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Abstract

This research investigates the influence of dataset charac-
teristics on the performance and generalization capabil-
ities of deep learning models, on ECG data. The study
evaluates multiple subsets of the TNMG dataset with
varying levels of curated characteristics to assess their
impact on model performance. Additionally, an atten-
tion mechanism is introduced to enhance model accu-
racy and generalization. The experimental results reveal
that models trained on balanced subsets and incorpo-
rating the attention mechanism consistently outperform
those trained on unbalanced data or without attention,
emphasizing the critical importance of dataset balance
and attention mechanism for achieving improved model
performance.

Surprisingly, the largest ECG dataset, TNMG, proved
less effective in generalization than smaller, curated sub-
sets. The study demonstrates that a well-balanced and
thoughtfully curated dataset, combined with the atten-
tion mechanism, can lead to competitive model perfor-
mance, even with a significantly smaller size.

This research on ECG data underscores the critical
importance of dataset curation, balance, and attention
mechanisms in biomedical machine learning. It high-
lights that well-balanced, thoughtfully curated datasets
with attention mechanisms can outperform larger, un-
balanced datasets, challenging conventional notions and
offering potential advancements in medical data analysis
and patient care.

Keywords: Biomedical Deep Learning, ECG Data,
Model Performance, Generalization, Dataset Character-
istics, Attention Mechanism.

1 Introduction

Cardiac abnormalities are typically characterized as any
deviation or alteration from an individual’s typical heart
rate pattern that cannot be justified physiologically.
They often indicate an underlying cardiac ailment and
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early identification can help prevent serious clinical con-
ditions like heart failure or stroke [15].

Cardiac abnormalities are a common medical phe-
nomenon affecting a significant portion of the global pop-
ulation. It is estimated that between 1.5 to 5% of peo-
ple worldwide experience some form of abnormality [9].
There are, therefore, millions of people living with abnor-
malities which can impact their quality of life and overall
health. The incidence of abnormalities tends to increase
with age and is also influenced by comorbidities such as
hypertension, diabetes, and pre-existing heart disease [5,
8]. This prevalence of abnormalities can strain health-
care systems worldwide due to the resources needed to
diagnose and treat these conditions [15]. Moreover, un-
treated or undiagnosed abnormalities can lead to severe
complications, further signifying the importance of early
detection and proper management [12].

Multiple clinical methods are currently used to di-
agnose cardiac abnormalities, including examining the
patient’s medical history, physical assessment, and spe-
cialized monitoring equipment. The electrocardiogram
(ECG) is a widely utilized tool for measuring the heart’s
electrical activity and was introduced by Waller in the
early 1900s. It is considered essential in evaluating and
diagnosing cardiovascular diseases [2]. The ECG offers
a straightforward, low-cost, and non-intrusive approach
to tracking heart signals. The most prevalent version is
the standard 12-lead ECG (S12L-SCG); however, other
types of ECGs use different numbers of leads for various
purposes.

Physicians frequently encounter challenges in inter-
preting ECG recordings because of the intricacy, un-
clear causes of abnormalities, and their clinical associ-
ations. Depending solely on visual examination of ECG
recordings can result in incorrect diagnosis and catego-
rization, which can have life-threatening outcomes [6]. A
high level of expertise is necessary to manually interpret
ECGs [4]. Furthermore, there is variation in interpreta-
tion among different observers and even for the same
observer over different readings, and the task is both
monotonous and requires a lot of time even for highly
experienced cardiologists [14]. Studies indicate that car-
diologists can accurately recognize ECG abnormalities
in the range of 53% to 96%, with as many as 33% of
ECG readings containing some level of mistake, and up
to 11% of cases leading to incorrect treatment [6]. As
a result, the progress of digitalization in the healthcare
sector has led to the introduction of computer-assisted
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ECG screening, which can aid medical professionals in
identifying and diagnosing cardiovascular illnesses [6].

1.1 Related Work

Computer-aided diagnosis of cardiac conditions (CACD)
can be a valuable resource for healthcare providers to
obtain a second opinion and reduce diagnostic errors re-
lated to cardiac diagnosis [10]. Typically, CACD systems
involve four primary stages: preprocessing of the ECG
signal, heartbeat detection, extraction and selection of
features, and construction of a classifier [1]. Despite ad-
vancements in computerized ECG interpretation, current
systems still have a notable misdiagnosis rate, with an ac-
curacy of 69.7% compared to 76.3% for cardiologists [6].
Traditional machine learning methods have made head-
way in tackling this issue, but they necessitate substan-
tial expertise and pre-processing of the ECG signal for
manual feature extraction [17]. Additionally, the consid-
erable variation in wave morphology among patients and
the existence of noise make achieving a high degree of ac-
curacy challenging [17]. The development of deep neural
networks (DNNs) through progress in machine learning
and artificial intelligence has resulted in notable achieve-
ments in image and speech recognition and also holds
promise for various healthcare and clinical applications.

Convolutional Neural Networks (CNNs), a type of
deep learning algorithm, have effectively tackled complex
image analysis tasks in various fields, including medical
and non-medical applications [17]. These deep learning
techniques entail supplying raw or minimally processed
data into a network made up of numerous assembled
mathematical equations or hidden layers, which enables
the network to automatically extract, choose, and cate-
gorize features without the need for manual feature ex-
traction [17]. Although DNNs have demonstrated good
performance in classifying abnormalities, they are fre-
quently confined to training on small, publically available
datasets, need lengthy computation periods to tune the
classifiers, and have not yet been verified in a clinical en-
vironment. By improving ECG interpretation, lowering
misinterpretation, and minimising clinical treatment er-
rors, a reliable, accurate, generalizable DNN with shown
clinical performance has the potential to transform cur-
rent practice by supporting clinicians in cardiac abnor-
mality diagnosis.

Recent research has aimed to develop precise deep neu-
ral networks capable of accurately classifying cardiac ab-
normalities from ECG tracings. However, the general-
ization of these models has been given insufficient atten-
tion in some publications. Ribeiro et al. [19] constructed
a DNN model that was trained on the most extensive
12 lead ECG dataset to date and achieved an impres-
sive F1 score of over 80% and a specificity of more than
99% [19]. Nevertheless, this model has not been exter-
nally validated. The Hybrid Deep CNN Model proposed
by Ullah [21] and the Deep-Learning-Based Framework
introduced by Jamil [11] have both attained an impres-
sive F1 score of 0.99 and above. However, neither of these

models have been cross-validated on other datasets, and
their ability to generalize to new data has not been eval-
uated.

The DNN model developed by Ribeiro et al. [19] boasts
state-of-the-art performance after being trained on the
largest ECG dataset. While it is commonly believed that
larger datasets contribute to better model performance
and improved generalization, this study aims to delve
deeper into the dataset’s characteristics beyond just its
size. By doing so, the research seeks to understand how
these specific characteristics impact the model’s perfor-
mance and generalization abilities. Zvuloni’s study re-
vealed an intriguing pattern in the learning curves, as
depicted in their recent work [27]. Initially, when work-
ing with a small dataset, traditional feature engineering
(FE) techniques outperformed deep learning (DL) meth-
ods. However, as the dataset size increased, there was
no significant discernible advantage between the perfor-
mance of FE and DL approaches.

Moreover, this study explores the potential of atten-
tion mechanisms in enhancing model generalization to
new cohorts. Attention mechanisms have garnered sig-
nificant attention for their ability to improve model per-
formance [3]. Through a series of experiments, assess
how incorporating attention mechanisms influences the
model’s capacity to generalize effectively. By doing so,
we shed light on the dataset’s specific characteristics and
the impact of attention mechanisms.

2 Background

2.1 DNN architecture

This study builds upon the model proposed by Ribeiro
et al. [19]. Specifically, we utilize their unidimensional
residual neural network architecture which includes a 1-D
convolutional layer, followed by batch normalization and
a ReLU activation function. The network then passes
through four residual blocks before exiting with a dense
layer, as depicted in Fig. 1a).

2.2 Attention Layer

Bahdanau et al. [3] proposed an attention mechanism to
address the bottleneck problem of fixed-length encoding
vectors in sequence-to-sequence models. This problem is
especially critical for longer or more complex sequences
where the decoder’s access to input information is lim-
ited. The attention mechanism enables the decoder to
selectively focus on relevant input parts, improving its
access to information at each time step. The attention
layer proposed in our model can be broken down into
three main computational steps:

Alignment scores are computed by the attention
mechanism’s alignment model, which takes encoded hid-
den states and the previous decoder output. This model
is represented by a Eq. (1), typically a feedforward neural
network.
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Figure 1: a) Ribeiro et al. [19] developed a comprehensive
DNN model for abnormality classification, which utilized
multiple ResBlks in a specific configuration. b) The at-
tention layer added to the base model integrates both
ReLU and Softmax mechanisms. It is positioned at the
rear of the base architecture to study the effect of atten-
tion mechanisms on model performance and generaliza-
tion.

et,i = st−1 · hi (1)

In the equation, et,i represents the alignment score be-
tween the decoder hidden state at time step t−1 (denoted
by st−1) and the encoder hidden state at time step i (de-
noted by hi). The alignment score is computed as the
dot product between these hidden states and measures
their relevance or similarity. This alignment score is used
in the attention mechanism to determine the decoder’s
focus on specific encoder hidden states during sequence
generation tasks. The dot product captures the degree
of alignment between the two hidden states and is com-
monly used in attention mechanisms to quantify their
compatibility.

To calculate the attention weights (denoted by at,i)
as Eq. (2), the attention mechanism applies a softmax
function to the alignment scores that were computed ear-
lier.

at,i = softmax(et,i) (2)

The attention mechanism generates a distinct context
vector (denoted by ct) for the decoder at each time step
as Eq. (3), which is determined by a weighted sum of all
encoder hidden states.

ct =
T∑

i=1

at,ihi (3)

This simplified attention mechanism differs from the
advanced self-attention used in paper ”Attention is All
You Need” [22]. Notable distinctions include a single
attention head, absence of positional encoding, and a
more straightforward architecture. This simplified ap-
proach may be better suited for specific tasks within a
deep neural network model.

3 Methods

Using the state-of-the-art model presented by Ribeiro et
al. [19] as the base model, this study aims to evaluate the
cross-dataset generalization ability of the model. Addi-
tionally, the study investigates how training data charac-
teristics impact the model’s generalization performance.
Furthermore, the study proposes an attention mechanism
as an effective solution to enhance the generalization abil-
ity of machine learning models.

3.1 Datasets

To evaluate the proposed method, this study primar-
ily used the extensive ECG dataset collected by Tele-
health Network Minas Gerais (TNMG) used by Ribeiro
et al. [19]. Additionally, the China Physiological Sig-
nal Challenge 2018 (CPSC) dataset [13] and the ECG
database from Shaoxing and Ningbo Hospitals (SNH)
were employed as validation datasets.

Telehealth Network Minas Gerais (TNMG)

The Telehealth Network Minas Gerais (TNMG)
dataset, cited in the reference by Ribeiro et al. [19],
consists of 2,322,513 labeled S12L-ECG recordings with
short duration, obtained from 1,676,384 unique patients.
Between 2010 and 2016, the Telehealth Network of Minas
Gerais, Brazil, gathered data using either a Tecnologia
Eletronica Brasileira TEB ECGPC model or a Micromed
Biotecnologia ErgoPC 13 model tele-electrocardiograph.
Cardiologist annotations and the University of Glasgow
ECG analysis program were used to label the recordings,
resulting in a dataset containing a normal heart rhythm
and six typical clinical abnormality categories. The
recordings were sampled at 400 Hz, and zero-padding was
used where necessary to ensure each of the 12 leads pro-
duced records of equal length, containing 4096 samples,
which corresponds to approximately 10 seconds [19]. The
six common clinical abnormality classes in the dataset
are summarised in Table 1.

This study utilized 1,048,575 distinct ECG 12-lead
tracings from the TNMG dataset as part of its exper-
imentation. The distribution of the dataset is depicted
in Figures 2a).

The TNMG dataset, a comprehensive collection of
ECG recordings, offers a valuable resource for investigat-
ing the prevalence of ECG abnormalities in the general
population. Fig. 2a) presents a striking proportion of
normal ECG records in the TNMG dataset, with over
80% of the total records displaying no labelled abnor-
mality. This finding is consistent with the theoretical
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Table 1: Classifications of Abnormality in TNMG Dataset and Incidents in General Population.

Abnormality Acronyms Description Prevalence in 100,000

First Degree Atrioven-
tricular Block

1dAVb A PR interval exceeding 200 ms on a surface
electrocardiogram indicates first-degree atri-
oventricular block (AVB).

4,000 among elders [16]

Atrial Fibrillation AF Rapid and irregular heartbeat characterize
atrial fibrillation (AF), which is the most com-
mon type of abnormality.

2,000 of European and
North American popula-
tion [23]

Left Bundle Branch
Block

LBBB Results in a sequence of activation in the right
ventricle before the left ventricle which leads to
modifications in the left ventricle’s perfusion,
mechanics, and workload.

32 among men and 37
among women per year [18]

Right Bundle Branch
Block

RBBB A condition that affects the electrical activity
in the ventricles of the heart, causing a delay
in the depolarization of the right ventricle due
to disrupted transmission of signals in the His-
Purkinje system.

200 to 1,300 in general
public [24]

Sinus Tachycardia ST ST is a tachyarrhythmia characterized by a
raised resting heart rate and an exaggerated
heart rate response to slight exertion or alter-
ations in body posture.

1,160 of randomly selected
individuals [20]

Sinus Bradycardia SB A condition where the heart’s sinus node fires
electrical impulses slower than normal, caus-
ing the heart rate to be slower than the usual
resting rate.

160 in elderly popula-
tion [7]

expectation of a healthy population, as demonstrated in
Table 1. Moreover, the distribution of ECG abnormali-
ties across different age groups in the TNMG data aligns
with the known increased prevalence of abnormalities in
the elderly population. Notably, the number of patients
with abnormalities declines beyond 75, possibly due to
lower survival rates among the elderly population with
abnormalities. Overall, the present findings highlight the
importance of utilizing large and diverse datasets such as
TNMG to gain insights into the expected distribution of
ECG abnormalities in the general population while also
identifying age as a crucial factor in the prevalence of
certain cardiac pathology.

The analysis of abnormality classifications within the
dataset demonstrates a relatively uniform distribution,
with each type of abnormality occurring at compara-
ble frequencies. Furthermore, this consistent distribution
pattern is maintained across both genders, with no ap-
parent gender-based variations observed. The age-based
breakdown of abnormality classifications is also consis-
tent with the general trend seen in the overall break-
down of age groups within the dataset. Notably, most
cases are concentrated within the middle age groups, un-
derscoring the utility of this dataset for developing pre-
dictive models for abnormalities. These findings offer
valuable insights into the prevalence and distribution of
abnormalities in the general population and emphasize
the importance of utilizing large and diverse datasets for
developing robust predictive models for abnormality de-
tection and classification.

China Physiological Signal Challenge 2018
(CPSC)

The CPSC training dataset is publicly accessible and
includes an open-source collection of 6,877 12-lead ECG
records. The recordings ranged from 6s to 60s and were
sampled at a rate of 500 Hz [13]. The ECGs are di-

vided into eight different types of abnormality, with AF,
1dAVb, LBBB, and RBBB overlapping with the TNMG
dataset. Additionally, ST-segment depression (STD),
premature atrial contraction (PAC), ST-segment eleva-
tion (STE) and premature ventricular contraction (PVC)
are also represented.

In order to align the CPSC dataset with the TNMG
dataset introduced earlier, patients diagnosed with STD,
PAC, STE, and PVC in their first labelled condition are
excluded from our analysis. The ECG tracings are also
resampled to 400 Hz to ensure comparability with the
TNMG dataset. The breakdown of the processed CPSC
dataset is shown in Fig. 2b).

The dataset contains a high proportion of patients with
abnormality, with approximately 75% of the total 4,622
unique ECG tracings exhibiting one or more types of ab-
normality. This high proportion is not a result of the
reduction in dataset size but rather an inherent charac-
teristic of the original dataset. The CPSC dataset follows
general trends in the population with a higher frequency
of abnormality among elderly patients. However, the dis-
tribution of patients across the four classifications of ab-
normality is uneven. The high proportion of patients
with Right Bundle Branch Block (RBBB) does not re-
flect the population and makes the dataset uneven for
training algorithms.

Shaoxing and Ningbo Hospitals (SNH)

The SNH dataset, open to the public, contains 45,152
12-lead ECG recordings gathered between 2013 and
2018 [25] [26]. These recordings are 10 seconds long,
and a licensed physician has assigned labels to each one
indicating its association with one or more of the 63 ab-
normality types. In order to conform with the TNMG
dataset, only ECG tracings that are categorized as nor-
mal or fall under the six classes existing in TNMG have
been retained. Consequently, the total number of record-
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Figure 2: a) The TNMG dataset presents organized data for different age groups and genders. In this visualization,
a darker bar represents the prevalence of Abnormality. On the right side, a central donut chart provides a com-
prehensive overview of various abnormalities. The inner layer of the chart offers a detailed breakdown by gender,
while the outer layer provides a nuanced breakdown by age group. b) The CPSC dataset is visualized similarly to
the TNMG dataset, focusing on specific age groups and genders. c) The SNH dataset uses the same visual style as
the TNMG dataset, incorporating organized data for age groups and genders.
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ings has been decreased to 34,033. Furthermore, all trac-
ings have been resampled at a rate of 400 Hz. The pro-
cessed SNH dataset is presented in Fig. 2c).

The SNH dataset highlights a significant prevalence of
abnormalities among patients, with approximately 70%
of the population presenting one or more types of abnor-
mality. Upon closer examination of the patient classifica-
tions, the dataset reveals a significant skew towards SB,
with more than half of the abnormality cases categorized
as such. Such an imbalance towards SB in the dataset
may pose a challenge when training an abnormality clas-
sification model.

3.2 Subsets

To investigate how training data characteristics affect
the model’s performance and generalization ability, this
study selected subsets of ECG tracings from the TNMG
dataset, using different selection criteria. The same
model was trained on each of the subsets, and a cross-
dataset performance analysis was conducted to exam-
ine the model’s performance and generalization capacity.
The model is also compared to the model trained in [19].

By using different selection criteria for the training
data subsets, this study aims to provide insights into
which characteristics of the training data have the most
significant impact on the model’s generalization ability.
Furthermore, by analyzing the model’s cross-dataset per-
formance, this study can assess the degree to which the
model can apply what it learned from the training data
to new datasets. The findings from this study can inform
future work on developing models with robust general-
ization capabilities in ECG analysis.

3.3 Attention Mechanism

Attention mechanisms have been shown to improve the
performance of models [3], however, this study goes be-
yond and examines the effect of attention mechanisms
on generalization. In this study, an additional attention
layer is proposed to be added to the base model, which
will also be trained on the four subsets of ECG trac-
ings. The performance of this model with the attention
mechanism will be compared to the performance of the
base model without the attention mechanism, and their
cross-dataset generalization abilities will be evaluated.

The proposed base model with the attention mecha-
nism is illustrated in Fig. 1b). By including an attention
mechanism, the model can selectively focus on the most
informative regions of the ECG tracings, which could po-
tentially improve the model’s ability to generalize to new
datasets. The findings from this study could provide in-
sights into the benefits of incorporating attention mech-
anisms in ECG analysis models and how they impact the
models’ generalization capabilities.

3.4 Evaluation Metrics

The models in this study are evaluated using the fol-
lowing performance metrics. In binary classification, TP
(True Positive), TN (True Negative), FP (False Positive),
and FN (False Negative) are defined, and F1 represents
the harmonic mean of precision and recall, offering a bal-
anced evaluation that accounts for both metrics.

Specificity =
TP

TN + FP
(4)

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F1 = 2× Precision×Recall

Precision+Recall
(7)

Due to the varying degrees of class imbalance observed
in all three datasets, where one class significantly out-
weighs the other, the F1 score emerges as a more appro-
priate metric. By taking into account both true positives
and false negatives, the F1 score offers better evaluation
and sensitivity for imbalanced datasets.

A higher score typically indicates better performance
of the model. While F1 score indicates the overall bal-
anced performance of the model.

4 Experiment

4.1 Subsets

This study aims to investigate the influence of distinct
selection criteria for training data on a proposed model
architecture’s performance and generalization capacity.
The model will be trained using four subsets of 12-lead
ECG data from the TNMG dataset, each consisting of
21,000 traces, with varying selection criteria as presented
in Table 2. The study’s main objective is to analyze how
specific attributes or characteristics of the training data
impact the performance and generalization ability of the
model when applied to various datasets.

Table 2: Subset Selection Criteria

Subset Selection Criteria

I 3,000 recordings from each of the six ECG
classification types and 3,000 normal read-
ings

II Same selection criteria as the approach I,
but favour patients with multiple types of
abnormality

III Select the 1,500 oldest and youngest
records for each ECG classification

IV Randomly selected

As a result of some patients having more than one
type of abnormality, there may be repeated selection of
patients from the TNMG dataset. The remaining data
required to reach 21,000 records is randomly drawn from
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the dataset. These repeated selections may introduce
discrepancies in the overall statistics. The statistics of
the subsets are summarized in Table 3.

4.2 Training

The architecture of the base model shown in Fig. 1 is
trained on each of the subsets, and its performance is
evaluated on a test dataset presented in [19]. The per-
formance of these models is compared to that of a model
trained in [19], and their cross-dataset generalization
ability is assessed by testing the models on the CPSC
and SNH datasets.

Similarly, we train the proposed model with the at-
tention mechanism illustrated in Fig. 1b) on the subsets
and select the best-performing model for evaluation of its
cross-dataset generalization ability. The performance is
compared to that of the base model trained in [19], and
its generalization capacity is evaluated.

The hyperparameters previously used in [19] were de-
ployed to train our model. These include 16 for kernel
size, 64 for batch size, an initial learning rate of 0.001,
the Adam optimizer, 0.8 for dropout rate, and epochs of
200 with a patience value of 9 epochs for early stopping.

By utilizing these hyperparameters, we aim to ensure
consistency in our experiments and facilitate direct com-
parison with prior research. Such an approach enables
a more rigorous evaluation of our proposed model archi-
tecture’s performance in ECG signal classification tasks.

4.3 Model Testing

The models were evaluated on the test dataset described
in [19], which consists of 827 unique 12-lead tracings of
ECG records. Further details regarding the breakdown
of the test dataset can be found in Table 4.

To assess the generalization capacity of the models
across different datasets, tests of the models were con-
ducted on the CPSC and SNH datasets. The perfor-
mance of the models was evaluated using the proposed
metrics, and the results were analysed to determine their
generalization performance.

5 Result

The experiment results are divided into two subsections
for presentation. In the first subsection, we focus on the
findings related to the base model architecture, explor-
ing how its performance varies based on different char-
acteristics of the subsets used in training. In the second
subsection, we shift our attention to the proposed model
with attention mechanisms evaluating its performance
across the same subsets. By segregating the analysis, we
can understand both the base model’s behavior and the
potential enhancements brought about by incorporating
attention mechanisms.

5.1 Effect of Dataset Characteristics

The models trained on the subsets are tested on the test-
set of [19] and are compared to the result of the trained
model in [19]. The performance metrics of the models
are presented in Table 5.
The trained models underwent evaluation on the

CPSC dataset through model inference, and their per-
formance was compared to that of the model presented
in [19]. The results are summarized in Table 5.
The models were ultimately inferred on the SNH

dataset, and their effectiveness was compared to that of
the model introduced in [19]. The comparison results are
illustrated in Table 5.

5.2 Boosted Model with Attention
Mechanism

To comprehend the impact of the attention mechanism
on the generalizability of the model, we trained the pro-
posed model architecture depicted in Fig. 1b) on the four
subsets. Its performance on the test-set of [19] is pre-
sented in Table 6.

The top-performing model, which incorporates the at-
tention mechanism and achieves the highest F1 score
(Subset III), was evaluated on both the CPSC and SNH
datasets through model inference. Its performance was
compared to that of the TNMG model introduced in [19],
and the results are presented in Table 7.

6 Discussion

Based on the experimental results, it is evident that the
training data’s characteristics significantly impact the
model’s performance, even when using the same model
structure and amount of training data. The models
trained on subsets I, II, and III exhibited better per-
formance compared to the model trained on subset IV,
achieving F1 scores of 0.84, 0.83, 0.83, and 0.80, respec-
tively. The improved performance of subsets I, II, and III
can be attributed to the balanced nature of their training
datasets, which had similar abnormality classifications.
While a larger dataset can lead to better in-sample per-
formance, it is crucial to acknowledge that this perfor-
mance boost may be attributed to the presence of data
from each class of abnormality. However, considering
that the subset comprises only around 1% of the original
dataset, the models trained on these subsets still demon-
strate commendable performance.

The story changes when it comes to model general-
ization. As discussed earlier, for inference performance
on the CPSC dataset, models trained on subsets I, II,
and III still outperformed the model trained on subset
IV, demonstrating the significance of a balanced dataset,
achieving F1 scores of 0.88, 0.86, 0.88, and 0.77, respec-
tively. However, what is even more surprising is that
Ribeiro et al.’s model, which was trained on the entire
TNMG dataset and achieved an F1 score of 0.87, did
not perform better than the models trained on smaller
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Table 3: Subsets statistics with charts displaying different age groups with distinct bars for females and males. The
charts organize the female bars on the left and the male bars on the right for visual clarity.

Subset I II III IV

1dAVb 3,234 6,677 3,341 333
RBBB 4,320 7,020 3,819 589
LBBB 3,443 4,935 3,411 340
SB 3,367 3,624 3,324 357
AF 3,561 4,043 3,846 377
ST 3,299 3,219 3,395 455

Normal 3,000 3,000 3,000 18,793
Age Group

90+
75-89
60-74
45-59
30-44
15-29

Table 4: TNMG test-set statistics by age groups with
separate bars for females and males. The female bars
are positioned on the left, and the male bars on the right
for visual clarity.

Type Count

1dAVb 28
RBBB 34
LBBB 30
SB 16
AF 13
ST 36
Age
90+
75-89
60-74
45-59
30-44
15-29

Table 5: Analyzing DNN Model Performance: Evalu-
ating Inference Results on TNMG test set, CPSC, and
SNH Datasets for Various Subsets (I, II, III & IV) versus
the Full Dataset Training.

Subset I II III IV Full[19]

Inference on TMNG Test-set
Precision 0.81 0.77 0.80 0.79 0.92
Recall 0.87 0.93 0.89 0.82 0.94
Specificity 0.99 0.99 0.99 0.99 1.00
F1 Score 0.84 0.83 0.83 0.80 0.93

Inference on CPSC Dataset
Precision 0.93 0.88 0.90 0.80 0.91
Recall 0.84 0.84 0.86 0.76 0.84
Specificity 0.98 0.97 0.98 0.95 0.98
F1 Score 0.88 0.86 0.88 0.77 0.87

Inference on SNH Dataset
Precision 0.48 0.51 0.48 0.15 0.48
Recall 0.50 0.55 0.53 1.00 0.53
Specificity 0.85 0.82 0.82 0.00 0.82
F1 Score 0.47 0.50 0.49 0.22 0.48

subsets I and III. It is only marginally better perform-
ing than the model trained on subset II. This discovery
is particularly interesting, considering that the subsets
use only approximately 1% of the entire TNMG dataset.

Table 6: The inference results of the Attention-DNN
model trained on different subsets (I, II, III & IV) eval-
uated on the TNMG test set.

Subset I II III IV

Precision 0.86 0.82 0.84 0.88
Recall 0.85 0.84 0.92 0.83
Specificity 1.00 0.99 0.99 1.00
F1 Score 0.85 0.83 0.88 0.84

Table 7: Comparative inference evaluation of model per-
formance trained on TNMG subset III to the original
DNN model trained on the entire TNMG dataset.

Attention DNN III DNN[19]

Dataset CPSC SNH CPSC SNH
Precision 0.90 0.50 0.91 0.48
Recall 0.86 0.57 0.84 0.53
Specificity 0.97 0.81 0.98 0.82
F1 Score 0.88 0.52 0.87 0.48

This finding suggests that a well-balanced and prop-
erly curated smaller dataset can still lead to competitive
model performance compared to larger and more diverse
datasets.

For inference performance on the SNH dataset, the
model’s performance experienced a significant decrease,
which aligns with the long-standing issue in biomedi-
cal machine learning models. These models often strug-
gle to generalize well when faced with changes in data,
equipment, environment, and patient characteristics. To
address this problem, some researchers have proposed
patient-specific models, and there is a growing body of
research in this direction.

The Ribeiro et al. model achieved a considerably lower
F1 score of 0.48 on the SNH dataset, indicating that even
with a large dataset, it still faces challenges with model
generalization in the biomedical sector. Conversely, the
models trained on subsets I, II, and III outperformed
those trained on subset IV, with F1 scores of 0.47, 0.50,
0.49, and 0.22, respectively. This reaffirms the impor-
tance of having a balanced dataset for training. Remark-
ably, the same interesting discovery was made when com-
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pared to Ribeiro et al.’s model on the SNH dataset. The
model once again failed to outperform models trained
on only 1% of its data. It performed lower than mod-
els trained on subsets II and III and slightly better than
those trained on subset I. This discovery further confirms
the previous findings observed in the CPSC dataset infer-
ence results. It underscores the importance of dataset cu-
ration and balance even when dealing with large datasets
in the biomedical domain.

The final part of the experiment focuses on the impact
of the attention mechanism on performance and gener-
alization. The results clearly indicate that the attention
mechanism enhances the performance of almost all sub-
sets in terms of the F1 score, with a particularly sig-
nificant improvement observed in subset IV, which ini-
tially had the lowest F1 score when tested the models
on the TNMG test-set. The performance of the models
has improved to F1 scores of 0.85, 0.83, 0.88, and 0.84,
respectively, as shown in Table 6. This trend also trans-
lates into generalization, as evidenced by the comparison
of Ribeiro et al.’s model and the model with the atten-
tion mechanism trained on subset III. The new model
has outperformed Ribeiro et al.’s model in inference per-
formance on both CPSC and SNH datasets illustrated
in Table 7. Considering the fact that the new model
was trained with only 1% of the TNMG dataset, this
again confirms the previous finding of the importance of
balanced data and confirms the positive impact of the
attention mechanism on improving the model’s accuracy
and inference performances.

Again, looking at the performance of the models
trained on subsets, the performance between models
trained on I, II and III are not clearly higher or lower,
indicating that the selection criteria used for subset I,
II, and III with age preference and multi-abnormality
patients do not have a clear impact on the model per-
formance. Therefore, balanced data is the most impor-
tant factor. This study also clears many researchers’
doubts, encouraging using datasets with characteristics
matching the general population. The TNMG dataset,
claimed to be the largest ECG dataset, matches the pro-
portion of various abnormalities in the general popu-
lation. Nonetheless, models trained using this dataset
struggle to exhibit the same level of generalization as
models trained on a smaller dataset that is balanced.
Therefore, researchers should use balanced ECG datasets
for training to achieve the best-performing models.

7 Conclusion

The study emphasizes the crucial role of dataset charac-
teristics in influencing model performance and general-
ization. Specifically, the researchers found that models
trained on balanced subsets consistently outperformed
those trained on unbalanced data, regardless of the lat-
ter’s larger size. This highlights the critical importance
of dataset balance in achieving better model perfor-
mance.

Moreover, introducing the attention mechanism
proved to be a valuable enhancement, boosting model
performance across various subsets. Notably, the most
significant enhancement was observed in subset IV,
which initially had the lowest performance. The posi-
tive impact of the attention mechanism was evident not
only on the TNMG test-set but also on external datasets
(CPSC and SNH), demonstrating its efficacy in improv-
ing model accuracy and generalization.

These findings hold significant implications for re-
searchers and practitioners in the biomedical field. It
strongly encourages using carefully curated, balanced
datasets and adopting attention mechanisms to achieve
the best-performing models. By addressing these factors,
the research aims to contribute to advancing biomedical
machine learning, ultimately leading to better healthcare
outcomes in real-world settings.
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