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18 Abstract
19 Changes to spatiotemporal gait metrics in gait-altering conditions are characteristic of the 

20 pathology. This data can be interpreted by machine learning (ML) models which have recently 

21 emerged as an adjunct to clinical medicine. However, the literature is undecided regarding its 

22 utility in diagnosing pathological gait and is heterogeneous in its approach to applying ML 

23 techniques. This study aims to address these gaps in knowledge. This was a prospective 

24 observational study involving 32 patients with Parkinson’s disease and 88 ‘normative’ subjects. 

25 Spatiotemporal gait metrics were gathered from all subjects using the MetaMotionC inertial 

26 measurement unit and data obtained were used to train and evaluate the performance of 10 

27 machine learning models. Principal component analysis and Genetic Algorithm were amongst 

28 the feature selection techniques used. Classification models included Logistic Regression, 

29 Support Vector Machine, Naïve – Bayes, Random Forest, and Artificial Neural Networks. ML 

30 algorithms can accurately distinguish pathological gait in Parkinson’s disease from that of 

31 normative controls. Two models which used the Random Forest classifier with Principal 

32 Component analysis and Genetic Algorithm feature selection techniques separately, were 100% 

33 accurate in its predictions and had an 𝐹1 score of 1. A third model using principal component 

34 analysis and Artificial neural networks was equally as successful (100% accuracy, 𝐹1 = 1). We 

35 conclude that ML algorithms can accurately distinguish pathological gait from normative 

36 controls in Parkinson’s Disease. Random Forest classifiers, with Genetic Algorithm feature 

37 selection are the preferred ML techniques for this purpose as they produce the highest 

38 performing model.

39
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41 Author summary
42

43 The way humans walk, are emblematic of their overall health status. These walking patterns, 

44 otherwise, can be captured as gait metrics from small and portable wearable sensors. Data 

45 gathered from these sensors can be interpreted by machine learning algorithms which can then 

46 be used to accurately distinguish healthy and non-healthy patients based on their gait or walking 

47 pattern. The applications of this technology are many and varied. Firstly, it can be used to 

48 simply aid in diagnosis as explored in this paper. In future, researchers may use their 

49 understanding of normal and pathological gait, and their differences to quantify how severely 

50 one’s gait is affected in a disease state. This data can be used to track, and quantify, 

51 improvements or further deteriorations post treatment, whether these be medication-based or 

52 interventions like surgery. Retrospective analyses on data such as this can be used to judge the 

53 value of an intervention in reducing a patient’s disability, and advise health related expenditure.

54

55
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58 1. Background

59

60 1.1. Introduction to Gait analysis

61 Gait refers to the way a person or animal walks or runs and is a simple yet informative measure 

62 of overall health. A meta-analysis by Studenski et al(1) showed that with each increment of 0.1 

63 m/s in walking speed there was a 12% increase in 10-year survival rate in older adults (HR 0.88, 

64 95% CI, 0.87- 0.90; P<0.001)(1). Walking speed as a health metric is not restricted to the 

65 context of ageing but can also be predictive of neurological, cardiovascular, orthopaedic, and 

66 psychiatric conditions(2-6).

67 Gait, however, is remarkably complex and is not restricted to the metric of walking speed alone. 

68 Gait analysis can be subdivided into qualitative and quantitative methods. Qualitative 

69 observational methods utilised by clinicians day-to-day are convenient, yet highly subjective 

70 and correlate poorly with validated computerised sensors (mean r=0.55)(7). Kinetic data 

71 investigates forces involved in locomotion such as ground reaction force. These measures 

72 present limited clinical utiliy(8) and are more suited to the realm of high-performance sports 

73 where the focus of gait analysis is not to identify disease states but rather to maximise the 

74 efficiency of locomotion(9). 

75 In contrast kinematic analyses have shown clinically significant differences in pathological and 

76 healthy gait patterns. Table 1 summarises findings from several studies where spatiotemporal 

77 parameters in a range of conditions are compared to healthy age-matched controls. Table 1 is 

78 merely a snapshot of the unique gait ‘signatures’ of various pathologies which illuminates the 

79 diagnostic potential of spatiotemporal gait metrics. For example, appreciable differences can 

80 be noted between Parkinson’s disease(10-17) and Lumbar disc herniation(18) in terms of 

81 cadence (-6% vs -66%) and double support time (+24% vs +53%) whilst those with Lumbar 

82 spinal stenosis(19-23) present with a more modest decrease in cadence (10-14%). Furthermore, 

83 statistical models created by Verghese et al. and Lord et al. using spatiotemporal data alone, 

84 were able to explain up to 90% of gait variance between healthy and pathological gait using 

85 only five factors: pace, rhythm, variability, asymmetry, and postural control(24, 25). 

86 A normal gait cycle for each leg involves a stance and a swing phase.  Stance (also known as 

87 support) phase describes the entire period during which a foot is on the ground, and swing 

88 describes the time this same foot is in the air as the limb advances in space. When one limb is 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292200doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.03.23292200
http://creativecommons.org/licenses/by/4.0/


89 in stance, the contralateral limb is in swing, except for an overlapping period where both feet 

90 are on the ground, known as the double support time, as seen in Figure 1.

91
92 Figure 1: Gait cycle for right leg (shaded). The figure shows that the gait cycle for any one leg 

93 is comprised of a stance and a swing phase. The right-leg is shaded and used as an example. 

94 Figure taken from Natarajan et al.(26)

95

96 The single support time is the period during which only one limb is on the ground.

97 Several other spatiotemporal gait metrics exist and are described in Table 2.

Gait variable Definition Units Type

Step Length

Average distance 

between two 

consecutive contacts 

of any foot with the 

ground

Metres (m) Spatial

Stride Length

Average distance 

between two 

consecutive contacts 

of the same foot with 

the ground.

Metres (m) Spatial

Average time 

between two 
Seconds (s) Temporal
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Step time consecutive contacts 

of any foot with the 

ground

Stride time

Average time 

between two 

consecutive contacts 

of the same foot with 

the ground

Seconds (s) Temporal

Walking speed (or 

gait velocity)

Average distance 

travelled per second
Metres/second (m/s) Spatiotemporal

Cadence

Average rate (or 

frequency) of steps
Steps/minute Spatiotemporal

Step time variability

Step-to-step 

variability of step 

time

Standard deviation 

(SD) coefficient of 

variance (cov = 

SD/mean)

Gait variability

Step length 

variability 

Step-to-step 

variability of step 

length

Standard deviation 

(SD) coefficient of 

variance (cov = 

SD/mean)

Gait variability

Walking speed (or 

gait velocity) 

variability

Step-to-step 

variability of 

walking speed

Coefficient of 

variance (cov = 

SD/mean)

Gait variability

Step time asymmetry

Average difference 

in time taken for 
Seconds (s) Gait asymmetry
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successive steps on 

left and right foot

Step length 

asymmetry

Average difference 

in length for 

successive steps on 

left and right foot

Metres (m) Gait asymmetry

98

99 Table 2: Common spatiotemporal gait metrics. The figure above summarises the most 

100 common spatiotemporal metrics. Spatial parameters such as step and stride length can be 

101 considered alongside temporal metrics of step and stride time to calculate spatiotemporal data 

102 pertaining to gait velocity and cadence. Furthermore, more complex ‘derived’ metrics such as 

103 variability and asymmetry in step time, step length and gait velocity can also be calculated. 

104 Table adapted from Natarajan et al.(26)

105

106 1.2. Measuring Gait

107 1.2.1. Laboratory Techniques

108 When it comes to gait assessments, optoelectronic stereophotogrammetry is a highly precise 

109 laboratory technique and is the gold standard for clinical spatiotemporal gait analysis(27). 

110 Infrared cameras capture three-dimensional trajectories of reflective markers placed on points 

111 of interest on the subject’s body. However, these require expensive equipment, skilled 

112 technicians and are ultimately not feasible for the fast-paced everyday clinical environment(19). 

113 Furthermore, these methods are susceptible to the psychological Hawthorne and “white-coat” 

114 effects as individuals are more likely to be conscious of their gait when closely observed by a 

115 clinician. Hence laboratory techniques fail to capture ‘free-living gait’ which refers to the way 

116 people walk in everyday life(19). One study by Brodie et al. highlights this well, finding that 

117 lab-based technologies tend to overestimate parameters such as cadence (8.91%, p< 0.001) 

118 whilst underestimating the variability in gait (81.55%, p<0.001)(28). These drawbacks may 

119 limit the validity of the study and decrease the generalisability of the findings. 

120 1.2.2. Inertial Measurement Units

121
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122 In contrast, inertial measurement units (IMU’s) are wearable single-point devices with an 

123 accelerometer, magnetometer, and a gyroscope. Measurements made with IMU’s have shown 

124 to be largely consistent with that of the laboratory analysis techniques (r >0.83). These are very 

125 promising as they can capture free-living gait in community and home environments as they 

126 are small, inexpensive, and unobtrusive to the activities of daily living(29-31).  

127 After measuring gait, scientists are concerned with distinguishing healthy and pathological gait 

128 patterns. This has proven to be challenging and the literature shows that mathematical(32, 33) 

129 and statistical techniques(34, 35) are popular due to their simplicity. However, purely 

130 mathematical transforms provide limited insight as they rely solely on univariate signals and 

131 data processed from wavelets, whilst statistical techniques assume normal distributions which 

132 tend to oversimplify the complex non-linear relationships in gait data(36, 37). In contrast, recent 

133 applications of machine learning (ML), a special subset of artificial intelligence (AI), have 

134 shown their ability to model non-linear multidimensional data whilst being versatile in 

135 incorporating new data to improve accuracy of predictions(38, 39). 

136 1.3. Machine Learning in Gait Analysis

137 The workflow in classifying healthy and pathological gait has four key stages. 

138 1.3.1. Feature Selection

139 Feature selection techniques aim to optimise the model’s performance by selecting only the  

140 features with maximal separation between classes to ensure the model is both time and cost-

141 efficient(40, 41). Methodologies fall under three categories: filter, wrapper, and embedded 

142 methods. 

143 Filter methods are the least computationally intensive as they evaluate the dataset without 

144 evaluating the performance of the model(40). Wrapper methods are the most computationally 

145 intensive as they select features tailored to the performance of the ML model(40). Embedded 

146 methods consider both the dataset and the performance of the model with the advantage of 

147 being much less computationally intensive than wrapper methods(40).

148 The most common feature selection methods used in gait analysis are Principal Component 

149 Analysis (PCA) a filter method, Genetic Algorithm (GA) a wrapper method, and Hill-climbing 

150 (HC) an embedded method(42-44). PCA aims to find the minimum number of features or 

151 variables required to explain the majority of variance in the data(45). The GA is a different 

152 technique which uses the Darwinian theory of natural selection to determine the ‘fittest’ 
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153 features. i.e., those that are most discriminative and contribute meaningfully to the performance 

154 of the model. Successive iterations of the genetic algorithm are termed ‘generations’ and see 

155 the ‘natural selection’ of fitter features and allow for the ‘breeding’ of fit features to form newer 

156 and fitter composite features(46) to enhance performance. In contrast, HC is a heuristic search 

157 for a solution which maximises the separation between classes but as it is an embedded method, 

158 HC may miss the global optimal maximum and instead settle on local maxima. Hence its 

159 heuristic nature may provide a sufficient solution in a reasonable amount of time, but this may 

160 not be the optimal solution to the classification problem(47).

161 PCA is the simplest technique computationally, and produces the most reliable results(48) 

162 (model accuracy >95%) (Table 3). Theoretically speaking, HC is expected to be quite promising 

163 as an embedded method and has been highly successful (>96% accuracy) in heart monitors(49). 

164 However, it still provides relatively low classification accuracy (75.5-83.3%)(50) with 

165 spatiotemporal gait data, showing that its use has not yet been optimised to gait analysis. Further 

166 research is recommended to realise its potential in gait analysis.  

167 1.3.2. Classification

168 Support vector machine (SVM), Naïve-Bayes (NB), and Artificial Neural networks (ANN) 

169 were the most common ML models used for classification purposes in the literature. 

170 SVM utilises supervised learning methods to compute a hyperplane with greatest separability 

171 between the analysed classes(50) whilst NB utilises the Bayes theorem and assumes that all 

172 features are independent to create a probabilistic model(51). Finally, ANN’s feature a feed-

173 forward networks where multiple nodes ‘synapse’ upon each other in a layered system, and rely 

174 on a ‘transfer-function’ for forward propagation and classification.(52) 

175 SVM has shown the greatest success with model accuracies as high as 100%(48) (Table 3). It 

176 is also the most used ML model(48, 53-55). NB has been featured sparingly in the literature, 

177 and more papers featuring this model are required before its utility can be determined.

178 1.3.3. Cross Validation

179 Cross-validation (CV) is used to evaluate the generalisability and external validity of a model 

180 by training the algorithm on a training set and evaluating its performance on a validation set(44, 

181 50, 56). The most common CV techniques are the k-fold and leave-one-out (LOO) methods as 

182 seen in Table 3. K-fold techniques randomly partition data into k subsets where k is an integer. 

183 K-1 subsets are used as training subsets, whilst the remaining subset is used to validate the 
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184 model(50). This is done k times where a different subset is chosen as the validation set on each 

185 iteration of the process. LOO methodology uses the same concept except that it is not random 

186 as each subset belongs to an individual subject. Consequently, LOO trains the model more 

187 rigorously compared to k-fold and introduces levels of complexity which may overfit the model 

188 and reduce its external validity. Hence, LOO should be reserved for smaller datasets(48, 53).  

189 However, the literature does not indicate an appropriate size for a dataset using LOO and this 

190 is likely since it is not only the number of subjects that determines the ‘size’ of the dataset, but 

191 also the amount of information associated with each subject. Hence, the size of spatiotemporal 

192 gait datasets must be evaluated with both CV techniques before a recommendation can be made.

193 1.3.4. Evaluation of model performance

194 A confusion matrix (Figure 2a) is used to represent the results of the classification model. 

195 Metrics such as accuracy, recall, precision, specificity and F1 score can be calculated from the 

196 matrix(57). 

197 Example Confusion Matrix
198

Has condition Does not have 
condition

Positive test result TP FP
Negative test result FN TN

199

200 Figure 2a: Confusion matrix for a binary classification test. TN = true negative, TP=true positive, 

201 FN=false negative, FP=false positive. 

202

203 Furthermore, the generalisability of the model can be evaluated by the Mean Squared Error 

204 (MSE) which is a reflection of the degree of underfitting or overfitting(58). All metrics are 

205 summarised in Figure 2b. Whilst accuracy is used as a metric in almost all papers (see Table 

206 3), the literature is quite heterogeneous in its use of other metrics. Further research in this field 

207 is required in order recommend a more consistent and holistic approach to evaluating model 

208 performance as it pertains to clinical use cases.

209 1.4. Research Questions

210 This study will use multiple ML models to distinguish normative subjects from those with 

211 Parkinson’s disease using spatiotemporal gait data gathered by wearable IMU’s.
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212 1.4.1. Primary Research Question

213 Can ML algorithms accurately distinguish patients with Parkinson disease from normative 

214 controls?

215 1.4.2. Secondary Research Question

216 Which combination of feature selection and classification techniques are most suited to an AI 

217 model tasked with gait analysis?

218 1.4.3. Study Rationale

219 Spatiotemporal gait data are discriminative of pathologies and IMUs are valid and convenient 

220 methods of gathering spatiotemporal data. ML has emerged as a promising adjunct to clinical 

221 medicine but has not been optimised for clinical gait analysis. The study aims to determine 

222 whether a ML model can accurately distinguish patients suffering from Parkinson disease from 

223 normative controls, and the combination of feature selection and classification techniques 

224 which are best suited to this purpose.

225 1.4.4. Study Significance

226 Such a model would allow for significantly earlier diagnosis of gait-altering pathologies such 

227 as Parkinson’s disease, compared to current means which depend on clinicians’ observational 

228 analysis. This will facilitate early intervention, improve long-term outcomes and patient quality 

229 of life. 

230

231

232

233

234

235

236

237
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238 2. Results

239 2.1 Study Population

240 After cleaning our data prior to applying ML techniques, we excluded data pertaining to 68 

241 normative subjects due to missing demographic values, 4 normative subjects due to an 

242 IMUGaitPy bug, 8 normative subjects with excessive noise evidenced by their clearly incorrect 

243 spatiotemporal parameters. After exclusion of these records, the study population consisted of 

244 32 subjects with Parkinson’s disease and 88 normative subjects. 

245 2.2 Demographic characteristics

246 A summary of the demographic characteristics can be found in Table 4b. There were no 

247 statistically significant differences in height, weight, BMI, and sex. However significant 

248 differences were noted in age, daily step count, smoking, diabetes, cholesterol, and 12-month 

249 falls status as well as problems with balance. 

250 2.3 Model Performance

251 Confusion matrices for the classification for each of the models outlined in Figure 4 are 

252 available in Appendix 4. The performance of the model according to metrics outlined in Figure 

253 2b are available in Table 5a.

254

255 Models 4, 5 and 9 were the most accurate (100%), sensitive (100%), and had the highest F1 

256 score (1.000). 

257

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292200doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.03.23292200
http://creativecommons.org/licenses/by/4.0/


Figure 4:  Descriptions of all iterations of machine learning models used for this project. PCA = Principal Component Analysis, GA = Genetic 
Algorithm, LR = logistic regression, SVM = Support Vector Model, NB = Naïve Bayes, RF = Random Forest, ANN = Artificial Neural Network, 
LOO = Leave One out.  As shown in the figure, the dataset was pre-processed, categorical variables and classification outcome recoded to 0 
vs 1 values before feature selection with PCA and GA separately. Each of classification models (five in total) were applied independently to the 
feature sets selected by PCA and GA to create 10 separate machine learning models. 

PCA

LR SVM NB RF ANN

GA

LR SVM NB RF ANN

Dataset

Pre-processing

Recoding variables

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 
10

Feature selection

Classification
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Model Feature 
selection

Classifier Accuracy 
(%)

MSE 
with 
LOO

MSE 
with k-

fold

Recall Specificity Precision F1 Score

1 LR 98.33 0.0500 0.0500 0.9375 1.0000 1.0000 0.9677
2 SVM 97.50 0.0833 0.0833 0.9375 0.9886 0.9677 0.9524
3 NB 92.50 0.1417 0.1583 0.7813 0.9886 0.9615 0.8621
4 RF 100.0 0.1083 0.1000 1.0000 1.0000 1.0000 1.0000
5

PCA

ANN 100.0 0.0916 0.0666 1.0000 1.0000 1.0000 1.0000
6 LR 94.17 0.0666 0.0917 0.8750 0.9659 0.9032 0.8584
7 SVM 94.17 0.0666 0.0833 0.8750 0.9659 0.9032 0.8889
8 NB 89.17 0.1250 0.1667 0.8125 0.9205 0.7879 0.0801
9 RF 100.0 0.1250 0.1667 1.0000 1.0000 1.0000 1.0000

10

GA

ANN 95.83 0.1333 0.1583 0.9375 0.9886 0.9677 0.9524

Table 5a. Performance metrics of all Machine Learning models. PCA = Principal Component 

Analysis, GA = Genetic Algorithm, LR = Logistic Regression, SVM = Support Vector Model, 

NB = Naïve Bayes, RF = Random Forest, ANN = Artificial Neural Network, MSE = Mean 

squared error, LOO = Leave one out. Recall is otherwise known as sensitivity and Precision 

is otherwise known as the positive predictive value. The k in k fold has a value k=5 for all 

models.

See Table 5b for rankings of models according to the aforementioned metrics. 

Rank Accuracy F1 Sensitivity
1
2
3

4 = 5 = 9 4 = 5 = 9 4 = 5 = 9

4 1 1 1
5 2 2
6 10 2 = 10 10
7 7
8 6 = 7 3 6 = 7

9 3 6 8
10 8 8 3

Table 5b. Models ranked as per the metrics Accuracy, F1 and Sensitivity. Cells are merged 

and ‘=’ used where models rank equally according to a specific metric. Refer to table 5a to 

see relevant values.
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3. Discussion 

Spatiotemporal gait patterns detailed in Table 2 have proven to be sufficiently discriminative 

of gait altering pathologies such as lumbar spinal stenosis, multiple sclerosis, and Parkinson’s 

disease. Mathematical and statistical techniques have shown their ability to distinguish between 

healthy and pathological gait(32-35) but are limited in their inability to model the complex 

non-linear relationships that are inherent to human gait metrics(38, 39).

Recently ML has emerged as a promising new technique which can model both linear and non-

linear relationships and is versatile in its ability to incorporate new information to improve the 

performance of the model. However, this field is still largely in its infancy, especially where it 

pertains to medicine. The current literature is largely heterogeneous and undecided on the best 

approach to applying ML techniques to spatiotemporal gait features.

The present study applies a wide range of ML techniques to spatiotemporal gait metrics 

gathered (using MetaMotionC) from participants with Parkinson’s disease and normative 

subjects. The feature selection techniques will be applied separately to each classification 

technique as illustrated in Figure 4 to determine the combination of techniques which produces 

the highest performing model. The aim of the study is to determine the utility of ML in 

diagnosing pathological gait and finding the combination of ML techniques which produces 

the highest performing model. 

3.1 Justification of study design

3.1.1 Data collection protocols 

The present study was inspired by research done by Fonseka et al(59) and Natarajan et al(60) 

who profiled a variety pathological gait signatures of lumbar spinal stenosis, chronic 

mechanical lower back pain as well as rheumatological hip and knee conditions. These authors 

found >92% of agreement between measurements taken from the MetaMotionC and a 

reference standard (single-camera videography) with an intraclass coefficient >0.86 (p<0.001) 

and was hence deemed valid. Despite other gait analysis studies placing IMUs at the lower 

back(22, 61-64),  wrist(65), ankle(63, 66) or thigh(64), the sternal angle was chosen as the flat 

surface of the sternum provides a simple and highly repeatable sensor attachment even for 

unskilled users(59). Accordingly, several studies(29-31) validate chest-based sensor 
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placements for spatiotemporal metrics by demonstrating high correlation (r > 0.83) with 

optoelectronic stereophotogrammetry which is the current gold standard in gait analysis(27).

3.1.2 Machine learning techniques 

The present study utilises PCA and GA feature selection techniques, but omitted HC in its 

investigation as it is computationally intensive(67) yet performs inconsistently with model 

accuracies ranging from 75%(54) to 100%(53). Hair et al’s(45) recommendation that features 

chosen by PCA should explain at least 60% of variance in a dataset is widely cited in the 

literature. Hence the present study uses this notion to choose the top 15 variables which 

explains 86% of variance in the dataset. In GA, although the ideal population size is specific 

to the application(46), the literature recommends a larger population size (up to n=300(68)) to 

allow GA to converge on a robust solution. Since our total population was n=120, we applied 

GA to our entire dataset with n=50 generations, to obtain a solution with 11 hybrid or ‘mutated’ 

features.

The LR and ANN classifier were fitted using the Limited-memory Broyden-Fletcher-Goldfarb-

Shanno algorithm (lbfgs) which is derived from Broyden-Fletcher-Goldfarb-Shanno algorithm 

(bfgs). Both are mathematical techniques applied to non-linear optimisation problems(69), with 

lbfgs having the added advantage of reduced runtime and memory usage. The lbfgs has been 

validated by biomechanics papers which found a limited increase in model performance for a 

considerably larger investment of computational power(70, 71) with the original bfgs.  The 

SVM was fitted using a linear kernel which is known for its shorter runtime and is preferred 

for datasets with many features(72). For RF models, the literature recommends using 64-128 

trees as a tradeoff between high ROC AUC values and processing time(73). Hence, we utilised 

100 decision trees which were merged to increase the accuracy of predictions. Whilst the 

number of hidden layers possible for an ANN are unlimited, a higher number of layers incurs 

greater computational costs. The author decided on a moderate number of hidden layers (n=6) 

to increase the accuracy of predictions with a reasonable computational cost. This is based off 

previous applications in biochemistry and genetics(74-76) which used a similar number of 

features to the present study (n=10-16).

3.2 Evaluating Model performance

3.2.1 Metrics used to evaluate model performance 
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The literature is heterogeneous in the metrics used to report the performance of ML models. 

Different combinations of the metrics in Figure 2b have been used(48, 50, 53-55). For example, 

Eskofier at al(48) and Pogorelc at al(55) report only accuracy, whilst Begg et al(54) and 

Khandoker et al(53) report accuracy, recall (sensitivity) and precision (positive predictive 

value).  Reporting accuracy alone is problematic with an imbalanced dataset when the 

condition has a low prevalence(77) and can lead to misleading conclusions. Hence recall is 

useful as it quantifies the true-positive rate whilst precision reflects the false positive rate (FPR 

= 1-precision). Ideally, a good test has a high sensitivity, so as not to miss subjects suffering 

from a condition, but also has a high precision (low FPR) so as not to incur additional costs to 

the healthcare system by necessitating clinic visits for healthy individuals(78). 

However, models which have high recall, do not necessarily have high precision. As seen in 

Table 5b, models can be ranked differently by different metrics. For example, Model 3 in this 

present study is more precise than model 8 (0.9615 vs 0.7879) but has a lower recall (0.7813 

vs 0.9310). Here the 𝐹𝛽 score is useful (Figure 2b) as it is a composite metric of both recall and 

precision. The 𝛽-parameter controls the tradeoff of importance between recall and precision. 

𝛽 < 1 focuses on precision, 𝛽 > 1 focuses on recall and 𝛽 = 1 assigns equal importance to 

both. The use of the 𝐹1 score (𝛽 = 1) has not yet been used in the literature concerning gait 

analysis but has proven to be insightful in studies related to COVID-19(79) as well as the wider 

statistical literature(80-83). The 𝐹1 score is suitable to the present study where the 

maximisation of true positives and minimisation of false positives are of equal importance. 
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Figure 2b: Overview of metrics used to analyse the performance of machine learning models. 

TN = true negative, TP=true positive, FN=false negative, FP=false positive. Recall is also known 

as Sensitivity and Precision is otherwise known as the Positive predictive value. MSE = Mean 

Squared Error. 𝑦𝑡𝑟𝑢𝑒 = 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒.  MSE is a measure of the 

average of the squared error calculated when comparing the true and predicted values. Note that 

the F1 score is fundamentally the 𝐹𝛽 score when 𝛽 is assigned a value of 1.

Furthermore, the Mean-squared Error (MSE) is obtained (Figure 2b) after performing cross-

validation techniques such as k-fold and LOO. Whilst ML studies (see Table 3) all perform 

cross validation; none report the error in any form, whether it be MSE, Mean absolute error 

(MAE) or others. The MSE is a representation of the degree of bias in a model(84). A highly 

complex and overfitted model tends to be less biased towards its training data, have a lower 

MSE, but in turn these models show greater variance with external data, are less generalisable 

and have poor external validity. The opposite is true for models with higher error. If they retain 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 × 100%

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 × 100%

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑃 + 𝐹𝑃 × 100%

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑁

𝑇𝑃 + 𝐹𝑃 × 100%

𝐹𝛽 = (1 + 𝛽2) ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝛽2.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
× 100%

𝐹1 =  2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) × 100%

𝑀𝑆𝐸 = (𝑦𝑡𝑟𝑢𝑒,𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
(𝑦𝑡𝑟𝑢𝑒 ― 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2
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a high classification accuracy and 𝐹1 score, a higher error value is desirable as it means that 

the model is more biased towards its training data, less overfitted, less likely to show variance 

with external data, generalisable and clinically useful(85). 

Hence, the author recommends the combined use of accuracy and 𝐹1 score to judge the 

performance of ML models considering its MSE after cross-validation which is an indication 

of the bias-variance tradeoff(85).

3.2.2 Performance of models 

The present study finds that there is a high classification accuracy amongst all models (>89%). 

Models 4,5 and 9 (Table 5a) are the highest performers with 100% accuracy, and 𝐹1 score of 

1, which is the highest possible score. Out of these Model 9 performs best as it has the highest 

MSE (0.125) after cross-validation and is likely to have higher bias in favour of lower variance, 

thus greater generalisability and greater external validity. Following this, are models 1,2 and 

10 which are ranked highest to lowest in terms of accuracy and 𝐹1 score. The remaining models 

cannot be ranked as they perform inconsistently based on accuracy and 𝐹1 score.

The success of Models 4 and 9 which use RF is consistent with Arora et al(86) who used the 

tri-axial accelerometry data from smartphones to distinguish participants with Parkinson’s 

disease from normative controls. The models had an average sensitivity of 98.5% and 

specificity of 97.5%. The likely reason for the slightly lower performance of their model is due 

to the lack of features used in their analysis as well as the lack of a feature selection technique. 

The MetaMotionC has not only an accelerometer but a magnetometer and gyroscope and 

inevitably, the present study works with more features. In summary, our findings are consistent 

with the literature and suggest that the RF classifier is promising in gait analysis. The author 

recommends the use of a feature selection technique, namely GA (Model 9) in combination 

with RF to increase the performance of the model. 
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Figure 5: Radar plot illustrating 14 spatiotemporal gait metrics for patients with Parkinson’s 

Disease (PD) and controls (CL) as evaluated ambulatory bouts (ABs) in free-living contexts. 

Central dotted line represents CL data and bolded line represents PD data measured in 

standard deviations from CL values (range ± 2𝑆𝐷). (a) represents Abs<10s, (b) represents 

30s<Abs<60s and (c) represents Abs>120s. Figure taken from Del Din et al.(87)

In comparison, Model 5 featuring ANN, greatly outperforms a recent study by Iosa et al(88) 

who used a very similarly capable IMU and hence had access to a very similar feature set. It is 

understood that this team did not apply any feature selection techniques and that their 

participants only walked for 10m in data collection.  A 2016 study by Del Din et al.(87) found 

that longer ambulatory bouts were more discriminative of pathological gait (Figure 5). The 

present study utilises a minimum walking distance of 50m and is a likely reason for our 

increased classification performance. Hence, we find that ANN is a good classifier in 

spatiotemporal gait analysis but should be used with a feature selection technique and longer 

ambulatory bouts for more valid predictions.

Both models 3 and 8 performed poorly (accuracies 92.5% and 89.1%) in the present study and 

performs similarly poorly in other models using sensor-based data(89, 90). However, a study 

by Pogorelc et al(55) which used video-analysis as opposed to sensor-based techniques in gait 

analysis achieved a 97.2% classification accuracy. No feature selection techniques were used, 

indicating that classification accuracies could be further increased. Early interpretations may 

suggest that NB classifiers are more suited to visual data compared to sensor-based data, but 

further research is necessary to make a firm conclusion.
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3.3 Significance of findings

The findings confirm that ML algorithms can accurately distinguish pathological from healthy 

gait. This field is still largely in its infancy and extant literature is heterogeneous in its approach 

to the use of ML techniques. Through this study, we have contributed to the existing knowledge 

by showing that feature selection improves performance and should hence be used routinely 

hereon. Furthermore, we have shown that RF classifiers in conjunction with GA outperform 

other spatiotemporal gait analysis models which combine other techniques. In addition, 

through our analysis we add to the extant literature by recommending the routine use of 

accuracy and 𝐹1 score to evaluate model performance. 

3.4 Strengths and limitations 

The main strength of this study is in the wide scope of techniques investigated. By combining 

two feature selection techniques iteratively with five different classifiers, we were able to form 

10 different models to make a comprehensive recommendation on the combination of methods 

best suited to distinguishing pathological from healthy gait using spatiotemporal gait data. 

The main limitation is in the statistically significant age difference between the Parkinson’s 

and normative groups. This makes age a confounding variable which may obscure the ‘true’ 

impact of the pathology(91) and limit the internal validity of the study. This arose largely due 

to difficulty obtaining older subjects who satisfied the inclusion criteria for the normative 

group. 

In addition, the lack of an external validation dataset precludes determination of the 

generalisability and external validity of the model. Cross-validation techniques and MSE 

values calculated are only a prediction of the likely generalisability. CV techniques are 

common in the literature because models are often ‘bootstrapped’ for data. Increasing the size 

of the dataset, would allow researchers to have a separate validation dataset that is not used at 

all in training the model(92). 

4. Future directions and Conclusion 

Firstly, the number of older participants should be increased in a follow-up study. Participants  

should be stratified by age to reduce the confounding influence. Secondly, we aim to introduce 

a second pathological group such as patients with lumbar spinal stenosis to evaluate the 
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performance of the model in a three-way classification problem similar to that conducted by 

Mannini et al who achieved 90.5% accuracy in classifying elderly subjects from Post-stroke 

and Huntington’s disease patients using Support Vector Machines (SVM)(93). 

In addition, the utility of models described in this paper must be determined by examining the 

degree of disease progression by assessing the severity of gait deterioration. Similarly, the team 

aim to investigate whether ML models can quantify patients’ response to therapy. For example, 

whether a model distinguish a Parkinson’s patient before and after they take medication. 

In conclusion, this study found that ML algorithms in combination with feature selection 

techniques could accurately distinguish pathological from healthy gait. In relation to 

Parkinson’s disease the findings suggest that a RF classifier paired with the GA feature 

selection is the best performing model with 100% accuracy and 𝐹1 score. 

These findings are invaluable considering that such a tool can allow early diagnosis of 

conditions such as Parkinson’s disease, facilitate early intervention and increase patient 

outcomes and quality of life. 

Future research should have larger datasets stratified with age and construct a model that is not 

only able to distinguish Parkinson’s patients from healthy ones but also from patients suffering 

from other gait-altering pathologies (e.g., post-stroke, lumbar spinal stenosis). 

5. Materials and Methods

5.1 Objectives

The present study is an observational case-control study of participants with Parkinson’s 

disease who were compared to healthy controls. Spatiotemporal gait metrics summarised in 

Table 2 were collected from both groups using an IMU and several ML models were used to 

classify the study population based on whether they suffer from Parkinson’s disease. 

5.2 Ethics

Approval was obtained from the South-Eastern Sydney Local Health District, New South 

Wales, Australia (HREC 17/184). All participants provided written informed consent.

5.3 Study Population
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A total of 168 normative subjects and 32 participants with Parkinson’s Disease were recruited 

for the study. Details regarding the locations from which participants were recruited as well as 

age ranges can be found in Table 4a. 

Inclusion criteria for normative subjects included being older than 18 years of age and inclusion 

criteria for the group with Parkinson’s disease included being older than 18 years of age and a 

clinical diagnosis of Parkinson’s disease.

Exclusion criteria for both groups included a BMI greater than 25, inability to walk at least 

50m independently, women who are pregnant and any concurrent gait altering pathologies 

including but not restricted to stroke, lumbar spinal stenosis, multiple sclerosis, 

rheumatological conditions of hip, knee and spine and cauda equina syndrome.

5.4 Data collection

Participants provided informed written consent after which they were interviewed to obtain 

demographic data summarised in Table 4b. The wearable IMU used was the MetaMotionC 

developed by Mbientlab Inc. and contains a 16bit triaxial accelerometer (100Hz), gyroscope 

(100Hz), and 0.3𝜇𝑇 magnetometer (25Hz). Participants were fitted with this sensor at the 

sternal angle (Figure 3) and following a short pause to orient the device, instructed to walk 

50m, unobserved, along a flat concrete pathway, at their natural walking pace. Data was 

downloaded via Bluetooth™ to an AndroidTM smartphone running the IMUGait Recorder 

application which was developed for this study. IMUGaitPY, a modified version of the open-

source GaitPY Python(94) package by Czech and Patel was used to extract spatiotemporal gait 

metrics (Table 2) from the raw data. Appendix 1 elaborates on this process. Setup instructions 

for IMUGaitPY as well as details regarding configuration files and mathematical derivations 

can be found in Appendix B.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292200doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.03.23292200
http://creativecommons.org/licenses/by/4.0/


Figure 3: The Metamotion the MetaMotionC© (MMC) inertial measurement unit (IMU) 

developed by Mbientlab Inc. pictured as it will be fitted on the sternal angle of patients. Figure 

taken from Natarajan et al(26).

5.5 Data Analysis

5.5.1 Demographic variables

Demographic data were assessed for normality using the Shapiro-Wilk test and visual 

inspection of histograms. Continuous variables such as age, height, weight, BMI were 

compared between groups using the independent sample t-test for normal data and the Mann-

Whitney U test for non-normal data. Categorical variables such as sex, smoking, diabetes, 

hypertension, cholesterol, and 12-month falls status were compared using the Chi-square test 

of independence. The level of statistical significance was set to p=0.05 and analysis was 

performed using IBM SPSS Statistics Version 26.0 (IBM, New York, United States).

5.5.2 Machine learning models 

Pre-processing

The dataset was cleaned by removing duplicate records and records with missing values. 

Structural errors such as spelling mistakes were corrected as they have the potential to return 

error codes. Following this, the data was standardised to remove outliers. 

Recoding variables and outcomes
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In preparation for binary classification, normative (healthy) subjects were assigned a value of 

0 whilst those with Parkinson’s disease were assigned a value of 1. Similarly, categorical 

demographic variables such as smoking, diabetes, hypertension, cholesterol, and 12-month 

falls status which were previously answered as yes or no, were recoded to be 1 and 0 

respectively. 

Feature selection

Principal Component Analysis (PCA) was used to reduce the features (variables). The sum of 

the first 15 features (from a total of 75) explained over 86% of variance and was deemed 

sufficient to represent the data. 

Separately, the Genetic Algorithm (GA) reduced the dataset to the 11 most descriptive features.

Classification

Classification models used include Logistic regression, Support Vector Model (SVM), Naïve 

Bayes classifier (NB), Random Forest (RF) and Artificial Neural Network (ANN). Each of 

these models were applied separately to each of the reduced feature sets determined by PCA 

and GA to create 10 separate ML models in total. The process thus far is summarised in Figure 

4.

The LR model was fitted using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno 

(lbfgs) optimisation algorithm The SVM was fitted using a linear kernel whilst the NB 

classifier was applied using the Gaussian Naïve Bayes method. The RF model utilized 100 

decision trees which were merged to increase the accuracy of predictions. Finally, the 

connected multi-layer artificial neural network (ANN) multiplayer perceptron was also fitted 

with the lbfgs optimisation algorithm and included six hidden layers (n=6).

Cross-Validation

All models were validated independently using both the k-fold (k value set to 5) and leave-one-

out (LOO) techniques. 

Evaluating performance

All metrics outlined in Figure 2b were used to evaluate the performance of the models.
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The models above were coded using Jupyter Notebook, an open-source software (Project 

Jupyter, 2014). See Appendix 3 for the full code.
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