
 

1 
 

Genetic	structure	of	major	depression	
symptoms	across	clinical	and	
community	cohorts	
	

Mark	J	Adams1,	Jackson	G	Thorp2,	Bradley	S	Jermy3,	Alex	S	F	Kwong1,4,	Kadri	Kõiv5,	Andrew	D	
Grotzinger6,7,	Michel	G	Nivard8,	Sally	Marshall9,	Yuri	Milaneschi10,	Bernhard	T	Baune11,12,13,	
Bertram	Müller-Myhsok14,15,16,	Brenda	WJH	Penninx10,	Dorret	I	Boomsma17,	Douglas	F	
Levinson18,	Gerome	Breen19,20,	Giorgio	Pistis21,	Hans	J	Grabe22,	Henning	Tiemeier23,24,	Klaus	
Berger25,	Marcella	Rietschel26,	Patrik	K	Magnusson27,	Rudolf	Uher28,	Steven	P	Hamilton29,	
Susanne	Lucae30,	Kelli	Lehto5,	Qingqin	S	Li31,	Enda	M	Byrne32,	Ian	B	Hickie33,	Nicholas	G	Martin2,	
Sarah	E	Medland2,	Naomi	R	Wray34,35,	Elliot	M	Tucker-Drob36,37,	Estonian	Biobank	Research	
Team38,	Major	Depressive	Disorder	Working	Group	of	the	Psychiatric	Genomics	Consortium,	
Cathryn	M	Lewis19,39,	Andrew	M	McIntosh1,40,	Eske	M	Derks2	

	

1	Division	of	Psychiatry,	University	of	Edinburgh,	Edinburgh,	UK	
2	Mental	Health	and	Neuroscience,	QIMR	Berghofer	Medical	Research	Institute,	Brisbane,	QLD,	
AU	
3	Institute	for	Molecular	Medicine	Finland,	University	of	Helsinki,	Helsinki,	FI	
4	MRC	Integrative	Epidemiology	Unit,	University	of	Bristol,	Bristol,	UK	
5	Estonian	Genome	Centre,	Institute	of	Genomics,	University	of	Tartu,	Tartu,	EE	
6	Department	of	Psychology	and	Neuroscience,	University	of	Colorado	at	Boulder,	Boulder,	CO,	
US	
7	Institute	for	Behavioral	Genetics,	University	of	Colorado	at	Boulder,	Boulder,	CO,	US	
8	Department	of	Biological	Psychology,	Vrije	Universiteit	Amsterdam,	Amsterdam,	NL	
9	Centre	for	Genomic	&	Experimental	Medicine,	Institute	of	Genetics	and	Cancer,	University	of	
Edinburgh,	Edinburgh,	UK	
10	Department	of	Psychiatry,	Amsterdam	Public	Health	and	Amsterdam	Neuroscience,	
Amsterdam	UMC,	Vrije	Universiteit	Amsterdam,	Amsterdam,	NL	
11	Department	of	Psychiatry,	University	of	Melbourne,	Melbourne,	VIC,	AU	
12	Florey	Institute	of	Neuroscience	and	Mental	Health,	University	of	Melbourne,	Melbourne,	VIC,	
AU	
13	Department	of	Psychiatry,	University	of	Münster,	Münster,	NRW,	DE	
14	Department	of	Translational	Research	in	Psychiatry,	Max	Planck	Institute	of	Psychiatry,	
Munich,	BY,	DE	
15	Munich	Cluster	for	Systems	Neurology	(SyNergy),	Munich,	BY,	DE	
16	Institute	of	Population	Health,	University	of	Liverpool,	Liverpool,	UK	
17	Department	of	Biological	Psychology	&	Amsterdam	Public	Health	Research	Institute,	Vrije	
Universiteit	Amsterdam,	Amsterdam,	NL	
18	Department	of	Psychiatry	&	Behavioral	Sciences,	Stanford	University,	Stanford,	CA,	US	
19	Social,	Genetic	and	Developmental	Psychiatry	Centre,	King’s	College	London,	London,	UK	
20	NIHR	Maudsley	Biomedical	Research	Centre,	King’s	College	London,	London,	UK	
21	Department	of	Psychiatry,	Lausanne	University	Hospital	and	University	of	Lausanne,	Prilly,	
VD,	CH	
22	Department	of	Psychiatry	and	Psychotherapy,	University	Medicine	Greifswald,	Greifswald,	

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.05.23292214doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.07.05.23292214
http://creativecommons.org/licenses/by/4.0/


 

2 
 

MV,	DE	
23	Child	and	Adolescent	Psychiatry,	Erasmus	University	Medical	Center	Rotterdam,	Rotterdam,	
NL	
24	Social	and	Behavioral	Science,	Harvard	T.H.	Chan	School	of	Public	Health,	Boston,	MA,	US	
25	Institute	of	Epidemiology	and	Social	Medicine,	University	of	Münster,	Münster,	NRW,	DE	
26	Department	of	Genetic	Epidemiology	in	Psychiatry,	Central	Institute	of	Mental	Health,	Medical	
Faculty	Mannheim,	Heidelberg	University,	Mannheim,	BW,	DE	
27	Department	of	Medical	Epidemiology	and	Biostatistics,	Karolinska	Institutet,	Stockholm,	SE	
28	Psychiatry,	Dalhousie	University,	Halifax,	NS,	CA	
29	Psychiatry,	Kaiser	Permanente	Northern	California,	San	Francisco,	CA,	US	
30	Max	Planck	Institute	of	Psychiatry,	Munich,	BY,	DE	
31	Neuroscience	Therapeutic	Area,	Janssen	Research	and	Development,	LLC,	Titusville,	NJ,	US	
32	Child	Health	Research	Centre,	University	of	Queensland,	Brisbane,	QLD,	AU	
33	Brain	and	Mind	Centre,	University	of	Sydney,	Sydney,	NSW,	AU	
34	Institute	for	Molecular	Bioscience,	University	of	Queensland,	Brisbane,	QLD,	AU	
35	Queensland	Brain	Institute,	University	of	Queensland,	Brisbane,	QLD,	AU	
36	Department	of	Psychology,	University	of	Texas	at	Austin,	Austin,	TX,	US	
37	Population	Research	Center,	University	of	Texas	at	Austin,	Austin,	TX,	US	
38	Andres	Metspalu,	Lili	Milani,	Tõnu	Esko,	Reedik	Mägi,	Mari	Nelis	&	Georgi	Hudjashov	
39	Department	of	Medical	&	Molecular	Genetics,	King’s	College	London,	London,	UK	
40	Institute	for	Genomics	and	Cancer,	University	of	Edinburgh,	Edinburgh,	UK	

Abstract	
 

Diagnostic	criteria	for	major	depressive	disorder	allow	for	heterogeneous	symptom	profiles	but	
genetic	analysis	of	major	depressive	symptoms	has	the	potential	to	identify	clinical	and	
aetiological	subtypes.	There	are	several	challenges	to	integrating	symptom	data	from	
genetically-informative	cohorts,	such	as	sample	size	differences	between	clinical	and	
community	cohorts	and	various	patterns	of	missing	data.	We	conducted	genome-wide	
association	studies	of	major	depressive	symptoms	in	three	clinical	cohorts	that	were	enriched	
for	affected	participants	(Psychiatric	Genomics	Consortium,	Australian	Genetics	of	Depression	
Study,	Generation	Scotland)	and	three	community	cohorts	(Avon	Longitudinal	Study	of	Parents	
and	Children,	Estonian	Biobank,	and	UK	Biobank).	We	fit	a	series	of	confirmatory	factor	models	
with	factors	that	accounted	for	how	symptom	data	was	sampled	and	then	compared	alternative	
models	with	different	symptom	factors.	The	best	fitting	model	had	a	distinct	factor	for	
Appetite/Weight	symptoms	and	an	additional	measurement	factor	that	accounted	for	missing	
data	patterns	in	the	community	cohorts	(use	of	Depression	and	Anhedonia	as	gating	
symptoms).	The	results	show	the	importance	of	assessing	the	directionality	of	symptoms	(such	
as	hypersomnia	versus	insomnia)	and	of	accounting	for	study	and	measurement	design	when	
meta-analysing	genetic	association	data.		

 

Introduction	
	

Major	depressive	disorder	(MDD)	is	a	mood	disorder	characterized	by	low	mood,	loss	of	
interest	or	pleasure	(anhedonia),	irritable	affect,	biological	symptoms	(psychomotor	
agitation/slowing,	altered	sleep	patterns,	changes	in	appetite	or	weight),	negative	thought	
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content,	and	associated	loss	of	function.	To	qualify	for	a	diagnosis	of	major	depression,	the	
standard	diagnostic	classification	systems	(American	Psychiatric	Association,	2000,	2013;	
World	Health	Organization,	1992)	require	one	of	two	cardinal	symptoms	plus	at	least	four		
other	symptoms	to	be	present.	Although	conceptualized	as	a	single	disorder,	the	diagnostic	
criterion	for	MDD	can	be	met	with	any	combination	of	these	other	symptoms.	For	the	DSM-5,	
this	entails	that	there	are	227	symptom	profiles	that	would	lead	to	a	diagnosis	of	major	
depression	(Zimmerman	et	al.,	2015).	When	considering	all	potential	symptom	states	(such	as	
increasing	versus	decreasing	appetite)	the	number	of	possible	symptom	profiles	blooms	into	
the	thousands	(Fried	&	Nesse,	2015a).	

A	single	categorical	phenotype---that	might	mask	a	multitude	of	separate	disorder	types---
stymies	the	testing	of	correlates	and	treatments.	Network	analysis	has	shown	that	MDD	
symptoms	are	not	all	equally	related	to	each	other	(Borsboom	&	Cramer,	2013)	and	latent	class	
analysis	has	been	used	to	identify	several	MDD	subtypes	with	differing	patterns	of	symptoms	
and	differential	association	with	demographic,	psychological,	and	physical	health	factors	
(Lamers	et	al.,	2010).	However,	the	potential	concealed	heterogeneity	within	the	MDD	diagnosis	
does	have	an	upper	bound:	only	around	one	quarter	of	the	potential	symptom	profiles	are	
actually	observed	(Fried	&	Nesse,	2015a;	Zimmerman	et	al.,	2015).	This	suggests	there	is	both	
regularity	and	variation	in	symptom	presentation.		

Analysing	individual	symptoms	is	one	way	to	unwrap	the	heterogeneity	of	MDD	(Cai	et	al.,	
2020;	Fried	&	Nesse,	2015b).	Phenotypic	studies	have	derived	and	tested	factor	structures	of	
MDD	symptoms	(Elhai	et	al.,	2012;	Krause	et	al.,	2008,	2010)	and	twin	models	have	been	used	
to	separate	genetic	from	environmental	sources	of	symptom	covariance	(Kendler	et	al.,	2013).	
These	models	grouped	symptoms	together	in	two	or	three	factors,	which	broadly	contrast	
psychological	versus	somatic	symptoms.	The	primary	difference	among	the	proposed	two	factor	
structures	is	whether	psychological	symptoms	including	anhedonia	and	concentration	
problems	group	with	the	cognitive/affective	symptoms	or	with	the	somatic	symptoms.	Three	
factor	models	have	instead	posited	splitting	the	psychological	symptoms	into	affective	and	
cognitive	components.	Clinical	subtypes	are	also	part	of	diagnostic	criteria	and	these	have	been	
used	to	classify	depression	profiles	that	are	differentially	associated		with	specific	clinical,	
behavioural	and	biological	correlates	(Milaneschi	et	al.,	2020;	Penninx	et	al.,	2013).	

More	recently,	genetic	studies	of	depressive	symptoms	have	updated	the	findings	from	twin	
models	using	data	from	genome-wide	association	studies	(GWAS).	A	confirmatory	factor	
analysis	of	genetic	covariance	estimates	obtained	from	GWAS	results	on	current	depressive	
symptoms	showed	that	a	psychological	and	somatic	factor	had	the	best	fit	to	the	data	(Thorp	et	
al.,	2020).	The	detection	of	genetic	correlates	specific	to	each	symptom	implies	that	symptoms	
may	have	differing	genetic	causes	and	consequences,	even	if	the	symptoms	themselves	are	
highly	genetically	correlated.		

Understanding	the	genetic	architecture	of	MDD	symptoms	is	complicated	by	symptom	
ascertainment.	In	clinical	samples,	symptom	data	is	often	only	available	on	affected	participants,	
and	is	thus	conditioned	on	having	been	diagnosed	with	depression.	Conditioning	data	presence	
on	a	diagnosis	can	induce	downward	bias	in	correlations	amongst	the	symptoms	comprising	
that	diagnosis.	However,	when	symptom	data	is	missing	in	controls,	imputing	the	absence	of	the	
symptom	in	controls	and	including	them	in	the	analysis	has	the	potential	to	recapitulate	the	
signal	from	a	case/control	analysis	rather	than	reveal	genetic	variance	that	is	unique	to	each	
symptom.	In	community	cohorts,	participants	are	typically	screened	for	the	presence	of	cardinal	
symptoms	(depressed	mood	and	anhedonia)	and	only	participants	who	report	at	least	one	
cardinal	symptom	are	assessed	for	other	symptoms	of	depression,	which	also	leads	to	high	
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levels	of	missing	symptom	data	in	these	cohorts.	Moreover,	because	community	samples	often	
contain	symptom	but	not	diagnostic	information,	many	GWAS	purporting	to	investigate	MDD	
may	actually	be	better	characterized	as	investigating	a	broader	dysphoria	continuum	rather	
than	MDD	specifically	(Flint,	2023).	Because	community	cohorts	tend	to	have	a	larger	sample	
size	than	clinical	cohorts,	meta-analysing	all	data	together	therefore	has	the	potential	to	dilute	
information	on	case	subtypes.		

In	this	study	we	sought	to	uncover	the	genetic	structure	of	depression	symptoms	while	
accounting	for	how	samples	were	recruited	and	how	symptoms	were	assessed.	We	did	this	by	
conducting	GWAS	of	individual	symptoms	of	depression,	testing	factor	models	to	investigate	
genetic	heterogeneity	as	a	function	of	sample	ascertainment	(Clinical	vs	Community)	and	
measurement	(with	or	without	screening	based	on	cardinal/gating	symptoms).	Finally,	we	
assessed	the	validity	of	the	identified	latent	factors	of	depression	by	estimating	genetic	
correlations	with	external	traits.	

Specifically,	we	conducted	GWAS	of	symptom	data	in	six	cohorts	and	meta-analysed	them	in	
groups	based	on	sample	ascertainment.	The	first	group	(the	“Clinical”	cohorts)	consisted	of	
clinical	cases	from	the	Psychiatric	Genomics	Consortium	MDD	cohorts,	participants	from	the	
Australian	Genetics	of	Depression	study	who	were	recruited	based	on	depression	diagnosis,	and	
participants	from	Generation	Scotland	who	met	DSM	criteria	for	depression.	The	second	group	
(the	“Community”	cohorts)	consisted	of	the	Avon	Longitudinal	Study	of	Parents	and	Children,		
Estonian	Biobank,	and	UK	Biobank,	and	thus	contained	data	on	participants	who	were	not	
recruited	with	respect	to	depression	status.	Using	the	two	sets	of	meta-analysed	symptom	
GWASs,	we	first	constructed	and	tested	factor	models	that	accounted	for	how	the	samples	were	
recruited	(Clinical	versus	Community)	and	how	symptoms	were	assessed	(such	as	gating	
symptoms	in	the	Community	cohorts).	After	understanding	the	measurements	structure	of	the	
symptom	GWASs,	we	then	compared	alternative	factor	models	for	the	symptoms	based	on	
previous	literature	and	diagnostic	specifiers	for	depressive	disorders.	Using	the	best	fitting	
overall	model,	we	tested	for	shared	and	specific	genetic	correlates	with	other	psychiatric,	
behavioral,	and	metabolic	phenotypes	that	have	known	genetic	links	to	MDD.	

Methods	
	

Samples	and	symptom	measures	
 

We	analysed	depression	symptom	data	in	six	studies:	the	Psychiatric	Genomics	Consortium,	the	
Australian	Genetics	of	Depression	Study,	Generation	Scotland,	the	Avon	Longitudinal	Study	of	
Parents	and	Children,	Estonian	Biobank,	and	UK	Biobank.	Table	1	describes	the	number	of	
participants	with	and	without	each	symptom	for	each	grouping	of	studies	that	were	analysed.	
See	Supplementary	Material	for	information	on	genotyping	and	imputation.	

Data	from	the	Psychiatric	Genomics	Consortium	(PGC)	was	drawn	from	23	cohorts	in	the	Wave	
1	and	Wave	2	datasets	of	the	Major	Depressive	Disorder	Working	Group	(Major	Depressive	
Disorder	Working	Group	of	the	Psychiatric	GWAS	Consortium,	2013;	Wray	et	al.,	2018).	
Symptoms	were	assessed	by	trained	interviewers	using	structured	diagnostic	instruments	and	
DSM	checklists.	Because	information	on	symptom	presence	was	not	available	for	control	
participants	in	most	cohorts,	participants	with	a	diagnosis	of	depression	were	selected	for	
analysis	(N	=	12,821).		
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The	Australian	Genetics	of	Depression	Study	(AGDS)	(Byrne	et	al.,	2020;	Mitchell	et	al.,	2022)	is	
a	study	of	depression	and	therapeutic	response	recruited	using	nationwide	prescribing	history	
and	through	publicity	targeting	adults	who	are	or	had	ever	been	treated	for	clinical	depression	
(N	=	20,689).	Symptoms	experienced	during	the	participant’s	worst	period	of	depression	were	
assessed	using	the	Composite	International	Diagnostic	Interview	(CIDI)	Short	Form	(Hickie	et	
al.,	2001)	and	administered	through	an	online	questionnaire.	Because	the	study	was	enriched	
for	participants	with	a	history	of	being	diagnosed	with	or	treated	for	depression,	AGDS	was	
grouped	as	a	Clinical	cohort.	

Generation	Scotland:	Scottish	Family	Health	Study	(GS:SFHS)	is	a	study	of	7,000	families	
recruited	from	the	general	population	of	Scotland	(Smith	et	al.,	2012).	Participants	who	
screened	reported	seeking	help	for	emotional	or	psychiatric	problems	were	administered	an	in-
person	structured	interview	(Fernandez-Pujals	et	al.,	2015;	Smith	et	al.,	2012);	and	a	subset	
participated	in	an	online	follow-up	that	included	a	CIDI	(Composite	International	Diagnostic	
Interview)	questionnaire.	Symptom	data	was	analysed	on	participants	who	met		DSM	criteria	
for	depression	at	either	time	point	(N	=	3,493).	

The	Avon	Longitudinal	Study	of	Parents	and	Children	(ALSPAC)	is	a	UK-based	population	birth	
cohort	(Boyd	et	al.,	2013).	Participants	were	from	the	children	sample	(N	=	13,988)	with	
symptoms	present	during	the	last	two	weeks	assessed	using	the	Clinical	Interview	Schedule	
Revised	(CIS-R)	(Lewis	et	al.,	1992)	collected	during	clinical	visits	at	ages	18	and	24.	
Participants	were	considered	to	have	had	a	symptom	if	they	reported	it	at	either	measurement	
occasion.	

Estonian	Biobank	(EstBB)	is	a	population	health	cohort	recruited	from	medical	practitioners	in	
Estonia	(Leitsalu	et	al.,	2015).	Participants	responded	to	a	CIDI	questionnaire	of	depression	
symptoms	during	the	Mental	Health	online	Survey	(MHoS)	recontact.	Participants	were	first	
screened	of	the	presence	of	low	mood	or	anhedonia	and	then	asked	about	symptoms	during	the	
worst	period	of	depression	(N	=	84,079).	

UK	Biobank	(UKB)	is	a	population	health	cohort	recruited	from	general	practitioners	in	the	
United	Kingdom	(Sudlow	et	al.,	2015).	Lifetime	depression	symptoms	were	assessed	during	
online	recontact	and	taken	from	the	CIDI	portion	of	the	Mental	Health	Questionnaire	(Davis	et	
al.,	2020)	(UKB-MHQ,	N=157,366)	and	from	assessments	of	low	mood	and	anhedonia	from	the	
baseline	touchscreen	questionnaire	(UKB	Touchscreen,	N=222,061).	For	the	CIDI,	low	mood	
and	anhedonia	were	used	as	gating	symptoms,	where	participants	had	to	endorse	at	least	one	to	
be	asked	about	the	other	symptoms.		

	

	 	 Cohort	
N	Symptom	Present	:	Absent	

Sample	Prevalence	

Symptom	 Abbr.	 Clinical	cohorts	meta	 Community	cohorts	
meta	

UKB	Touchscreen	

1.	Depressed	
mood	

Dep	 21681	:	1748	
93%	

107956	:	99480	
52%	

71964	:	57130	
56%	

2.	Anhedonia	 Anh	 24732	:	2801	
90%	

181113	:	126167	
39%	

46952	:	80366	
37%	
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3a.	Weight	loss	/	
decrease	in	
appetite	

AppDec	 9265	:	14594	
39%	

39453	:	36497	
52%	

0	:	0	

3b.	Weight	gain	/	
increase	in	
appetite	

AppInc	 7902	:	13167	
38%	

22612	:	36489	
38%	

0	:	0	

4a.	Insomnia	 SleDec	 18917	:	6573	
74%	

73144	:	19851	
79%	

0	:	0	

4b.	Hypersomnia	 SleInc	 10586	:	11050	
49%	

20125	:	20055	
50%	

0	:	0	

5a.	Psychomotor	
agitation	

MotoInc	 10447	:	12372	
46%	

113	:	3181	
3%	

0	:	0	

5b.	Psychomotor	
slowing	

MotoDec	 12701	:	11214	
53%	

299	:	2995	
9%	

0	:	0	

6.	Fatigue	 Fatig	 23941	:	2497	
91%	

85304	:	16736	
84%	

0	:	0	

7.	Feelings	of	
worthlessness	/	
guilt	

Guilt	 21921	:	3888	
85%	

61757	:	43570	
59%	

0	:	0	

8.	Diminished	
concentration	

Conc	 23974	:	2386	
91%	

75190	:	23416	
76%	

0	:	0	

9.	Recurrent	
thoughts	of	death	
or	suicide	

Sui	 18170	:	9609	
65%	

46984	:	58885	
44%	

0	:	0	

Table	1.	Sample	size	counts	and	sample	prevalences	of	presence	and	absence	of	each	symptom	
for	participants	used	in	the	genetic	analyses.	Meta-analysis	of	Clinical	(PGC,	AGDS,	GenScot),	
Community	(ALSPAC,	EstBB,	UKB-MHQ)	and	UKB	Touchscreen.	

Genome-wide	association	meta-analysis	
	
Genome-wide	association	study	(GWAS)	analyses	were	conducted	on	each	symptom	separately	
in	the	cohorts	(PGC,	AGDS,	GS:SFHS,	ALSPAC,	EstBB,	UKB-MHQ)	on	participants	who	had	genetic	
similarity	with	each	other	and	the	1000	Genomes	European	reference.	Participants	in	UKB	who	
clustered	with	other	reference	populations	were	not	analysed	because	sample	sizes	did	not	
meet	the	threshold	for	LD	score	estimation	(N	>	5000).	See	Supplementary	Material	for	more	
information	on	the	individual	study	GWASs.	We	meta-analysed	the	GWAS	summary	statistics	
based	on	the	ascertainment	design.	PGC,	AGDS,	and	GS:SFHS	were	meta-analysed	together	to	
form	the	“Clinical”	symptom	summary	statistics;	and	ALSPAC,	EstBB,	and	UKB-MHQ	were	meta-
analysed	together	for	the	“Community”	summary	statistics.	We	performed	the	meta-analyses	
using	Ricopili	(Lam	et	al.,	2020)	and	calculated	SNP-based	heritability	using	LD	Score	
Regression	(LDSC)	(Bulik-Sullivan	et	al.,	2015).	For	input	into	LDSC	we	set	the	sample	size	equal	
to	the	sum	of	effective	sample	sizes	of	each	cohort	in	the	meta-analysis	and	then	specified	
sample	prevalences	of	50%	(Grotzinger	et	al.,	2022).	Symptoms'	population	prevalences	were	
estimated	for	the	Clinical	cohorts	by	multiplying	the	observed	sample	prevalence	by	the	
prevalence	of	MDD	(15%)	and	for	the	Community	cohorts	by	multiplying	by	the	proportion	of	
participants	in	the	UKB	MHQ	sample	who	were	positive	on	either	one	the	gating	symptoms.	We	
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assessed	significant	associations	in	the	meta-analysed	summary	statistics	at	p	<	5	×	10-8	/	22	
(the	number	of	meta-analyses	conducted)	or	at	p	<	5	×	10-8	with	prior	association	or	biological	
evidence	at	the	locus.	

	

Confirmatory	factor	analysis	of	Genetic	Covariance	Structure	
	
We	fit	confirmatory	genetic	factor	analysis	models	to	the	meta-analysed	ascertainment	cohort	
(i.e.,	Clinical	and	Community-based)	and	UKB	Touchscreen	summary	statistics	for	each	
symptom	using	Genomic	SEM	(Grotzinger	et	al.,	2019).	We	first	fit	a	common	factor	model,	
where	all	symptoms	load	on	a	single	factor	as	a	baseline,	using	symptoms	with	a	non-negative	
LDSC	heritability	(Model	A).	To	explore	how	sample	ascertainment	influenced	the	genetic	
correlations	among	the	symptoms,	we	fit	a	series	of	models	that	captured	various	aspects	of	the	
sampling	and	measurement	processes.	We	then	used	these	results	to	inform	the	construction	of	
models	that	grouped	the	symptoms	based	on	previous	findings	and	diagnostic	criteria.	We	
assessed	relative	model	fit	using	Akaike	Information	Criterion	(AIC)	to	pick	the	best	model	and	
absolute	model	fit	with	Standardized	Root	Mean	Square	Residual	(SRMR)	to	determine	how	
well	the	model	was	capturing	the	genetic	correlations	among	symptoms.	We	also	examined	
residual	correlations	to	understand	what	aspects	of	symptom	structure	were	not	being	
captured.	Factor	structures	are	listed	in	Supplementary	Table	S4	and	illustrated	in	
Supplementary	Figure	S1.		

Ascertainment/measurement	models	
The	most	pertinent	measurement	difference	among	the	symptoms	was	which	meta-analysed	
cohorts	the	symptom	came	from,	so	we	created	a	two-factor	model	where	all	symptoms	from	
the	same	cohorts	(Clinical	or	Community)	loaded	on	the	same	factor	(Model	B).	The	next	model	
considered	the	effect	of	the	cardinal	symptoms	as	gating	items	in	UK	Biobank	and	posited	a	
general	MDD	factor	that	all	the	symptoms	loaded	on	alongside	an	uncorrelated	Gating	factor	
with	loadings	from	just	the	Community	and	UKB	Touchscreen	low	mood	and	anhedonia	
symptoms	(Model	C).	The	Gating	factor	would	therefore	isolate	variation	associated	with	
differences	across	the	full	non-clinical	(dysphoria)	to	clinical	spectrum.	Symptoms	not	loading	
on	the	gating	factor	(i.e.,	those	for	which	data	are	conditional	on	the	presence	of	the	two	gating	
symptoms)	represent	variation	within	the	more	severe	region	of	the	spectrum	and	are	thus	
more	directly	comparable	to	analyses	of	data	from	cases	only.	We	then	combined	the	Clinical-
Community	and	Gating	models	to	create	a	three-factor	model	(Model	D).	

Symptom	models	
Based	off	the	best	measurement	model,	we	then	fit	models	that	grouped	symptoms	into	two	or	
three	factors	based	on	previous	findings	from	phenotypic,	twin,	and	Genomic	SEM	models	and	
from	diagnostic	criteria.	The	two	factor	models	grouped	symptoms	into	Psychological	and	
Somatic	(Model	E);	Psychological	and	Neurovegetative	(Model	F);	or	Affective	and	
Neurovegetative	(Model	G)	factors	(Elhai	et	al.,	2012;	Krause	et	al.,	2008,	2010;	Thorp	et	al.,	
2020).	The	Affective	factor	contained	symptoms	low	mood,	feelings	of	guilt,	and	suicidality.	The	
Psychological	factors	broadened	the	Affective	factor	to	include	the	symptoms	anhedonia	and/or	
loss	of	concentration.	The	Somatic	factor	included	the	appetite,	sleep,	fatigue,	and	psychomotor	
symptoms.	The	Neurovegetative	factors	incorporated	the	somatic	symptoms	while	also	
including	loss	of	concentration	and/or	anhedonia.	A	three	factor	model	(Model	H)	loaded	
symptoms	onto	cognitive	(feelings	of	guilt,	loss	of	concentration,	suicidality),	mood	(low	mood,	
anhedonia,	feelings	of	guilt),	and	neurovegetative	(appetite,	sleep,	fatigue,	psychomotor)	(Kendler	
et	al.,	2013).	
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We	also	fit	factor	models	that	disaggregated	symptoms	that	involved	an	increasing	or	
decreasing	change	(appetite/weight,	sleep,	psychomotor).	One	such	model	(Model	I)	was	based	
on	previous	findings	that	identified	factors	for	Appetite	(appetite/weight	decrease	and	increase),	
vegetative	(hypersomnia,	psychomotor	slowing,	fatigue,	concentration)	and	Cognitive/Mood	(low	
mood,	anhedonia,	insomnia,	psychomotor	agitation,	feelings	of	guilt,	suicidality)	(van	Loo	et	al.,	
2022).	Finally,	we	considered	a	three-factor	model	(Model	J)	based	on	diagnostic	criteria	of	
melancholic	depression	(anhedonia,	insomnia,	psychomotor	agitation,	appetite/weight	decrease,	
feelings	of	guilt)	and	atypical	depression	(hypersomnia,	appetite/weight	increase,	psychomotor	
slowing,	fatigue),	with	the	remaining	symptoms	loading	on	an	Affective/Cognitive	factor	(low	
mood,	suicidality,	loss	of	concentration).	

Genomic	factor	meta-analysis	
We	conducted	multivariate	meta-analyses	of	symptoms	in	Genomic	SEM	(Grotzinger	et	al.,	
2019).	Because	of	low	power	in	some	of	the	Clinical	and	Community	symptoms	summary	
statistics,	we	were	unable	to	fully	test	SNP	effects	on	symptom	factors.	We	therefore	fit	a	model	
with	single	common	factor	meta-analysis	across	well-powered	symptoms	(ℎ!"#$ > 	0,	gcov	
intercept	>	1,	%$&&& > 	1.02)	and	tested	for	SNP	heterogeneity	at	the	level	of	individual	symptoms.	
A	genomic	factor	meta-analysis	estimates	SNP	associations	in	two	structural	models:	a	common	
pathway	model	where	the	SNP	is	associated	with	each	symptom	through	its	effect	on	the	factor	
and	an	independent	pathway	model	where	the	SNP	is	associated	independently	with	each	
symptom,	bypassing	the	common	factor.	The	SNP	coefficients	from	the	common	pathway	model	
act	as	a	meta-analysis	of	the	symptom	summary	statistics	while	accounting	for	sample	overlap.	
A	comparison	of	fit	between	the	common	and	independent	pathway	models	yields	a	
heterogeneity	statistic	for	each	SNP,	QSNP,	indicating	whether	the	SNP's	association	varies	
between	symptoms.	

Regression	Analysis	
Using	the	best	fitting	models,	we	tested	how	the	factors	were	related	to	correlates	of	
depression.	We	selected	phenotypes	that	are	known	to	genetically	correlate	with	depression,	
including	psychiatric	disorders	(anxiety	disorder,	bipolar	disorder,	PTSD,	schizophrenia);	
depression	defined	through	clinical	ascertainment	(major	depressive	disorder)	and	through	
broader	or	more	minimal	definitions	(major	depression);	and	other	health,	behavioural,	and	
social	phenotypes	(see	Supplementary	Materials	for	list	of	studies).	We	tested	whether	the	
other	phenotypes	had	specific	genetic	correlations	with	each	symptom	factor.	We	did	this	by	
first	fitting	single	regressions	of	a	phenotype	on	each	symptom	factor.	We	then	compared	this	to	
a	multiple	regression	of	the	phenotype	on	all	symptom	factors	simultaneously.	We	used	
Benjamini–Yekutieli	FDR	adjustment	to	correct	for	multiple	testing	(Benjamini	&	Yekutieli,	
2001).	

Results	
	

Genome-wide	association	and	meta-analyses	
	
We	conducted	GWAS	for	each	symptom	separately	in	all	cohorts	and	meta-analysed	within	
sample	ascertainment	groups	(Clinical	or	enriched	cohorts:	PGC,	AGDS,	GS:SFHS;	Community	
cohorts:	ALSPAC,	EstBB,	UKB-MHQ)	(Supplementary	Table	S1).	Two	associations	met		the	
stringent	multiple	testing	burden	(p	<	5	×	10-8	/	22).	One	was	an	intron	in	FTO	
(ENSG00000140718,	alpha-ketoglutarate	dependent	dioxygenase,	a	gene	involved	in	food	
intake)	associated	with	Weight	gain	in	the	Community	cohorts.	The	other	was	associated	with	
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Anhedonia	in	the	Community	cohorts	and	was	an	intron	variant	in	an	uncharacterised	non-
coding	RNA	gene	(LOC105379109/ENSG00000251574)	and	in	a	region	previously	associated	
with	neuroticism,	depression,	and	subjective	well-being.	

At	the	genome-wide	significance	threshold	(p	<	5	×	10-8)	there	were	three	associations	that	
were	also	supported	by	prior	evidence.	There	were	two	associations	with	Depressed	mood	in	the	
Community	cohorts:	an	intron	in	COMP	(ENSG00000105664,	cartilage	oligomeric	matrix	
protein)	also	near	CRTC1	(ENSG00000105662,	CREB	regulated	transcription	coactivator	1,	a	
gene	that	regulates	metabolism);	and	an	intron	in	an	uncharacterised	gene	(LOC107986777)	
regionally	associated	with	depression.	An	upstream	variant	for	an	uncharacterised	long	
intergenic	non-protein	coding	RNA	(LINC01938)	was	associated	with	Community	Anhedonia	
and	in	a	region	previously	associated	with	neuroticism	and	major	depressive	disorder.		

LDSC-estimated	heritabilities	were		primarily	in	the	0.025–0.1	range	(Figure	1,	Supplementary	
Table	S3).	Many	of	the	symptoms	in	the	Clinical	cohorts	(Depressed	mood,	Anhedonia,	Fatigue,	
Concentration)	had	negative	heritabilities	and	the	psychomotor	symptoms	from	the	Community	
cohorts	did	not	meet	the	sample	size	inclusion	criteria	(NEff	>	5000).	

	

Figure	1.	LDSC-estimated	heritabilities	(ℎ%&'$ )	on	the	liability	scale	of	depression	symptoms	
(abbreviations	are	listed	in	Table	1)	for	summary	statistics	that	met	inclusion	criteria	(NEff	>	
5000,	ℎ%&'$ 	>	0).	Clinical	=	PGC	+	AGDS	+	GS:SFHS	meta-analysis,	Community	=	ALSPAC	+	
EstBB	+	UKB-MHQ	meta-analysis,	UK	Biobank	=	UKB-Touchscreen	GWAS.		

	

Confirmatory	factor	analysis		
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We	brought	forward	symptoms	from	the	Clinical	and	Community	cohorts	meta-analyses	and	the	
UKB	Touchscreen	assessment	that	had	a		ℎ%&'$ 	greater	than	0	and	sample	sizes	>	5000	for	
confirmatory	factor	analysis	(Supplementary	Table	S4,	Supplementary	Figure	S1a–l).	

A	common	factor	model	(A)	of	the	symptoms	showed	poor	fit	(CI=0.932,	SMR=0.169,	AIC	=	
5355).	A	model	(B)	with	separate	factors	for	Clinical	and	Community	cohort	symptoms	had	
slightly	poorer	fit	(AIC	=	5369)	and	yielded	a	genetic	correlation	between	the	two	factors	of	rg	=	
0.63±0.14,	p	=	1.3	×10-5.	An	alternative	model	(C)	that	only	split	off	the	Community	and	UKB-
Touchscreen	mood	and	anhedonia	symptoms	into	an	orthogonal	factor,	capturing	these	
symptoms	use	as	gating	items	in	EstBB	and	UKB-MHQ,	showed	substantially	improved	fit	(AIC	=	
3229).	A	model	(D)	combining	the	sample	factors	with	the	orthogonal	Gating	factor	also	
improved	model	fit	(AIC	=	3285)	and	led	to	a	nominal	increase	in	the	genetic	correlation	
between	the	Clinical	and	Community	factors	to	rg	=	0.75±0.17,	p	=	6.9	×10-6.		

We	then	tested	whether	models	that	grouped	symptoms	together	across	cohorts	fit	better	than	
the	factor	models	based	on	sampling	methodology.	Because	the	addition	of	an	orthogonal	
Gating	factor	improved	model	fit	so	substantially,	the	symptom-oriented	models	all	included	
this	factor.	The	best	fitting	of	the	symptom	models	was	Model	I	which	included	factors	
capturing	Appetite,	Vegetative,	and	Cognitive/Mood	symptoms	(Figure	2).	The	Appetite	factor	
had	a	genetic	correlation	of	rg	=	0.66±0.09	(p	=	1.4	×10-12)	with	the	Vegetative	factor	and	rg	=	
0.48±0.07	(p	=	3.4	×	10-13)	with	the	Cognitive/Mood	factor,	while	the	Vegetative	and	
Cognitive/Mood	factors	were	more	highly	correlated,	rg	=	0.91±0.07	(p	=	7.8	×	10-40).	

None	of	the	models	fully	captured	the	genetic	correlations	among	the	symptoms,	as	indicated	by	
high	SRMR	(Model	D	=	0.149,	Model	I	=	0.147).	An	inspection	of	the	residual	genetic	correlations	
(Supplementary	Figure	S3d)	indicated	correlations	between	the	same	symptoms	across	the	two	
cohorts	(e.g.,	Clinical	appetite	decrease	with	Community	appetite	decrease)	were	not	fully	
represented	by	the	factor	structure.	We	thus	tested	how	adding	residual	correlations	between	
symptoms	that	included	from	both	cohorts	(appetite	decrease,	appetite	increase,	insomnia,	
hypersomnia,	and	suicidality)	improved	absolute	model	fit.	The	addition	of	these	residual	
correlations	lowered	SRMR	to	0.140.		

 

 

Figure	2.	Standardised	loadings	(standard	errors)	of	factors	on	symptoms	and	genetic	
correlations	among	factors	for	the	best	fitting	model	(Model	I).	Symptom	abbreviations	are	
listed	in	Table	1.	
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Multivariate	meta-analysis	of	symptoms	
	

Because	many	of	the	symptom	summary	statistics	were	low	powered,	we	were	unable	to	
conduct	a	multivariate	meta-analysis	using	the	genetic	factors.	Alternatively,	to	test	for	SNP	
effects	specific	to	each	symptom,	we	conducted	a	multivariate	meta-analysis	of	well-powered	
symptoms	summary	statistics.	The	common	factor	had	three	genome-wide	significant	
associated	variants:	an	intron	variant	in	BRINP2	(ENSG00000198797,	BMP/retinoic	acid	
inducible	neural	specific	2,	a	regulator	of	neuronal	differentiation);	the	upstream	variant	that	
was	associated	with	Community	Anhedonia	symptoms;	and	an	intron	variant	in	LRRC37A3	
(ENSG00000176809,	leucine	rich	repeat	containing	37	member	A3)	An	intron	in	the	FTO	gene	
showed	substantial	heterogeneity	in	the	common	factor	meta-analysis	(Supplementary	Table	
S7).	

Genetic	multiple	regression	
	

To	determine	whether	each	MDD	symptom	factor	had	specific	genetic	relationships	with	twelve	
phenotypes,	we	conducted	genetic	multiple	regressions	in	GenomicSEM	using	the	Clinical–
Community	sample	and	Appetite–Vegetative–Cognitive/Mood	symptom	factor	models.		Because	
the	Vegetative	and	Cognitive/Mood	symptom	factors	had	a	high	genetic	correlation,	we	
combined	these	into	one	factor,	which	we	labelled	Depression.	We	first	calculated	single	
regressions	of	each	phenotype	on	each	of	the	factors	separately,	where	the	standardized	
coefficient	indicated	the	overall	shared	genetics	with	each	factor.	We	then	then	fit	a	genetic	
multiple	regression	with	the	two	models,	where	the	standardized	coefficient	represents	the	
unique	genetic	relationship	of	the	phenotype	with	each	factor,	after	adjusting	for	shared	overlap	
with	the	other	factors	(e.g..,	a	phenotype's	genetic	relationship	with	the	Clinical	factor	after	
adjusting	for	the	Community	factor,	and	vice	versa;	and	its	genetic	relationship	with	the	
Appetite	factor	after	adjusting	for	the	Depression	and	Gating	factors,	and	vice	versa).	In	the	
single	regression	(unadjusted)	analysis,	the	genetic	relationship	of	each	phenotype	with	all	of	
the	factors	were	in	the	same	direction	with	the	exception	of	educational	attainment	which	had	a	
negative	relationship	with	most	of	the	factors	(at	p	<	0.0005)	but	a	positive	yet	non-significant	
relationship	with	the	Gating	factor	(Figure	3,	Supplementary	Table	S7).	After	adjusting	for	
shared	overlap	with	the	Clinical	factor,	the	Community	factor	did	not	have	any	specific	
relationships	with	the	phenotypes,	while	the	Clinical	factor	had	specific,	positive	genetic	
correlations	with	anxiety,	bipolar	disorder,	major	depression,	major	depressive	disorder,	
neuroticism,	PTSD,	and	chronic	pain.	

When	adjusting	for	the	Depression	and	Gating	factors,	the	factor	for	the	Appetite	symptoms	had	
specific	genetic	correlations	with	BMI	and	smoking.	The	factor	for	the	remaining	Depression	
symptoms	was	specifically	correlated	with	alcohol	dependence,	anxiety,	neuroticism,	and	long	
sleep	duration.	The	Gating	factor	did	not	have	any	specific	genetic	correlates	after	adjusting	for	
the	other	factors,	but	it	did	share	with	the	Depression	factor	positive	genetic	correlations	with	
bipolar	disorder,	major	depression	and	major	depressive	disorder,	and	PTSD	after	adjustment	
for	the	Appetite	factor		(Figure	3,	Supplementary	Table	S7).	
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Discussion	
	

We	used	genome-wide	association	data	to	analyse	the	genetic	relationships	among	symptoms	of	
depression	based	on	cohort	sampling	and	symptom	content	and	to	estimate	whether	the	genetic	
factors	had	specific	correlates	with	other	phenotypes.	We	analysed	data	from	two	sets	of	
cohorts:	Clinical	cohorts	that	were	ascertained	to	have	depression	through	clinical	or	interview	
assessments	or	were	recruited	preferentially	on	a	history	of	treatment	for	depression;	and	
Community	cohorts	that	were	not	recruited	based	on	disease	status	(but	for	which	symptom	
data	was	typically	conditioned	based	on	endorsement	of	cardinal	gating	symptoms).	We	
conducted	GWAS	of	major	depression	symptoms	in	each	cohort	then	meta-analysed	within	the	
Clinical	and	Community	groups.	

We	identified	loci	associated	with	individual	major	depression	symptoms	and	with	a	common	
genetic	factor	of	the	symptoms.	Several	associations	from	the	individual	symptoms	and	
common	factor	meta-analysis	(rs7515828,	r rs30266,	s6884321,	rs150046352)	have	been	
identified	previously	in	GWAS	of	or	unipolar	depression	(EFO	ID	EFO_0003761)	(Sollis	et	al.,	
2023)	or	in	meta-analyses	of	major	depressive	disorder	(Als	et	al.,	2022;	Howard	et	al.,	2019;	
Levey	et	al.,	2021;	Wray	et	al.,	2018)	SNPs	associated	with	Appetite	/	weight	increase	have	
primarily	come	up	in	GWAS	of	body	mass	index	and	related	traits	(Elsworth	et	al.,	2020;	

 

Figure	3.	Genetic	regression	of	phenotypes	on	Clinical	and	Community	cohort	factors;	and	on	
Gating,	Appetite/Weight,	and	Depression	symptom	factors.	Single	genetic	regression	
standardized	beta	coefficients	(green	triangles)	and	multiple	genetic	regression	coefficients,	
which	adjust	for	the	other	factors	(Clinical-Community	adjusted	together;	Gating-Appetite-
Depression	adjusted	together).		AlcDep	=	alcohol	dependence,	Anxiety	=	anxiety	disorder,	BIP	
=	bipolar	disorder,	BMI	=	body-mass	index,	EA	=	educational	attainment,	MD	=	major	
depression,	MDD	=	major	depressive	disorder,	Neu	=	neuroticism,	Pain	=	chronic	pain,	PTSD	=	
post-traumatic	stress	disorder,	Sleep	=	long	sleep	duration,	Smoking	=	cigarettes	per	day.	
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Hoffmann	et	al.,	2018;	Howe	et	al.,	2022;	Yengo	et	al.,	2018)	but	another	SNP	in	the	FTO	gene	
has	also	been	associated	with	atypical	subtypes	(Milaneschi	et	al.,	2014).		

Many	symptoms	in	the	Clinical	cohorts	had	heritability	estimates	that	were	zero	or	negative.	
This	is	not	unexpected.	Selecting	individuals	based	on	their	phenotype	(that	is,	that	they	are	or	
have	been	affected	by	depression)	would	result	in	a	sample	that	has	a	lower	genetic	variance	for	
traits	that	contribute	to	the	determination	of	the	phenotype		(Falconer	&	Mackay,	1996).	
Additionally,	the	symptoms	with	negative	heritabilities	(depressed	mood,	anhedonia,	fatigue,	
concentration	problems	in	the	clinical	cohorts)	also	had	high	endorsement	rates	(85–94%),	and	
power	to	detect	heritability	is	reduced	the	further	the	sample	prevalence	deviates	from	50%	
(Lee	et	al.,	2011).	In	contrast,	the	other	symptoms	had	more	equal	endorsement	rates	(34–75%)	
among	affected	participants.	Although	the	low	heritabilities	of	symptoms	from	the	Clinical	
cohorts	limited	the	comprehensiveness	of	alternative	factor	models	that	could	be	tested,	we	did	
find	congruence	between	the	Clinical	and	Community	cohort	symptoms,	with	a	high	genetic	
correlation	between	their	respective	factors.	We	also	showed	that	model	fit	was	substantially	
improved	by	modeling	the	use	of	cardinal	symptoms	(Low	mood	and	Anhedonia)	as	gating	items	
for	surveys	of	depression	symptoms.	Among	the	models	that	grouped	symptoms	together	
without	consideration	for	symptom	direction,	we	found	broad	support	for	a	split	between	
psychological	and	somatic	symptoms	identified	in	previous	phenotypic	(Elhai	et	al.,	2012)	and	
genetic	(Thorp	et	al.,	2020)	analyses.	When	directional	symptoms	were	portioned	out	based	on	
diagnostic	specifiers,	we	found	that	a	three-factor	model	capturing	Appetite,	Vegetative,	and	
Cognitive/Mood	symptoms	(van	Loo	et	al.,	2022)	had	the	best	fit	among	all	models	considered.	
The	correlations	among	the	factors	indicated	that	the	Vegetative	and	Cognitive/Mood	
symptoms	should	be	grouped	together,	with	only	the	Appetite	symptoms	making	up	a	possibly	
different	dimension	of	depression.	However,	the	Clinical	cohort	symptoms	had	low	loadings	in	
both	the	sample-based	and	symptom-based	models	(except	for	the	Clinical	Appetite/Weight	and	
Suicidality	symptoms),	and	thus	the	model	fit	was	driven	primarily	by	capturing	the	structure	
among	the	Community	cohort	symptoms.	This	observation	is	consistent	with	the	fact	that	the	
Clinical	cohorts	are	more	selected	than	the	community	cohorts,	and	that	conditioning	data	
presence	on	a	diagnosis	can	induce	downward	bias	in	correlations	amongst	the	symptoms	that	
aggregate	to	form	the	diagnosis.	Similar	attenuation,	albeit	to	a	lesser	degree,	may	be	expected	
for	items	in	community	samples	whose	presence	was	conditioned	on	endorsement	of	cardinal	
symptoms.	

Despite	these	limitations,	the	Clinical	factor	was	genetically	correlated	with	all	the	other	
phenotypes	selected	for	comparison.	A	multiple	genetic	correlation	analysis	showed	that	the	
Clinical	and	Community	factors	had	a	shared	genetic	relationship	with	alcohol	dependence,	
bipolar	disorder,	BMI,	educational	attainment,	MDD,	chronic	pain,	sleep,	and	smoking.		The	
symptom-based	factor	model	showed	discriminative	validity	between	the	Appetite	symptoms	
and	the	rest	of	the	symptoms	of	depression	through	relationships	with	correlates	of	depression.	
A	positive	genetic	correlation	between	increase	in	appetite/weight	with	BMI	has	previously	
been	shown	with	PGC	cohorts	(Milaneschi	et	al.,	2017)	and	in	UKB	(Badini	et	al.,	2022),	and	our	
findings	show	that	this	result	holds	even	when	adjusting	for	genetic	overlap	with	other	
symptoms.		

Our	results	demonstrate	the	challenges	and	insights	associated	with	considering	symptoms	of	
depression	separately.	In	particular,	substantial	care	must	be	taken	to	consider	how	samples	
are	ascertained	(clinical	versus	community	recruitment),	how	symptoms	are	measured	(the	use	
of	gating	items	in	symptom	inventories),	and	including	assessments	of	item	direction	(e.g.,	
insomnia	versus	hypersomnia)	when	modelling	the	genetic	structure	of	depression	symptoms.	
However,	the	evaluation	of	direction	was	limited	to	a	small	subset	of	symptoms	and	did	not	
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include	distinctions	such,	as	low	versus	irritable	mood,	or	included	only	partial	assessments,	
such	as	weight	but	not	appetite	changes	being	assessed	in	UKB.	The	coverage	of	features	of	
atypical	and	melancholic	depression	was	likewise	incomplete.	For	example,	several	diagnostic	
features	of	the	atypical	specifier	were	not	included,	such	as	mood	reactivity,	sensitivity	to	
interpersonal	rejection,	and	leaden	paralysis.	We	also	only	examined	subtypes	defined	by	
symptom	profiles	and	not	other	sources	of	heterogeneity	such	as	onset,	life	event	exposure,	or	
treatment	outcomes	(Harald	&	Gordon,	2012)	which	may	also	have	a	differential	biological	and	
genetic	basis	(Beijers	et	al.,	2019;	Milaneschi	et	al.,	2020;	Nguyen	et	al.,	2022).	The	strongest	
genetic	associations	were	between	symptoms	of	weight/appetite	change	and	genes	linked	to	
satiety	and	metabolism.	This	highlights	the	need	to	phenotype	somatic	symptoms	(weight	or	
sleep	changes	and	fatigue)	outside	of	the	context	of	mental	health	assessments,	so	that	their	
specific	role	in	depression	can	be	better	isolated.	Likewise,	the	use	of	gating	symptoms	makes	it	
difficult	to	fully	capture	the	range	of	genetic	risk	between	everyday	dysphoria	and	differences	
among	affected	individuals.	While	the	results	support	the	idea	that	depression	is	heterogeneous,	
the	genetic	liability	for	symptom	profiles	and	comorbidities	can	be	captured	in	relatively	few	
dimensions.	

Code	and	data	availability	
	

Primary	code	is	available	from	the	Psychiatric	Genomics	Consortium	(PGC)	GitHub	Repository	
(https://github.com/psychiatric-genomics-consortium/mdd-symptom-gwas/)	and		meta-
analysed	summary	statistics	are	available	for	download	from	the	PGC	website	
(https://www.med.unc.edu/pgc/download-results/).	Individual-level	PGC	data	is	available	by	
application	to	the	PGC	Data	Access	Committee	(https://www.med.unc.edu/pgc/shared-
methods/).	Data	from	Estonian	Biobank	(https://genomics.ut.ee/en/content/estonian-biobank	
),	UK	Biobank	(https://www.ukbiobank.ac.uk)	and	ALSPAC	(http://www.bristol.ac.uk/alspac/)	
are	available	to	bonafide	researchers	upon	application.	Data	from	AGDS	is	available	for	
collaboration	by	contacting	NGM	(Nick.Martin@qimrberghofer.edu.au).		
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Genotyping and QC 
Psychiatric Genomics Consortium (PGC). The analysis used data from 24 cohorts from the PGC MDD 
datasets that had symptom data on cases. Data was drawn from the following cohorts: 

• BiDirect (bidi1) 
• BOMA (boma) 
• CoFams (cof3) 
• PsyCoLaus (col3) 
• GenRED (gens, grnd) 
• GenPod/Newmeds (gep3) 
• GSK (gsk2) 
• Jannsen (janpy) 
• MPIP/MARS (mmi2, mmo4) 
• NESDA/NTR (nes1) 
• QIMR (qi3c, qi6c, qio2) 
• RADIANT (rad3, rage, rai2, rau2, rde4) 
• Rotterdam (rot4) 
• SHIP (shp0) 
• STAR*D (stm2) 
• TwinGene (twg2) 

The genotypes were processed through Ricopili (Lam et al., 2020) with the following QC: SNP 
missingness < 0.05; sample missingness < 0.02; autosomal heterozygosity deviation (|Fhet|<0.2); and 
SNP Hardy-Weinberg equilibrium (P>10−6 in controls, P>10−10 in cases). QC'd genotypes were then 
imputed to the 1000 Genomes Reference Panel (The 1000 Genomes Project Consortium, 2015). 
Information on cohort genotyping and additional processing steps is available in (Wray et al., 2018).  
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 S2 

Australian Genetics of Depression Study (AGDS).  Genotyping was conducted using the Illumina 
Infinium Global Screening Array platform and QC'd for unknown or ambiguous map position and 
strand alignment, missingness >5%, HWE < 1 ×10-6, MAF<1%. Genotypes were imputed to HRCr1.1. 
Individuals were excluded with missing rate > 3%, inconsistent sex, or if deemed ancestry outliers 
from the European population (6 standard deviations from the first two genetic principal 
components from 1000 Genomes). Imputed genotype dosages were used for the analyses. GWAS 
was carried out in SAIGE (Zhou et al., 2018) using a generalized linear mixed model with genotyping 
batch and 10 PCs as covariates. Variants with MAF<1% and imputation accuracy score <0.7 were 
excluded. 

Avon Longitudinal Study of Parents and Children (ALSPAC). ALSPAC children were genotyped using 
the Illumina HumanHap550 quad chip genotyping platforms. Individuals were excluded on the basis 
of gender mismatches; minimal or excessive heterozygosity; disproportionate levels of individual 
missingness (>3%) and insufficient sample replication (IBD < 0.8). Population stratification was 
assessed by multidimensional scaling analysis, removing samples that clustered outside the CEU 
HapMap2 population. SNPs with a minor allele frequency of < 1%, a call rate of < 95% or evidence for 
violations of Hardy-Weinberg equilibrium (P < 5E-7) were removed. Cryptic relatedness was 
measured as proportion of identity by descent (IBD > 0.1). Related subjects that passed all other 
quality control thresholds were retained during subsequent phasing and imputation. 9,115 subjects 
and 500,527 SNPs passed these quality control filters. Imputation of the target data was performed 
using Impute V2.2.2 against 1000 genomes reference panel (Phase 1, Version 3) (all polymorphic 
SNPs excluding singletons), using all 2186 reference haplotypes (including non-Europeans). This 
resulted in 28,699,419 SNPs, with 8,282,911 SNPs with a MAF >0.01 and info score of >0.8.  Analysis 
were conducted using SNPTEST v2.5.2, adjusting for sex and the first 10 principal components of 
ancestry.  

Generation Scotland (GS:SFHS). GWAS data was obtained using the Illumina OmniExpress array, and 
imputed using the Haplotype Research Consortium (HRC) dataset. Further details of methods here 
https://pubmed.ncbi.nlm.nih.gov/28270201/. GWAS was conducted in regenie with 4 PCs removing 
SNPs with MAC < 100, genotype missingness > 10%, INFO < 0.1, and HWE p > 1e-15. 

Estonian Biobank (EstBB). The samples from the Estonian Biobank have been genotyped at the 
Genotyping Core Facility of the Institute of Genomics, University of Tartu using the Global Screening 
Array (GSAv1.0, GSAv2.0, and GSAv2.0_EST) from Illumina. Altogether 155,772 samples have been 
genotyped and PLINK format files exported using GenomeStudio v2.0.4. Individuals were excluded 
from the analysis if their call-rate was <95% or if the sex defined based on heterozygosity of the X 
chromosome did not match the sex in the phenotype data. Variants were excluded if the call-rate 
was < 95% and HWE p-value <1e-4 (autosomal variants only). Variant positions were updated to 
genome build 37 and all alleles were switched to the TOP strand using tools and reference files 
provided at https://www.well.ox.ac.uk/~wrayner/strand/. After QC the dataset contained 154,201 
samples for imputation. Before imputation variants with MAF<1% and indels were removed. 
Prephasing was done using the Eagle v2.3 software. The number of conditioning haplotypes Eagle2 
uses when phasing each sample was set to: --Kpbwt=20000. Imputation was done using Beagle 
v.28Sep18.793 with effective population size ne=20,000. An Estonian population specific imputation 
reference of 2,297 WGS samples was used. The analysis was performed using the SAIGE software, 
including related individuals and adjusting for the first 10 principal components (PCs) of the genotype 
matrix, as well as for birth year, birth year squared and sex. 
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UK Biobank (UKB). Imputed genotypes were analysed from the version 3 release (Bycroft et al., 
2018). Imputed genotypes were QC'd to INFO >= 0.1, MAC >= 100, HWE P > 1e-10, max alleles = 2, 
and duplicate markers removed. Association analysis was performed as a logistic regression in Plink2 
(Chang et al., 2015) with genotyping array and 20 PCs as covariates.  

Ethics statements 
Ethical approval was obtained from the ALSPAC Ethics and Law Committee and the local research 
ethics committees (project number B3118). Consent for biological samples has been collected in 
accordance with the Human Tissue Act (2004). GWAS data was generated by Sample Logistics and 
Genotyping Facilities at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) 
using support from 23andMe. 

All participants in AGDS provided informed consent that they had read and understood the study 
information sheets and to confirm that they would be willing to provide a saliva sample for 
genotyping and downstream generic analyses. All study protocols were approved by the QIMR 
Berghofer Medical Research Institute Human Research Ethics Committee - approval numbers P2118, 
P1309 and P2304.     

The activities of the EstBB are regulated by the Human Genes Research Act, which was adopted in 
2000 specifically for the operations of the EstBB. Individual-level data analysis in the EstBB was 
carried out under ethical approvals [1.1-12/2860 & 1.1-12/624] from the Estonian Committee on 
Bioethics and Human Research (Estonian Ministry of Social Affairs), using data according to the 
release application [3-10/GI-28207] from the Estonian Biobank. 

Ethical approval for the GS:SFHS data collection was obtained from the Tayside Committee on 
Medical Research Ethics A (ref 05/S1401/89). Generation Scotland is currently approved as a 
Research Tissue Bank by the East of Scotland Research Ethics Service (ref 20/ES/0021). 

UK Biobank received ethical approval from the Research Ethics Committee (reference 11/NW/0382). 

Confirmatory factor analysis model schematics 
 

Supplementary Figure S1. Schematic drawings of the CFA models 
 

Schematics to illustrate factor structures of the models that were tested. See main text Table 1 for 
symptom abbreviations and Supplementary Tables S4,6 for factor structures and coefficients. 

Figure	S1a:	Model	A:	Common	factor	

	

Figure	S1b:	Model	B:	Clinical	and	community	factors	
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Figure	S1c:	Model	C:	Gating	measurement	factor	

	

Figure	S1d:	Model	D:	Clinical-Community-Gating	factors	

	

Figure	S1e:	Model	E:	Psychological-Somatic	

	

Figure	S1f:	Model	F:	Psychological-	Neurovegetative	
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Figure	S1g:	Model	G:	Affective-Neurovegetative	

	

Figure	S1h:	Model	H:	Cognitive-Mood-Neurovegetative	

	

Figure	S1i:	Model	I:	Appetite-Vegetative-Cognitive/Mood	
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Figure	S1j:	Model	J:	Atypical-Melancholic-Affect/Cognitive	

	

	

Symptom genetic correlations 
Supplementary Figure S2. Genetic correlations between symptoms 

	

	

Supplementary Figure S3. Model implied and residual proportions of genetic correlations 

Variance	and	covariances	scaled	by	total	genetic	variance	of	each	symptom.	

Supplementary	Figure	S3a.	Model	implied	proportions	of	genetic	correlations	for	Clinical-
Community-Gating	factors	(Model	D)	
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Supplementary	Figure	S3b.	Model	residual	proportions	of	genetic	correlations	for	Clinical-
Community-Gating	factors	(Model	D)	

	

Supplementary	Figure	S3c.	Model	implied	proportions	of	genetic	correlations	for	Appetite-
Vegetative-Cognitive/Mood	factors	(Model	I)	
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Supplementary	Figure	S3d.	Model	residual	proportions	of	genetic	correlations	for Appetite-
Vegetative-Cognitive/Mood	factors	(Model	I)	

	

 
External phenotype summary statistics 
For the genetic multiple regression analysis, we used the following summary statistics: 

• Alcohol dependence (Walters et al., 2018) 
• Anxiety (Grotzinger et al., 2022) 
• Bipolar disorder (Mullins et al., 2021) 
• Body mass index (Pulit et al., 2019) 
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• Educational attainment (Okbay et al., 2022)  
• Major depression (Als et al., 2022)  
• Major depressive disorder (Wray et al., 2018)  
• Neuroticism (Nagel et al., 2018) 
• Pain (multisite chronic pain) (Johnston et al., 2019) 
• Post-traumatic stress disorder (Nievergelt et al., 2019) 
• Sleep (long sleep duration) (Dashti et al., 2018) 
• Smoking (cigarettes per day) (Liu et al., 2019)  
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