outcome in a target country and scenario over up to one year (figure 1.i). 

Aggregating across simulated trajectories from multiple models created additional information 
about various epidemic characteristics that is not available from aggregating across quantile 
summaries from each model. Both quantile and simulated trajectories yield a probabilistic 
estimate of the weekly incidence of each projection target. As a quantile representation provides 
a summary across trajectories at each time step, it has no theoretical continuity through the 
time-series. This does not permit aggregation over time to calculate cumulative totals or means, 
or estimating time-series characteristics including epidemic peak size or timing.  

We reported on these characteristics using the simulated trajectories (see contemporaneous 
report reproduced in the Supplement). For example, across all 5920 trajectories for all targets 
and scenarios, 10% saw a cumulative total exceeding the preceding year. These epidemic 
characteristics could not be meaningfully estimated from the same results summarised into 
quantiles. 

We compared information loss in the aggregation of simulated trajectories into an ensemble 
projection (figure 1). We compared an ensemble taken from all trajectories (figure 1.ii) with a 
median ensemble from models’ quantiles (figure 1.iii). Across all projection targets, we observed 
substantially increased uncertainty in an ensemble that aggregated directly from trajectories. 
This represented the wider variety of epidemic shapes projected by different models, for 
example where the credible interval of projections included high autumn-winter incidence in 
Spain, and gave greater credibility to multiple peaks of incidence in Belgium. These were not 
observed in the interval projections of an ensemble derived from models’ quantiles. 
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Figure 1. Projections of incidence per 100,000 population, by country (row) and aggregation 
method (column) showing median, 50%, and 99% probabilistic intervals (increasingly shaded 
ribbons), for each scenario, using: i) no ensemble method (100 simulated trajectories per model, 
or 96 in case of one of the models); ii) quantile intervals of the distribution across all simulated 
trajectories; ii; a median across each model’s projections at a given quantile interval. Scenarios 
included: an autumn second booster vaccine campaign among population aged 18+ 
(scenarios B & D) or 60+ (scenarios A & C); where vaccine effectiveness is ‘optimistic’ 
(effectiveness as of a booster vaccine against Delta; scenarios A & B) or ‘pessimistic’ (as 
against BA.4/BA.5/BA.2.75; scenarios C & D).  
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Figure 2. The 52-week mean of incidence per 100,000 population across all time points and 
scenarios, showing mean central prediction intervals at increasing distances from the median 
(interval width), by aggregation method. Methods for aggregating model outputs are: a median 
across individual-model quantiles (red), and quantiles from the sampled trajectories of all 
models at each time point (blue). The median estimate for each ensemble has 0 interval width 
(x-axis), with uncertainty increasing until an interval width at 0.98 represents the 1%-99% 
credibility interval around the median. With increasing levels of uncertainty, the distances 
between the lower and upper bounds are on average reduced in an ensemble created from the 
median of quantile summaries of model simulations (red), compared to trajectories (blue). 
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To compare between the two ensembles, we considered the mean of values of these two 
ensembles at each quantile across all time points and scenarios (figure 2). This showed both 
ensembles produced similar values around the centre of the distribution, with no noticeable 
difference between the median values of each projection. However, the two ensembles 
increasingly diverged in projecting the outer upper limit of the probabilistic distribution. At the 
upper 98% probability interval, ensemble projections for cases in Spain averaged nearly six 
times higher incidence when drawn from 100 trajectories compared to when drawn from 
quantiles (respectively averaging 1016 and 173 weekly new cases per 100,000 population). 
Across all five targets, we observed the pattern that an ensemble based on simulated 
trajectories produced sharply increasing uncertainty between the 90% to 98% intervals. 
Meanwhile in an ensemble based on quantiles projected values were closer across upper 
bound probabilistic intervals. 

We then considered an ensemble of individual trajectories each weighted against a sequentially 
increasing amount of observed data (figure 3). We note that models used a variety of methods 
and may have been calibrated to alternative data sources (see Supplement). We observed 
reduced uncertainty across ensemble projections when weights in an ensemble were updated 
over time. Compared to conditioning on data up to 16 weeks before, adding 8 weeks of 
additional data in weighting case projections reduced the upper 98% bound of uncertainty by at 
least 5% and up to 30% on average (supplementary figure 1). When weighted by performance, 
the contribution of each trajectory to an ensemble varied substantially between models and 
targets, and over time. For example, in Spain each trajectory’s weight remained stable after mid 
December 2022, reflecting the data by effectively downweighting those trajectories projecting 
sustained high incidence over winter (see figure 1i).   
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Figure 3. Weighted ensemble forecasts of incidence 4, 8, and 16 weeks ahead of available 
data, with available data increasing weekly over time. Showing median (lines) and 99% credible 
interval (shaded ribbons). Each simulated trajectory started from 30 July 2022 and was 
weighted using its inverse mean absolute error against available data. We used at least 4 and 
up to 29 weeks of observed data. This means the first ensemble is weighted by scoring 
trajectories against data between 30 July to the 27 August 2022 (vertical dashed line), and gives 
a 4 week ahead forecast for the 24 September (start of dark blue ribbon), an 8 week ahead 
forecast for the 22 October (start of mid blue ribbon), and 16 week forecast for the 17 December 
2022 (start of light green ribbon). We created consecutive weekly ensembles, with weights 
updating as increasing observed data became available, shown continuously by projection 
horizon. 
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Discussion 

We compared two methods of collecting data about multiple models’ projections of an epidemic. 
We compared a sample of up to 100 simulated trajectories from three scenario models for each 
of five projection targets, with the representation of those trajectories by taking probabilistic 
quantile intervals at each time step. We compared the two results in terms of quantifiable 
epidemic characteristics, the range of uncertainty in an ensemble model, and the use of each 
trajectory’s predictive performance in an ensemble. We found that collecting simulated 
trajectories showed trajectory shapes, peaks, and cumulative total burden; contained a right-
skewed distribution which was poorly summarised by an ensemble of quantile intervals; and 
could be used in an ensemble based on continuous predictive performance. 

Using a standardised set of quantile intervals has several advantages. Theoretically, combining 
across a set of quantiles should accurately represent the underlying distribution [26], with 
various methods for doing so depending on the view taken of uncertainty between and across 
model projections [11] . Second, a significant part of the value of collaborative infectious disease 
modelling projects comes from the standardisation of model output across varying numbers of 
model teams, methods, and simulations. Standardisation in quantile form allows for a direct 
comparison between multiple models, which can be made available for modellers and decision 
makers to evaluate across many contributors’ best efforts to express the probable range of 
future outcomes [27]. Third, a single set of quantiles can be held in comma-separated value 
(csv) files of easily manageable size, requiring minimal technical knowledge of big data storage 
solutions or processing. This has been important in the past given a lack of readily available 
skills or investment in software for emergency outbreak settings, although this argument 
weakens with mounting evidence that this type of under-resourcing hampers outbreak 
response. 

Collecting model projections in probabilistic quantile intervals trades the time-dependence of 
each simulated trajectory, for a fixed-time instantaneous summary across trajectories at each 
time step. We have shown several types of information loss from this trade-off, in line with 
ongoing work addressing similar issues from the loss of epidemic shape. From point forecasts, 
recent forecasting work has created an ensemble from multiple point forecasts in terms of 
similarity to canonical curve shapes [28]. From probabilistic models it is also possible to create 
an ensemble of many trajectories using the centrality of each curve as a weight in a curve 
boxplot [20].  

We demonstrated a clear use case for collecting simulated trajectories by assessing their 
performance against observed data. By conditioning the weight of each trajectory in an 
ensemble on subsequently observed data, we were able to create an ensemble that excluded 
entire trajectories, or epidemic curves, based on dependence to unrealised events. This could 
be used for ongoing evaluation of scenario projections, increasing the useful life of data from a 
single cross-sectional collection of multiple model output. This could be particularly useful when 
repeated rounds of model collection are time-intensive or computationally expensive, such as 
for individual-based models, or where personnel resources are constrained such as in an 
ongoing outbreak with potentially many competing priorities. 
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We highlight several important limitations to our comparison of information loss between 
methods of collecting model output. Our method of collecting simulated trajectories was not 
specifically designed for the purpose of comparing them to equivalent quantile probabilities, and 
as a result our findings are difficult to interpret. In some cases, the collated trajectories were 
already subsampled from model runs conducted by individual teams. Future studies designs 
could focus on collating multiple representations (e.g. time-sliced quantiles and trajectories) 
from contributing teams directly for comparison, or collate arbitrary numbers of feasible 
simulated trajectories and re-weigh according to the number of simulations. 

We believe our results show potential losses across three different types of information relevant 
to collaborative multi-modelling projects in infectious disease. This applies to all aims and 
methods of combining multiple models, whether projections are conditioned on the context of 
the present (as in forecasts), or on schematic futures (as in scenarios). However, the impact of 
information loss may differ depending on the aim of a multi-model comparison. Our results 
suggest little information is lost in comparisons of the central estimates from different models, 
which is a useful validation for collecting multiple model results in any format when the purpose 
is short-term situational awareness. However, we observed substantial information loss when 
comparing the tails of multiple distributions, assessing the number of projected waves or the risk 
of crossing a specific threshold such as the burden in the preceding year, or in reevaluating 
projections against reported data, areas particularly relevant to longer term preparedness and 
mitigation. 

We suggest that further work should characterise and standardise sampling techniques for 
model simulations in multi-model comparisons. Working from combined simulations then offers 
the opportunity to explore creating ensembles by the shape of epidemic curve, and for more 
detailed quantitative evaluations against observed data, such as in projected peaks or 
cumulative totals. This work also demonstrates the importance of investing in and developing 
capacity to store and use simulation outputs rather than fixed-time quantile probabilities for well 
founded intercomparison modelling projects. 
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