It is made available under a CC-BY 4.0 International license. medRxiv preprint doi: [https://doi.org/10.1101/2023.07.03.23292187;](https://doi.org/10.1101/2023.07.03.23292187) this version posted July 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted med

-
-

48 specificity=99.93.97%). Subsequent screening commination via PCR for C90172 led to a 2% risk
49 of developing ALS as a result of the reduced penetrance (44%).
50 **Conclusions and Relevance:** We show that risk following 49 Conclusions and Relevance: We show that risk following a pos

50 Conclusions and Relevance: We show that risk following a pos

52 can be strikingly low for rare neurological diseases. Accordingly

53 screening, it is vi

50 57
58
59

Sa Conclusions and Relevance: We show that risk following a positive screening test result
can be strikingly low for rare neurological diseases. Accordingly, to maximise the utility of
screening, it is vital to prioritise 53 screening, it is vital to prioritise protocols of very high sensitivity and specificity, careful
selection of markers for screening, giving regard to clinical interpretability, actionability,
high penetrance, and second selection of markers for screening, giving regard to clinical interpretability, actionability,
thigh penetrance, and secondary testing to confirm positive findings.
56
Keywords: genetic screening, genomic, next generation Fight penetrance, and secondary testing to confirm positive findings.
55 high penetrance, and secondary testing to confirm positive findings.
57 Keywords: genetic screening, genomic, next generation sequencing, health info 55 https://www.facture.org/windows/windows/2015-56
57 https://www.facture.org/windows/secondary/windows/windows/mathematical model, Bayesian probability tools
59 mathematical model, Bayesian probability tools

58
59
1 59 mathematical model, Bayesian probability tools

The mathematica 59 mathematical model, Bayesian probability tools

60 **Introduction**
61 Single nucleotid
62 genotyped in ne
63 genotyping larg
64 validity of seque
65 challenges rema
66 Widened availa
68 genetic factors
69 for healthcare a 62 genotyped in next-generation sequencing data with over 99% accuracy (1-3), while
63 genotyping larger, structural, variants is often less reliable (4). For clinical purposes, t
64 validity of sequencing for small genet 63 genotyping larger, structural, variants is often less reliable (4). For clinical purposes,
64 validity of sequencing for small genetic variations is considered a solved problem, w
65 challenges remain for structural var of a saidity of sequencing for small genetic variations is considered a solved problem, while

challenges remain for structural variants.

66

Widened availability of sequencing data has favoured our understanding of the r challenges remain for structural variants.

66 Widened availability of sequencing data has favoured our understanding of the role of

67 Widened availability of sequencing data has favoured our understanding of the role of

66

66 Widened availability of sequencing data h

68 genetic factors in various phenotypes (5-8

69 for healthcare and gained popularity amo

70 from trained clinicians to guide interpreta

71 Interest has recently risen a 66690123777777777 genetic factors in various phenotypes (5-8). Genetic testing has therefore become values
for healthcare and gained popularity among consumers who can it directly, without ad
from trained clinicians to guide interpretation for healthcare and gained popularity among consumers who can it directly, without advice

from trained clinicians to guide interpretation of results (9-11).

71

Interest has recently risen among governing bodies in develo From trained clinicians to guide interpretation of results (9-11).

71 Interest has recently risen among governing bodies in developing protocols for population-

17 Unterest has recently risen among governing bodies in de 71

72 Interest has recently risen among governing bodies in developir

73 wide genetic screening; such initiatives are being rolled out in t

74 US (12-18). Genetic screening involves testing a population for g

75 risk f - 72 73 74 75 76 77 78 79 80 81 we focus here on screening for pathogenic variants with monogenic associations with rare US (12-18). Genetic screening involves testing a population for genetic variants indicative of

risk for specific diseases to identify people with either higher predisposition of developing

that disease or the potential t The state of specific diseases to identify people with either higher predisposition of developing
That disease or the potential to pass it on to their offspring. This approach utilises modern
Sequencing techniques to evalu This approach utilises modern
This approach utilises modern
Sequencing techniques to evaluate multiple genes associated with selected traits. In
Contrast 'targeted' tests are those performed because of some suggestion that 977 sequencing techniques to evaluate multiple genes associated with selected traits. In

278 contrast 'targeted' tests are those performed because of some suggestion that a person

279 may harbour disease variants (e.g., contrast 'targeted' tests are those performed because of some suggestion that a permay harbour disease variants (e.g., symptoms or family history of disease). Although
screening is relevant to liabilities ranging between m may harbour disease variants (e.g., symptoms or family history of disease). Although

SCO screening is relevant to liabilities ranging between monogenic and polygenic (cf. (16, 19)

We focus here on screening for pathogeni 900 screening is relevant to liabilities ranging between monogenic and polygenic (cf. (16, we focus here on screening for pathogenic variants with monogenic associations with

82 diseases, particularly as applied to neurod

we focus here on screening for pathogenic variants with monogenic associations with rare

82 diseases, particularly as applied to neurodegenerative disorders.

83 Although no widespread implementation of genetic screening 82 diseases, particularly as applied to neurodegenerative disorders.
83 Although no widespread implementation of genetic screening protocols currently exist
85 internationally, comparable metabolic screening, testing neona 83

84 Although no widespread implementation of genetic screening pro

85 internationally, comparable metabolic screening, testing neonate

86 of metabolic diseases, is routine in many countries (17, 20, 21). P

87 typical 83

85 internationally, comparable metabolic screening, testing neonates for metabolite mark
86 internationally, comparable metabolic screening, testing neonates for metabolite mark
86 of metabolic diseases, is routine in many 86 of metabolic diseases, is routine in many countries (17, 20, 21). Positive metabolic tests are
87 typically validated with secondary testing, including targeted genetic tests (9, 22, 23).
88 The utility of genetic scree typically validated with secondary testing, including targeted genetic tests (9, 22, 23).

88 The utility of genetic screening can be assessed by the extent to which action can be taken

90 The utility of genetic screening The utility of genetic screening can be assessed by the extent to which action can be the following a positive test: its actionability (24, 25). One key tenet of actionability is the probability of having or later developi 88 89 Sollowing a positive test: its actionability (24, 25). One key tenet of actionability is the
81 probability of having or later developing a disease following a positive test. Yet post-test
82 disease probability can be

91 probability of having or later developing a disease following a positive test. Yet post-te
92 disease probability can be strikingly low where disease risk prior to testing is low, as w
93 be for population screening for disease probability can be strikingly low where disease risk prior to testing is low, as wou
be for population screening for rare diseases (26).
94
Bayesian inference, which is routine within clinical decision making (27), be for population screening for rare diseases (26).

92 Bayesian inference, which is routine within clinical decision making (27), can be used to

96 understand post-test ('posterior') disease risk. Under this logic, disea 94

95 Bayesian inference, which is routine within clinical

96 understand post-test ('posterior') disease risk. Unc

97 a test can be inferred given existing knowledge of

88 Key considerations to understanding post-test 95
96 7
98 99
00 01
02
03 96 understand post-test ('posterior') disease risk. Under this logic, disease probability follow
97 a test can be inferred given existing knowledge of the probability of other relevant even
98 Key considerations to underst 97 a test can be inferred given existing knowledge of the probability of other relevant events.

98 Key considerations to understanding post-test disease risk, beyond pre-test (also known as

99 'prior') disease risk, incl 98 Key considerations to understanding post-test disease risk, beyond pre-test (also known as
99 'prior') disease risk, include the genetic marker penetrance , its frequency among people
90 displaying disease symptoms, and 99 (prior) disease risk, include the genetic marker penetrance, its frequency among people

99 (prior) disease risk, include the genetic marker penetrance, its frequency among people

90 (displaying disease symptoms, and t displaying disease symptoms, and the sensitivity and specificity of the test (analytic validic)

1991 This reasoning is therefore highly relevant to screening for rare neurodegenerative diseas

1992 for which genetic cause This reasoning is therefore highly relevant to screening for rare neurodegenerative diseases,
102 for which genetic causes are typically rare variants of variable penetrance (28).
103
104 This article overviews important c 102 for which genetic causes are typically rare variants of variable penetrance (28).

102 for which genetic causes are typically rare variants of variable penetrance (28).

103 This article overviews important considerati 103

104 This article overviews important considerations for genetic screening of rare dis

105 presents several case studies focused on neurodegenerative diseases. Consider

106 conditional probability in medical decision

104
105
106

-
- 105 presents several case studies focused on neurodegenerative diseases. Considering
106 conditional probability in medical decision making is not novel but these concepts must be
3 106 conditional probability in medical decision making is not novel but these concepts is
conditional probability in medical decision making is not novel but these concepts is 106 conditional probability in medical decision making is not not not novel but the probability must be

- 107
-
-
-
-
- 108 large-scale indiscriminate testing of genetic variation across a population will not be

109 actionable and may be misinterpreted. We modelled genetic screening for Huntington's

110 disease (29), HD, and amyotrophic l not actionable and may be misinterpreted. We modelled genetic screening for Huntingto

109 actionable and may be misinterpreted. We modelled genetic screening for Huntingto

110 disease (29), HD, and amyotrophic lateral sc
-
-

110 disease (29), HD, and amyotrophic lateral sclerosis (30), ALS, using Bayesian logic to exam

110 disease (29), HD, and amyotrophic lateral sclerosis (30), ALS, using Bayesian logic to exam

111 the probability of disea 111 the probability of disease following a positive test result for a dichotomous ALS and HD
112 genetic markers. We additionally modelled screening for phenylketonuria (PKU) (31), to
113 compare genetic and metabolic scre 112 genetic markers. We additionally modelled screening for phenylketonuria (PKU) (31), to

113 compare genetic and metabolic screening.

114 **Methods:**
 115 Methods:
 115 Methods:
 117 We use Bayesian logic to calcul 113 compare genetic and metabolic screening.

114
 115 Methods:
 116 Bayesian framework

117 We use Bayesian logic to calculate the probability of having or subsequently manifesting

117 We use Bayesian logic to calcu 114

115 **Methods:**
 115 Methods:

116 **Bayesian framework**

117 We use Bayesian logic to calculate the prob

118 disease *D* following a test result indicating

119 variant). *M* is associated with increased liak

120 p -- 115
115
116
117
118
112
121
122
123 116 **Bayesian fra**

116 **Bayesian fra**

117 We use Baye

118 disease D fo

119 variant). M i

120 presence of

121 following a p

122 Supplement

124 parameters 117 We use Bayesian logic
118 disease D following a
119 variant). M is associat
120 presence of M, while
121 following a positive re
122 Supplementary Mater
124 parameters represent
125 example, disease seve

-
-

118 disease *D* following a test result indicating presence or absence of marker *M* (the genetic variant). *M* is associated with increased liability of *D*, and positive test result *T* indicates presence of *M*, while 119 disease D following a test result indicating presence or absence of marker M (the genetic

119 variant). M is associated with increased liability of D, and positive test result T indicates

120 presence of M, while ne Variant). M is associated with increased hability of D, and positive test result 7 indicates

120 presence of M, while negative test result T' indicates its absence, denoted M'. Disease ri

121 following a positive result The presence of M, while negative test result T multates its absence, denoted MT. Disease risk

121 following a positive result is denoted $P(D|T)$, using $P(D|T')$ for a negative result.

122 Supplementary Materials 1 summa 121 following a positive result is denoted $P(D|T)$, using $P(D|T)$ for a negative result.

122 Supplementary Materials 1 summarises the underlying logic. We assume that all

124 parameters represent binary events. This was 123
124
125
126
127
128
129
130
131 124 parameters represent binary events. This was a necessary simplification of reality as, for

125 example, disease severity is not considered.

126 We estimate $P(D|T)$ and $P(D|T')$ using the following input parameters:

-
-
- 125 example, disease severity is not considered.

126

127 We estimate $P(D|T)$ and $P(D|T')$ using the following input parameters:

128 $P(D)$, probability of a person having or later manifesting disease D prior to testing
	-
- 126

127 We estimate $P(D|T)$ and $P(D|T')$ using the fo

128 $P(D)$, probability of a person having o

129 $P(M|D)$, frequency of marker M amo

130 $P(D|M)$, penetrance, probability of has

131 $P(T|M)$, sensitivity (tr 127
128
129
130
131
132
133
134
135 127 We estimate $P(D|T)$ and $P(D|T)$ using the following input parameters:

128 • $P(D)$, probability of a person having or later manifesting disease

129 • $P(D|M)$, penetrance, probability of having or later manifesting *L* **•** P(D), probability of a person having or later manifesting disease D prior to testing
 • P(M/D), frequency of marker M among those affected by D
 • P(D/M), penetrance, probability of having or later manifesting D f 129 • $P(M|D)$, frequency of marker M among those affected by D

130 • $P(D|M)$, penetrance, probability of having or later manifesti

131 • $P(T|M)$, sensitivity (true positive rate) of the testing proced

133 • $P(T'|M')$, spec 130 • $P(D|M)$, penetrance, probability of having or later manifesting D for people

131 • $P(T|M)$, sensitivity (true positive rate) of the testing procedure for detecting

133 • $P(T|M')$, specificity (true negative rate) of t 131 **a** $P(T/M)$, sensit

133 **a** $P(T'/M')$, speciding M

134 absence of *M*

135 Bayes theorem is app

137 132 • $P(T|M)$, sensitivity (true positive rate) of the testing procedure for detecting M

133 • $P(T'|M')$, specificity (true negative rate) of the testing procedure for identifying

134 absence of M

135 Bayes theorem is app
	-

133 • $P(T'|M')$, specificity (true negative rate) of the testing procedure for identifying the

134 absence of *M*

135 Bayes theorem is applied to derive the total probability of harbouring disease marker *M*,

137 $P(M) = \frac$ 134 absence of *M*
135
136 Bayes theorem is app
137
138 and of disease *D* man
140 136
136
137
138
139
140 137

137 Bayes theorem is applied to derive the total probability of harbouring disease marker M,
 $P(M) = \frac{P(D) \times P(M|D)}{P(D|M)}$,

138 and of disease D manifesting given the absence of M,
 $P(D|M') = \frac{P(D) \times (1 - P(M|D))}{(1 - P(M))}$.

$$
P(M) = \frac{P(D) \times P(M|D)}{P(D|M)}
$$

$$
P(D|M)
$$
\ng given the absence of *M*,

\n
$$
P(D|M') = \frac{P(D) \times (1 - P(M|D))}{(1 - P(M))}
$$
\nprobability of positive test result *T*, *P*(*T*), according to the

\nthe test and the probability of *M* being present versus about *M* is the result.

139
139
140
142
143
144 140

140

149

141

142 We next calculate the total probability of positive test result T, $P(T)$, according to the

143 sensitivity and specificity of the test and the probabilities of M being present versus absent:

144 - 142
143
144
145
146 142 We next calculate the total probability of positive test result T, P(T), according to the

143 sensitivity and specificity of the test and the probabilities of M being present versus a

144 $P(T) = P(T|M) \times P(M) + (1 - P(T'|M')) \times (1$ 143

143

143 Bayes theorem is then used to derive the probabilities of M being present after positive,

145 Bayes theorem is then used to derive the probabilities of M being present after positive,

$$
P(T) = P(T|M) \times P(M) + (1 - P(T'|M')) \times (1 - P(M)).
$$

 $P(T) = P(T|M) \times P(M) + (1 - P(T'|M')) \times (1 - P(M)).$
145
146 Bayes theorem is then used to derive the probabilities of *M* being present after positive,
4 m))
ent after positive,
4 145 146 Bayes theorem is then used to derive the probabilities of M being present after positive,

$$
P(M|T) = \frac{P(M) \times P(T|M)}{P(T)}
$$

147 Equation 4 , -| - 1-| -1  -

149
150
151
152
154
154 150
150
151 results.
152
153 The probabilit
154 when conside
155 150

151 results.

151 results.

152

153 The probabilities of manifesting disease *D* (which has conditional independence from *T*

154 when considering *M*) after receiving positive test result *T*,

155
 $P(D|T) = P(D|M) \times P$ T))

conditional independence from T

lt T,
 $Equation 6$
 $[M') \times (1 - P(M|T))$, 152
152 The pro
154 when co
155
156 and neg
158 153
154
155
156
157
158 153 The probabilities of mannessing disease D (which has conditional independence from T

154 when considering M) after receiving positive test result T,
 $P(D|T) = P(D|M) \times P(M|T) + P(D|M') \times (1 - P(M|T))$,

157 and negative test result

$$
P(D|T) = P(D|M) \times P(M|T) + P(D|M') \times (1 - P(M|T))
$$

154 when considering M) after receiving positive test result T, 155 Equation 6 |
 , -| -| -| -| 1-|

157
157
158
159
161
162
163 158

158

158

159

26 can then be determined.

160

26 can then be determined.

161

162 **Case studies**

168 The Project MinE (32), ALS variant server (33), ClinVar (34), and gnomAD databases were

164 searched alongside) *) ,*
atabases were
g tool
put parameters
:nsitivity (P(T/M))
ant calling with 160
161
162
163
164
165
165
167
168 161

162 **Case studies**

163 The Project MinE (32), AL

164 searched alongside the protocomposition

165 benchmarking reports to

166 were defined using data f

167 and specificity ($P(T/M)$) w

168 state-of-the-art genomic -- 162
163
164
165
166
167
168
169
170 163 The Project N
164 searched alor
165 benchmarkin
166 were defined
167 and specificit
168 state-of-the-a
169 variant types
170 vary across the correct of the state-of-the-a
171 our purposes 164 searched alongside the previous databases and next-generation sequencing tool
165 benchmarking reports to obtain data for the included case studies. Most input parameters
166 were defined using data from published lit 165 benchmarking reports to obtain data for the included case studies. Most input part of the were defined using data from published literature and online databases. Sensitivial 167 and specificity $(P(T/M))$ were defined by 166 were defined using data from published literature and online databases. Sensitivity $(P(T|M)$ and specificity $(P(T|M))$ were defined by performance benchmarks for variant calling with state-of-the-art genomic sequencing tec The vertext disease is a sensitivity (P(T) and specificity (P(T) M)) were defined by performance benchmarks for variant calling with

state-of-the-art genomic sequencing techniques specialised for genotyping particular

v and specificity (P(T/M)) were defined by performance benchmarks for variant calling with
state-of-the-art genomic sequencing techniques specialised for genotyping particular
variant types (see Supplementary Materials 2; Ta

For the state of the state-of-the-art games in the state of the state is accuracy vary across the genome and other sources of error 170 vary across the genome and other sources of error exist, these heuristics are sufficient for
171 our purposes.
172
173 Table 1 presents the parameter estimates and post-test disease risks calculated across
174 various 171 our purposes.

172

172

173 Table 1 presents the parameter estimates and post-test disease risks calculated across

174 various scenarios. A comprehensive description of parameter ascertainment, including

175 penetra 172

172

173 Table 1 presen

174 various scenar

175 penetrance es

176 assumptions a

177

178 *Case 1 – Hunti*

180 HD is a late-on -- 173
174
175 176
177 178
181
181 174 various scenarios. A comprehensive description of parameter ascertainment, including
175 penetrance estimation, is given in Supplementary Materials 3; Table S2 summarises the
176 assumptions and corresponding reality.
 175 penetrance estimation, is given in Supplementary Materials 3; Table S2 summarises the
175 assumptions and corresponding reality.
177
178 *Case 1 – Huntington's disease*
180 HD is a late-onset Mendelian disease with aut 176 assumptions and corresponding reality.

176 assumptions and corresponding reality.

177

179 *Case 1 – Huntington's disease*

180 HD is a late-onset Mendelian disease with autosomal dominant inheritance caused by a

18

- 78
178
180
181
182
183
184 179
180
181
182
183
184
- 177

178

179 $Case 1 Huntington's disease$

180 HD is a late-onset Mendelian disease with

181 trinucleotide, CAG, short tandem repeat

182 613004). We let *M* be a CAG expansion

183 penetrance in a normal lifespan (29).

184 179 Case 1 – Huntington's assease
180 – HD is a late-onset Mendelian c
181 – trinucleotide, CAG, short tande
182 – 613004). We let *M* be a CAG e
183 – penetrance in a normal lifespa
184
-
- 181 Homoleotide, CAG, short tandem repeat expansion (STRE) in the *HTT* gene (OMIM:
182 613004). We let *M* be a CAG expansion of >40 repeat units, which would have complete
183 penetrance in a normal lifespan (29).
184 181 trinucleotide, CAG, short tandem repeat expansion (STRE) in the HTP gene (OMIM:
182 613004). We let *M* be a CAG expansion of >40 repeat units, which would have comp
183 penetrance in a normal lifespan (29).
184
- 182 613004). We let M be a CAG expansion of 240 repeat units, which would have complete
183 penetrance in a normal lifespan (29). 184 penetrance in a normal lifespan (29).

185 186 disease probability by baseline risk of HD in a general population and (2) as a targeted test

187 considering pre-test disease probability for an individual whose parent harbours the fully

188 penetrant *HTT* STRE a

considering pre-test disease probability for an individual whose parent harbours the fully
penetrant *HTT STRE* and who has a 0.5 probability of inheriting *M* (we have not modelled
genetic anticipation (35)).
190
Case 2 188 penetrant *HTT* STRE and who has a 0.5 probability of inheriting *M* (we have not modelled
189 genetic anticipation (35)).
190 *Case 2 – amyotrophic lateral sclerosis*
191 *Case 2 – amyotrophic lateral sclerosis*
192 A For penetrant HTT STRE and who has a 0.5 probability of inheriting M (we have not modelled
189 genetic anticipation (35)).
190 *Case 2 – amyotrophic lateral sclerosis*
192 ALS is a late-onset disease with locus and allelic 190

191 *Case 2 – amyotrophic later*

192 ALS is a late-onset disease

193 and phenotype modification

194 40 genes are associated w

195 614260) are the most freq

196 than 10% of cases. Autoso

197 genetic disease cause 191
192
193
194
195
196
197
198
199 191 Case 2 – amyotropme fateral sclerosis

192 – ALS is a late-onset disease with locus a

193 – and phenotype modification range be

194 – 40 genes are associated with ALS (30,

195 – 614260) are the most frequently impli and phenotype modification range between monogenic and polygenic. Variants in at least

193 and phenotype modification range between monogenic and polygenic. Variants in at least

194 40 genes are associated with ALS (30,

194 40 genes are associated with ALS (30, 36-38). *SOD1* (OMIM: 147450) and *C9orf72* (OMIM:

195 614260) are the most frequently implicated genes, where variants of each account for few

196 than 10% of cases. Autosomal d 194 40 genes are associated with ALS (30, 36-38). SOD1 (OMIM: 147450) and C9orf72 (OMIM: than 10% of cases. Autosomal dominant inheritance is typical for most people with a known
197 genetic disease cause.
198 We modelled several definitions of markers for ALS risk, drawing from three of the
200 commonest ALS 197 genetic disease cause.

198 We modelled several definitions of markers for ALS risk, drawing from three of the

200 commonest ALS genes: *SOD1, C9orf72,* and *FUS* (OMIM: 137070). *SOD1*- and *FUS*-linked ALS

201 is t 198

199 We modelled several d

200 commonest ALS genes

201 is typically attributed to

202 supporting evidence ha

203 *C9orf72* is a hexanucle

204 one or both of ALS and

205 typically incomplete pe

206 and ~45% for t 199
199
200
202
203
204
205
206
207 200 commonest ALS genes: *SOD1, C9orf72,* and *FUS* (OMIM: 137070). *SOD1*- and *FUS*-li

201 is typically attributed to SNVs and many pathogenic variants with varying strength c

202 supporting evidence have been reporte 200 commonest ALS genes: 3001 , 2001 , 201 , and FUS (OMIM: 137070). 3021 - and FUS-linked ALS

201 is typically attributed to SNVs and many pathogenic variants with varying strength of

202 supporting evidence have b 202 supporting evidence have been reported in these genes (39). The pathogenic form of

202 supporting evidence have been reported in these genes (39). The pathogenic form of

203 *C9 or f* 72 is a hexanucleotide, GGGGCC, 203 200 203 C901/2 is a hexanucleotide, GGGGCC, 3TRE associated principally with the onset of either

204 one or both of ALS and frontotemporal dementia (40). Known variants in these genes have

205 typically incomplete penetrance

- 205 typically incomplete penetrance; examples include ~90-100% penetrance for *SOD1* p.A5V

206 and ~45% for the *C9orf72 STRE* (41, 42).

207

208 The definitions of *M* modelled in this case study were:

209 **a** SOD1 (al 205 typically incomplete penetrance; examples include 50-100% penetrance for SOD1 p.A5V

206 and ~45% for the C9orf72 STRE (41, 42).

207

208 The definitions of M modelled in this case study were:

209 • *SOD1* (all) – M 207

207

208 The definitions of *M* modelled in this cas

209 • *SOD1* (all) – *M* includes any rare v

210 ancestry contained within the me

211 frequencies were derived (see Su

212 • *SOD1* (A5V) – *M* represents the 208
209
210
211
212
213
214
215
216 208 Fine definitions of M modelled in this case study were:

209 • *SOD1* (all) – *M* includes any rare variant reporte

210 ancestry contained within the meta-analysis sale

211 frequencies were derived (see Supplementary
- 209 $SOD1$ (all) *M* includes any rare variant reported in people with ALS of European

210 ancestry contained within the meta-analysis sample set from which the variant

211 frequencies were derived (see Supplementary
- 211 and the meta-analysis sample set from which the variant same of the meta-analysis sample set from which the variant same and the meta-analysis sample set from which the variant frequencies were derived (see Supplementa 212 • $SOD1 (ASV) - M$ represents the pathogenic $SOD1$ p.A5V variant, or

213 common $SOD1$ variants among North American ALS populations, c

high penetrance (41, 43).

215 • FUS (all) – M includes any rare variant reported in
- 212 SOD1 (A5V) M represents the pathogenic *SOD1* p.A5V variant, one of the most

213 common *SOD1* variants among North American ALS populations, characterised b

214 high penetrance (41, 43).

215 FUS (all) M incl 213 common SOD1 variants among North American ALS populations, characterised by

215 **FUS** (all) – M includes any rare variant reported in people with ALS of European

216 ancestry contained within the meta-analysis sampl 215 • FUS (all) – M includes any

216 ancestry contained within

217 frequencies were derived

218 • FUS (ClinVar) – M includes

219 pathogenic for ALS within

220 sporadic ALS (see Table SE)

221 • $C9orf 72 - M$ repre 215 • *FUS* (all) – *M* includes any rare variant reported in people with ALS of European

216 ancestry contained within the meta-analysis sample set from which the variant

217 frequencies were derived (see Supplementary 217 and FUS (ClinVar) – M includes any of 21 FUS variants reported as pathogenic or like

218 • FUS (ClinVar) – M includes any of 21 FUS variants reported as pathogenic or like

220 pathogenic for ALS within ClinVar and p
-
-
- 218 *FUS* (ClinVar) *M* includes any of 21 *FUS* variants reported as path

219 pathogenic for ALS within ClinVar and present within databases of

220 sporadic ALS (see Table S3) (32-34).

221 *C9orf72 M* repres **• FUS (ClinVar)** – M includes any of 21 FUS variants reported as pathogenic or likely

219 **•** pathogenic for ALS within ClinVar and present within databases of familial and

220 **•** *C9orf72* – M represents a pathogenic 220 sporadic ALS (see Table S3) (32-34).

221 sporadic ALS (see Table S3) (32-34).

221 external and FUS (all) scenarios, M encompasses variants classed as pathogenic

223 In the *SOD1* (all) and *FUS* (all) scenarios, M e 221 **COUTER 1999 SEAD CONTERNATE SAMPLE 223**
222 sporadic Microsofter Control of the Countries Also
224 likely pathogenic, and variants of uncertain
225 these scenarios since many variants of uncertain
225 these scenarios 221 • C9orf72 – M represents a pathogenic C9orf72 STRE of 30 \le repeat GGGGCC units
222 in the *SOD1* (all) and *FUS* (all) scenarios, M encompasses variants classed as pathogenic,
224 likely pathogenic, and variants of 222 Within the first intron of the C901772 gene.

223 In the *SOD1* (all) and *FUS* (all) scenarios, *M* encomp

224 likely pathogenic, and variants of uncertain signific

225 these scenarios since many variants of uncerta 223 In the SOD1 (all) and FOS (all) scenarios, M encompasses variants classed as pathogenic,

224 Interesponsible these scenarios since many variants of uncertain significance (44). It is appropriate to model

225 Interesp
-
- These scenarios since many variants of uncertain significance in ALS-implicated genes has
thigh probability of being deleterious and should not necessarily be ignored (38).
227
For the C9orf72 marker, we modelled two scena high probability of being deleterious and should not necessarily be ignored (38).

227

228 For the C9orf72 marker, we modelled two scenarios: (1) genetic screening with sensitivity

239 and specificity defined by performa 227
228 For the C9orf72 marker, we modelled two scenarios: (1) genetic screening with s
229 and specificity defined by performance of existing tools for genotyping STREs in s
230 data; (2) using repeat-primed polymerase ch ---
228
229
230
231 228 For the C90172 marker, we modelied two scenarios: (1) genetic screening with sensitivity
229 and specificity defined by performance of existing tools for genotyping STREs in sequencin
230 data; (2) using repeat-primed 220 data; (2) using repeat-primed polymerase chain reaction with amplicon-length analysis (45) as a secondary test to validate a positive result from screening via sequencing in scenario 1.
- 231 as a secondary test to validate a positive result from screening via sequencing in scenario 1. \mathcal{L} as a secondary test to valid at positive result from screening via sequencing via secondary ϵ

232

233
234
235
236
237
238
239
240
241

233 Case 3 – phenylisetonuna
234 – PKU is an autosomal reces
235 – gene (OMIM: 612349) (31
236 – homozygous or compoun
237 – recorded in European pop
238 – p.Arg261Gln (31).
240 – We modelled two testing
241 – probability 234 PKO is an autosomal recessive disease with infantic onset, caused by variants in the PAH
235 gene (OMIM: 612349) (31); most variants pathogenic for PKU are SNVs. M represents beli
237 recorded in European populations o gene (OMIMI: 612349) (31), most variants pathogenic for TKO are SNVs. M represents being

236 homozygous or compound heterozygous for any of the three most common *PAH* variants

237 recorded in European populations of peo 237 homozygous or compound heterozygous for any or the three most common PAH variants

237 recorded in European populations of people with PKU: p.Arg408Trp, c.1066-11G>A,

238 p.Arg261Gln (31).

239 We modelled two testing 238 p.Arg261Gln (31).

239 We modelled two testing scenarios for PKU: (1) genetic screening, with pre-test dise

241 probability defined per the baseline population risk of PKU, and (2) secondary testin

242 confirm positi 239
240 We modelled two
241 probability defined
242 confirm positive respectively 240
241
242
243 241 probability defined per the baseline population risk of PKU, and (2) secondary testing to
242 confirm positive results obtained using tandem mass spectrometry (46) as in established
243 metabolic screening protocols (s

242 confirm positive results obtained using tandem mass spectrometry (46) as in established
243 metabolic screening protocols (see Supplementary Materials 3.3).
243 metabolic screening protocols (see Supplementary Material

243 metabolic screening protocols (see Supplementary Materials 3.3). 243 metabolic screening protocols (see Supplementary Materials 3.3).

Table 1. Input parameters and disease risk estimates following testing for all case study scenarios.

Parameter ascertainment is comprehensively described within Supplementary Materials 3. HD = Huntington's disease; ALS = amyotrophic lateral sclerosis; PKU = phenylketonuria. SNV = single nucleotide variant; STRE = short tandem repeat expansion. [§]Estimates are based on populations of predominantly European ancestry – 95% confidence intervals shown for newly derived estimates in the ALS case study; "includes FUS variants classified as pathogenic or likely pathogenic for ALS in the ClinVar database and recorded within ALS population databases (see Table S3, Table S4); $"$ defined by variant calling performance benchmarks of tools for genotyping in sequencing data by variant type (see Table S1) and, where marked † , by aggregate laboratory accuracy for genotyping C9orf72 STRE with repeat-primed polymerase chain reaction and amplicon-length analysis (45). ^ΩRisk following positive results in primary screening and confirmatory

tests relative to a negative screening result (probability of PKU given a negative metabolic screening result is approximated as 1×10^{-6}).

244 Results and Discussion
245
246 **Post-test disease probabilit**
247 *Screening versus diagnostic*
248 Across case studies, we sho
249 contextually-blind genetic s
250 Table 1). Disease risk was al
251 absence of the test 246
247
248
249
250
251
252

246 Post-test disease probability
247 Screening versus diagnostic te
248 Across case studies, we show
249 contextually-blind genetic scri
250 Table 1). Disease risk was alwi
251 absence of the tested variant,
252 The HD ca 247 Screening versus diagnostic testing
248 Across case studies, we showed low
249 contextually-blind genetic screening
250 Table 1). Disease risk was always ne
251 absence of the tested variant, as we
252 The HD case stud 249 contextually-blind genetic screening scenarios; risk ranged between 12.7% and 0.4% (see
250 Table 1). Disease risk was always negligible following a negative test result, indicating
251 absence of the tested variant, a 250 Table 1). Disease risk was always negligible following a negative test result, indicating
251 absence of the tested variant, as would be seen for any rare trait.
252
253 The HD case study illustrates the distinction be 251 The HD case study illustrates the distinction between contextually-blind screening and
252 The HD case study illustrates the distinction between contextually-blind screening and
254 diagnostic testing for rare diseases 252

253 The HD case study illustrates the distinction between contextually

254 diagnostic testing for rare diseases: following a positive test result

255 (90.8%) using targeted testing but low (0.4%) in screening. This 253
254
255
256
257
258
259

254 diagnostic testing for rare diseases: following a positive test result, lifetime HD risk was
255 (90.8%) using targeted testing but low (0.4%) in screening. This difference reflects that,
256 unlike screening, targeted

255 (90.8%) using targeted testing but low (0.4%) in screening. This difference reflects that,
256 unlike screening, targeted testing is performed based on some indication of a person's
257 elevated disease risk (e.g., exi

-
-

256 Unlike screening, targeted testing is performed based on some indication of a person's
257 elevated disease risk (e.g., existing disease symptoms or family history). Accordingly, preflect disease probability is greater elevated disease risk (e.g., existing disease symptoms or family history). Accordingly, pr
258 test disease probability is greater. Inherently low pre-test disease probability will be a
259 pervasive issue in screening for 259 pervasive issue in screening for rare diseases.

260

261 *Relative risk and secondary testing*

262 The utility of a test for identifying at-risk individuals can be examined based on relative

263 disease risk followi 260

261 Relative risk and secondary testing

262 The utility of a test for identifying at-risk indivi

263 disease risk following positive rather than neg

264 only minimally greater for people testing posit

265 the ALS

264 only minimally greater for people testing positive rather than negative. This is observed in
265 the ALS C9orf72 case study, where risk was only 1.7 times greater (Table 1) following a

261
262
263
264
265
266
267 261 Relative risk and secondary testing
262 The utility of a test for identifying a
263 disease risk following positive rathe
264 only minimally greater for people to
265 the ALS C9orf72 case study, where
266 positive scre disease risk following positive rather than negative test results: utility is limited when ri

264 only minimally greater for people testing positive rather than negative. This is observed

265 the ALS C9orf72 case study,

264 only minimally greater for people testing positive rather than negative. This is observed in
265 the ALS *C9orf72* case study, where risk was only 1.7 times greater (Table 1) following a
266 positive screening from seq 265 the ALS C9orf72 case study, where risk was only 1.7 times greater (Table 1) following a
266 positive screening from sequencing alone, despite this variant being the most common
267 genetic cause of ALS (37).
268 We add 265 the ALS C90172 case study, where risk was only 1.7 times greater (Table 1) following a
266 positive screening from sequencing alone, despite this variant being the most common
267 genetic cause of ALS (37).
268 We addi genetic cause of ALS (37).

268 we additionally observed 6.35 times greater ALS risk for a person testing positive on bo

270 screening for *C9orf72* and a secondary test than for a person testing negative on the init

271 268

268 We additionally observed

270 screening for C9orf72 and

271 screening. This increased r

272 independent measures of

273 the initial screening result

274 269
270
271
272
273
275
275 270 screening for *C9orf72* and a secondary test than for a person testing negative on the initial
271 screening. This increased relative risk reflects that a person testing positive on two
272 independent measures of dise

-
-

270 screening for C50172 and a secondary test than for a person testing negative on the initial
271 screening. This increased relative risk reflects that a person testing positive on two
272 independent measures of disease 271 screening. This increased relative risk reflects that a person testing positive on two

272 independent measures of disease risk has greater absolute probability of disease than after

273 the initial screening result 273 the initial screening result alone.
274 the initial screening result alone.
275 We emphasise that secondary testing is important to increase certainty in positive tests. The
276 PKU case study demonstrates its potentia 274

275 We emphasise that secondary test

275 We emphasise that secondary test

277 the established metabolic approase

278 genetic screening. The metabolic

279 indicates existing disease manifes

280 marked by variants 275
276
277
278
280
281 276 PKU case study demonstrates its potentially sizable impact. A positive screening result using
277 the established metabolic approach alone indicated 16.7% PKU risk, versus 12.7% within
278 genetic screening. The metabo 277 the established metabolic approach alone indicated 16.7% PKU risk, versus 12.7% within
278 genetic screening. The metabolic marker, which is universal across people with PKU and
279 indicates existing disease manifesta 278 genetic screening. The metabolic marker, which is universal across people with PKU and
279 indicates existing disease manifestation, eclipses need for genetic screening for PKU,
280 marked by variants with incomplete p

indicates existing disease manifestation, eclipses need for genetic screening for PKU,

280 marked by variants with incomplete penetrance that are not present for all people with

281 PKU. However, the genetic test remains marked by variants with incomplete penetrance that are not present for all people with PKU. However, the genetic test remains useful for validating the positive metabolic
282 screening result (17): probability of PKU follo PKU. However, the genetic test remains useful for validating the positive metabolic

282 screening result (17): probability of PKU following a confirmatory genetic test conducted

283 the basis of a positive metabolic scre 282 screening result (17): probability of PKU following a confirmatory genetic test conduction
283 the basis of a positive metabolic screening result was 88.9%.
284 The overall benefit of secondary testing will however dif

-
-

283 screening result was 88.9%.

284 the basis of a positive metabolic screening result was 88.9%.

284 The overall benefit of secondary testing will however differ by scenario. For ALS, the risk

286 remained moderate (~2 284

285 The overall benefit of secondary testing will however differ b

286 The mained moderate (~2%) despite two positive test results for

287 Constraints upon post-test disease probability

289 Figure 1, Figure 2, and 285
286
287
288
289
290

-
-

- 286 The overall beddefined the overall benefits of secondary testing testing testing testing testing testing test
287 Constraints upon post-test disease probability
289 The original of any test disease probability
290 The 287
288 *Constraints upon post-test disease probability*
289 Figure 1, Figure 2, and Figure 3 illustrate how the post-test disease prob
290 the probability of any test, disease, or marker characteristic decreases. S 288
289
290 288 Constraints upon post-test disease probability
289 Figure 1, Figure 2, and Figure 3 illustrate how t
290 the probability of any test, disease, or marker
- 290 the probability of any test, disease, or marker characteristic decreases. Sensitivity and
the probability of any test, disease, or marker characteristic decreases. Sensitivity and
the probability of any test, disease, 290 the probability of any test, disease, or marker characteristic decreases. Sensitivity and

291 specificity critically constrain certainty about post-test disease risk, and this role is amplified
292 as the other parameter probabilities decrease. Figure 1 particularly demonstrates the 293 increased role of specificity in rarer diseases, where disease risk following a positive test 293 increased role of specificity in rarer diseases, where disease risk following a positive test

294 result will be moderated only by penetrance in a protocol of perfect specificity.

295

296
297
298 Figure 1. Probability of a disease given a positive genetic test result for a marker of increased disease risk (P(D|T)) according
299 to the sensitivity (P(T|M)) and the specificity (P(T'|M')) of the testing pr to the sensitivity ($P(T|M)$) and the specificity ($P(T'|M')$) of the testing protocol

300 Panel A presents this for a disease with pre-test probability (P(D)) of 0.5, while panel B presents a disease with P(D) of 0.01. 301 Penetrance is complete (P(D|M) = 1) and variant M is harboured by all people with disease D (P(M|D) = 1) in both panels.

It is made available under a CC-BY 4.0 International license. medRxiv preprint doi: [https://doi.org/10.1101/2023.07.03.23292187;](https://doi.org/10.1101/2023.07.03.23292187) this version posted July 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted med

302
303 Figure 2. Probability of disease D following a positive genetic test result for marker M (P(D|T)) according to pre-test disease
304 probability (P(D)) probability (P(D))

305 M occurs in all people with D (P(M|D) = 1) and has complete penetrance (P(D|M) = 1)). Plot lines are defined according to **306** sensitivity (P(T|M)) and specificity (P(T[']|M')) of existing protocols for genotyping

307 Materials 2): single nucleotide variant (SNV), $P(T|M) = 0.9996$, $P(T'|M') = 0.9995$; small insertion or deletion (Indel), $P(T|M)$

 $308 = 0.9962$, $P(T|M') = 0.9971$; short tandem repeat expansion (STRE), $P(T|M) = 0.99$, $P(T|M') = 0.90$; copy number variant **308** = 0.9962, P(T'| M') = 0.9971; short tandem repeat expansion (STRE), P(T| M)=0.99, P(T'| M') = 0.90; copy number variant
309 (CNV) – del. (deletion), P(T| M) = 0.289, P(T'| M') = 0.959; CNV – dup. (duplication), P(T

310 $P(M|D) = 1$, $P(T|M) = 0.9996$, $P(T'|M') = 0.9995$ $P(M|D) = 1$, $P(T|M) = 0.99$, $P(T'|M') = 0.90$
311 Figure 3. Change in disease risk following a positive test result for a marker of increased disease risk (P(D|T)) according to
31 penetrance (P(D|M))

³¹³ Panels A and B display modelled and hypothetical markers of ALS which differ in frequency across people affected by ALS
314 (P(M|D)), where pre-test disease probability (P(D)) is 0.0033 and diamonds mark the penetranc

³¹⁵ hypothetical variants (see Table 1). Panels C and D display diseases in which $P(M|D) = 1$ and with $P(D)$ set in line with the

³¹⁶ modelled case studies or a hypothetical rare disease. Analytic validity parameters are defined according to the performance

³¹⁰ modelled case studies or a hypothetical rare disease. Analytic validity parameters are defined according to the performance
317 of sequencing tools for genotyning single nucleotide variants in A and C-and of short tand 317 of sequencing tools for genotyping single nucleotide variants in A and C, and of short tandem repeat expansions in B and D 318 (see Table S1; Figure 2).

- 320
-
-
-
-

-
- 321 testing. The respective trade-offs between prioritising each of these must be regarded:
322 sensitivity is required to detect markers, while high specificity increases confidence in
323 positive results. Established sc 322 sensitivity is required to detect markers, while high specificity increases confidence in
323 positive results. Established screening protocols prioritise high sensitivity to maximise
324 detection of at-risk individua From the marker manner, manufact provided in positive results. Established screening protocols prioritise high sensitivity to maximise
324 detection of at-risk individuals, with confirmatory secondary testing being vital t 324 detection of at-risk individuals, with confirmatory secondary testing being vital to mini
325 false-positive results (9, 22, 23).
326 Since the characteristics of diseases and associated variants are all pre-determined 325 false-positive results (9, 22, 23).
326 Since the characteristics of diseases and associated variants are all pre-determined within a
328 Since the characteristics of diseases and associated variants are all pre-determ 326
327 Since the characteristics of disea
328 population, disease markers (var
329 variants will be those more prev.
330 which can be genotyped with hig
331 Figure 3, panels A and B).
332 ---
327
328
329
331
332
333 328 population, disease markers (variants) screened should be chosen carefully. The most usefu

329 variants will be those more prevalent among people affected, of high penetrance, and

330 which can be genotyped with high variants will be those more prevalent among people affected, of high penetrance, and
330 which can be genotyped with high sensitivity and specificity (see Table 1, ALS case study;
331 Figure 3, panels A and B).
332 **Practi**
- which can be genotyped with high sensitivity and specificity (see Table 1, ALS case stud

331 Figure 3, panels A and B).

332 **Practical implementation of genetic screening**

334 *Marker selection*

335 Before a marker is
-

332
 Practical implementation

334 Marker selection

335 Before a marker is used in

336 recognising that this may

337 common or only present i

338 them (36, 43). Screening p

-
-
-
- Figure 3, panels A and B).
332 **Practical implementation of genetic screening**
334 *Marker selection*
335 Before a marker is used in screening, its relevance across people must be evaluated,
336 recognising that this may v
-
- 333
334
335
336
337
338
339 Fractical implementation of genetic screening
334 *Marker selection*
335 Before a marker is used in screening, its relevan
336 recognising that this may vary by ancestry. For i
337 common or only present in certain populat 335 Before a marker is
335 Before a marker is
336 recognising that t
337 common or only is
338 them (36, 43). Sci
339 systemic inequali
340 have limited gene
341 recognising that this may vary by ancestry. For instance, particular variants may be le

star is used in screening protocols must therefore account for these differences to p

systemic inequalities, especially for minoriti 337 common or only present in certain populations, and penetrance can also vary between
338 them (36, 43). Screening protocols must therefore account for these differences to prev
339 systemic inequalities, especially for them (36, 43). Screening protocols must therefore account for these differences to prev
339 systemic inequalities, especially for minorities which are often under-studied and there
340 have limited genetic information avai systemic inequalities, especially for minorities which are often under-studied and therefore

340 have limited genetic information available.

341 Regard must be given to the clinical interpretability of selected markers.
-
-
- 340 have limited genetic information available.

341 Regard must be given to the clinical interpretability of selected markers. We illustrated

342 Regard must be given to the clinical interpretability of selected markers. 341

342 Regard must be given to the clinical interpre

343 Several approaches to defining markers in t

344 Scenario, disease risk is marked by an aggre

345 Without curation, the relationship to diseas

346 Substantially 342
343
343
345
347
348
-
- several approaches to defining markers in the ALS case study. Within the SOD1 (all)
344 scenario, disease risk is marked by an aggregation of putatively pathogenic SOD1 varian
345 Without curation, the relationship to dise 343 several approaches to defining markers in the ALS case study. Within the SOD1 (all)
344 scenario, disease risk is marked by an aggregation of putatively pathogenic SOD1 va
345 Without curation, the relationship to dise
-
-
-
-
-
-

344 Scenario, disease risk is marked by an aggregation of putatively pathogenic 3001 variants.
345 Without curation, the relationship to disease varies across them. E.g., *SOD1* p.1114T has
346 substantially lower penetran 345 Without curation, the relationship to disease varies across them. E.g., SOD1 p.1114T has
346 substantially lower penetrance than p.ASV, and many potentially relevant variants have
347 uncertain significance (34, 38, 39 347 uncertain significance (34, 38, 39, 42). Curation could involve defining a positive result as
348 presence of variants with sufficient evidence of pathogenicity (44), as in the *FUS* (ClinVar
350 senario, or as harbour presence of variants with sufficient evidence of pathogenicity (44), as in the FUS (ClinVar)
349 scenario, or as harbouring specific variants, as in the SOD1 (A5V) scenario.
350 De novo variants and variants of uncertain s SHOT DRESERT OF VARIATISE WITH SUITE ENTIRE CONDIGENTLY (44), as in the FUS (CINIVAR)
350
350
351 De novo variants and variants of uncertain significance present a substantial challenge for
352 screening since they will fr 349 scenario, or as harbouring specific variants, as in the SOD1 (A5V) scenario.
350
351 De novo variants and variants of uncertain significance present a substantia
352 screening since they will frequently be identified, 351
352
353
354
355
357 SERVIE DEFINITED STATES IN VARIATIS OF UNCERTAIN SIGNIFICANCE present a substantial challenge for
352 Screening since they will frequently be identified, yet must be set aside until variant
353 interpretation is possible d

-
-

353 interpretation is possible despite potentially being deleterious (12). PKU demonstrat
354 scale of this issue for rare diseases with multiple implicated variants, as 55% of delet
355 *PAH* genotypes are observed unique scale of this issue for rare diseases with multiple implicated variants, as 55% of deleterious
355 *PAH* genotypes are observed uniquely (31).
356 *Utility over time and actionability*
358 As genetic screening is possible 355 PAH genotypes are observed uniquely (31).
356
357 Utility over time and actionability
358 As genetic screening is possible from birth, while non-genetic methods may not be, age of
359 viability for screening methods sh 355 PAH genotypes are observed uniquely (31).
356
357 Utility over time and actionability
358 As genetic screening is possible from birth, v
369 similarly for screening methods should be even
361 prodromal disease markers. 357
358
359
360
361
362
363 357 Utility over time and actionability
358 As genetic screening is possible fro
360 screening may enable preventative
361 prodromal disease markers. For in
362 prodromal feature for Parkinson's
363 enable early interventi 359 Viability for screening methods should be evaluated. For late-onset diseases, early genetic
360 screening may enable preventative treatments to at-risk individuals or close monitoring fo
361 prodromal disease markers. 360 screening may enable preventative treatments to at-risk individuals or close monitoring fo
361 prodromal disease markers. For instance, rapid eye movement sleep behaviour disorder is
362 prodromal feature for Parkinson prodromal disease markers. For instance, rapid eye movement sleep behaviour disorder is a
362 sprodromal feature for Parkinson's disease (47) and monitoring of at-risk individuals may
363 enable early intervention. The inf Frodromal feature for Parkinson's disease (47) and monitoring of at-risk individuals may

anable early intervention. The influence of time upon treatment viability and effectiveness

must also be considered. For example, g enable early intervention. The influence of time upon treatment viability and effectivene
364 must also be considered. For example, genetic therapy has potential utility for preventing
365 delaying onset of degenerative di must also be considered. For example, genetic therapy has potential utility for preventing o
365 delaying onset of degenerative disorders (48).
366 365 must also be considered. For example, generative, generative, processes of delaying onset of degenerative disorders (48).
366
366 366

- 367
-
-
-
- contingent upon the actionability of the result. A framework of actionability (24, 25), s
369 to align with laypersons' views on treatment acceptability (49), states that actionability
370 determined by: disease likelihood 369 to align with laypersons' views on treatment acceptability (49), states that actionability is
370 determined by: disease likelihood and severity, intervention effectiveness in disease
371 minimisation or prevention, an
-
-
-

- 370 determined by: disease likelihood and severity, intervention effectiveness in disease
371 minimisation or prevention, and the consequence of the intervention to a person and risk
372 not performed. Each of these elemen 371 minimisation or prevention, and the consequence of the intervention to a person and
372 ont performed. Each of these elements are critical when selecting traits and markers
373 genetic screening and for the clinical in
- 372 mot performed. Each of these elements are critical when selecting traits and markers for
373 genetic screening and for the clinical interpretation of results.
374 **Limitations**
376 The Bayesian logic in the case studie genetic screening and for the clinical interpretation of results.

374
 1375 Limitations

376 The Bayesian logic in the case studies simplifies genotype-phenotype relationships and

377 cannot address all consideration 374
375 **Limitations**
375 **Limitations**
375 The Bayesian logic in the case studies simplifies genotype-pher
377 cannot address all considerations relevant to clinical genetic te
378 not considered. Other factors include: p
-
- 375
376
377
378
380
381 375 Emmations
376 The Bayesia
377 cannot addr
378 not consider
380 recessive co
381 fundamenta
382 instance, alt comportion and and the Bayesian deviations of the Bayesian considered. Other factors include: polygenicity and oligogenicity, pleiotropy, the rol genetic and environmental modifying factors, and that of additive genetic ef 378 not considered. Other factors include: polygenicity and oligogenicity, pleiotropy, the role of
379 genetic and environmental modifying factors, and that of additive genetic effects in
380 recessive conditions and heter genetic and environmental modifying factors, and that of additive genetic effects in
380 recessive conditions and heterozygous carriers of pathogenic variants. Such influences can
381 fundamentally impact both the probabil Frank Sackgary and the environmentally impact both the probability that a disease will manifest and its severial modifying instance, although spinal muscular atrophy is caused by partial or complete biallelic of the *SMN1*
-
- 381 fundamentally impact both the probability that a disease will manifest and its severity. For
382 instance, although spinal muscular atrophy is caused by partial or complete biallelic deletio
383 of the *SMN1* gene, add impact in the same of the sum of the same of the same of the same additional copies of *SMN2* reduce disease expressivity by mitigating loss
384 of *SMN1* function (50). Any results from genetic screening must be interpret
-

of the SMN1 gene, additional copies of SMN2 reduce disease expressivity by mitigating loss
384 of SMN1 function (50). Any results from genetic screening must be interpreted within the
385 wider context of that disease and 383 of *SMN1* function (50). Any results from genetic screening must be interpreted within the
385 of *SMN1* function (50). Any results from genetic screening must be interpreted within the
385 **Conclusion**
388 **Conclusion** 385 of SMM1 function (50). Any results from genetic screening must be interpreted within the
385 wider context of that disease and its modifiers.
386 **Conclusion**
388 We have shown that risk following a positive screening 386
387 **Conclusion**
388 We have shown that risk following a positive scr
389 rare neurological diseases. Accordingly, to maxi
390 prioritising protocols of very high sensitivity and
391 screening, giving regard to clinica 387
387
388
389
391
392
393 387 Conclusion
388 We have show
389 rare neurolog
390 prioritising pr
391 screening, giv
393 A key advanta Frame show that the utility of screening, we suggest

The neurological diseases. Accordingly, to maximise the utility of screening, we suggest

prioritising protocols of very high sensitivity and specificity, careful selec prioritising protocols of very high sensitivity and specificity, careful selection of markers
391 screening, giving regard to clinical interpretability, and secondary testing to confirm posi
392 findings.
393 A key advanta 391 screening, giving regard to clinical interpretability, and secondary testing to confirm positive
392 findings.
393 A key advantage of a genetic screening approach for late-onset diseases is that these
395 markers can b

392 findings.
393 screening, giving regard to clinical interpretation, yields the conset diseases is that these
394 A key advantage of a genetic screening approach for late-onset diseases is that these
395 markers can be e

-
-

393

394 A key adv

395 markers

396 targeting

393 Although

399 stress the 394
395
396
397
398
399
400 markers can be examined across the lifespan. Hence, positive test results could be use
396 targeting people for prevention, and for monitoring of prodromal features.
397 Although considering disease risk within a Bayesian 396 targeting people for prevention, and for monitoring of prodromal features.
397 Although considering disease risk within a Bayesian context is not novel, it is important to
399 Although considerations raised here at a t 397
398 Although considering disease risk within a Bayesian context is not novel, it is
399 stress the considerations raised here at a time when governments evaluate
400 of genomic sequencing for population screening and a 398
399
400
401
403
404 399 Stress the considerations raised here at a time when governments evaluate implementatic
399 Stress the considerations raised here at a time when governments evaluate implementatic
300 of genomic sequencing for populati 399 of genomic sequencing for population screening and as access to genetic testing outside
399 of genomic sequencing for population screening and as access to genetic testing outside
399 healthcare settings increases. Whi 401 healthcare settings increases. While genetic screening has many potential benefits, the
402 limitations of such an approach should be properly understood. Policy makers must
403 consider the impact of a positive test r 402 limitations of such an approach should be properly understood. Policy makers must
403 consider the impact of a positive test result on large numbers of people that will never
404 develop a given disease, a particularly 403 consider the impact of a positive test result on large numbers of people that will nev
404 develop a given disease, a particularly salient issue for late-onset diseases. Although
405 present focus, the substantial ethi dianglerig develop a given disease, a particularly salient issue for late-onset diseases. Although no
105 present focus, the substantial ethical and social considerations raised in conjunction to
106 screening must also be quare throw the substantial ethical and social considerations raised in conjunction to

406 screening must also be regarded (13).

407
 Data Availability

410 Data sharing not applicable

411 406 screening must also be regarded (13).
407
408 **Data Availability**
410 Data sharing not applicable
411
412

-
-

408
409
410
411
412 409
410
411
412

- 407
408
409 **Data Availability**
410 Data sharing not applicable
411
412 409 Data Avanability
410 Data sharing not app
411
412 411 $\frac{1}{2}$ $\frac{1}{2$
-
- 412
1

413 **Acknowledgements**
414 We wish to thank Profes
415 contribution to project c
416 Biesecker of the Nationa
418 **Author contribution:**
420 **TPS:** Conceptualisation,

- contribution to project conceptualisation and methodology. We also thank Dr Lesl
416 Biesecker of the National Human Genome Research Institute of the National Institute
417 Health for contributing to our discussions around Action to project conceptualisation and methodology. The and main of contribution
417 Health for contributing to our discussions around this work.
418 **Author contributions**
420 TPS: Conceptualisation, Methodology, Forma Health for contributing to our discussions around this work.

418
 Author contributions
 420 TPS: Conceptualisation, Methodology, Formal analysis, Investigation, Data Curation, Writi

421 - Original Draft, Writing – Re 418

419 **Author contributions**

420 **TPS**: Conceptualisation, Methodology, Formal analysis, Inves

421 **– Original Draft, Writing – Review and Editing, Visualisation.**

422 Methodology, Writing – Original Draft, Writing – 419
420
421
422
423
425 419 **Author contributions**
420 **TPS**: Conceptualisation, M
421 - Original Draft, Writing -
422 Methodology, Writing - C
423 Conceptualisation, Writin_,
424 and Editing. NP: Conceptu
425 Methodology, Writing - R
426
-
- 422 Methodology, Writing Original Draft, Writing Review and Editing, Supervision. **N**
423 Conceptualisation, Writing Review and Editing. FF: Conceptualisation, Writing Review and Editing. Supervision. **A**
424 –
- 420 Tr. Conceptualisation, Methodology, Formal analysis, Investigation, Data Curation, Writing
421 Original Draft, Writing Review and Editing, Visualisation. AI: Conceptualisation,
422 Methodology, Writing Neview and 422 Methodology, Writing Ungman Draft, Writing Review and Editing, Supervision. MM:
423 Conceptualisation, Writing – Review and Editing. FF: Conceptualisation, Writing – Revie
424 and Editing. NP: Conceptualisation, Writin
-
-
-

427
428
428
430
431
432
433

425 Methodology, Whing Meview and Editing, Supervision.
426 **Funding**
428 AAC is an NIHR Senior Investigator. This is an EU Joint Pro
429 Disease Research (JPND) project. The project is supported
430 organizations under th

- 423 Conceptualisation, Writing Review and Editing. Tr. Conceptualisation, Writing Review
424 and Editing. NP: Conceptualisation, Writing Review and Editing. AAC: Conceptualisation,
425 Methodology, Writing Review and E
-
- 424 and Editing. NP: Conceptualisation, Writing Review and Editing. AAC: Conceptualisation,
426
427 **Funding**
428 AAC is an NIHR Senior Investigator. This is an EU Joint Programme-Neurodegenerative
429 Disease Research (
-
-
- 427 Funding

428 AAC is an I

429 Disease Re

430 organizatid

431 MR/L5015

432 and throu_l

434 and Maud Disease Research (JPND) project. The project is supported through the following fundinal organizations under the aegis of JPND (United Kingdom, Medical Research Council MR/L501529/1 and MR/R024804/1; Economic and Social Re organizations under the aegis of JPND (United Kingdom, Medical Research Council
431 MR/L501529/1 and MR/R024804/1; Economic and Social Research Council ES/L008238/1
432 and through the Motor Neurone Disease Association. Th MR/L501529/1 and MR/R024804/1; Economic and Social Research Council ES/L008

and through the Motor Neurone Disease Association. This study represents indepe

research part funded by the NIHR Maudsley Biomedical Research Ce and through the Motor Neurone Disease Association. This study represents independent
433 meta-conomic meta-conomic Disease Association. This study represents independent
434 meta-council Research Centre at South London
434 research part funded by the NIHR Maudsley Biomedical Research Centre at South London
434 and Maudsley NHS Foundation Trust and King's College London. The work leading up to tl
435 publication was funded by the European Com and Maudsley NHS Foundation Trust and King's College London. The work leading up to th
435 publication was funded by the European Community's Horizon 2020 Programme (H2O2O-
436 PHC-2014-two-stage; grant 633413). This work
- ublication was funded by the European Community's Horizon 2020 Programme (H2020-

236 PHC-2014-two-stage; grant 633413). This work was part funded by my Name'5 Doddie

Foundation, and Alan Davidson Foundation. The views ex
-
-
-
- PHC-2014-two-stage; grant 633413). This work was part funded by my Name'5 Doddie
437 Foundation, and Alan Davidson Foundation. The views expressed are those of the author
438 and not necessarily those of the NHS, the NIHR, Foundation, and Alan Davidson Foundation. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, King's College London, or the Department of Health and Social Care. Al is funded by Sou and not necessarily those of the NHS, the NIHR, King's College London, or the Department

439 of Health and Social Care. Al is funded by South London and Maudsley NHS Foundation

440 Trust, MND Scotland, Motor Neurone Dise
-
-
-
-

of Health and Social Care. Al is funded by South London and Maudsley NHS Foundation
440 Trust, MND Scotland, Motor Neurone Disease Association, National Institute for Health and
441 Care Research, Spastic Paraplegia Founda Trust, MND Scotland, Motor Neurone Disease Association, National Institute for Health

440 Trust, MND Scotland, Motor Neurone Disease Association, National Institute for Health

441 Care Research, Spastic Paraplegia Founda 441 Care Research, Spastic Paraplegia Foundation, Rosetrees Trust, Darby Rimmer MND
442 Foundation, the Medical Research Council (UKRI) and Alzheimer's Research UK.
443 **Role of the funding source**
445 The funding sources 442 Foundation, the Medical Research Council (UKRI) and Alzheimer's Research UK.
443
444 **Role of the funding source**
445 The funding sources had no role in the writing of this manuscript or the decision to s
447 **Declarat** 443
444 **Role of the funding source**
445 The funding sources had no role in the writing of this manuscript or the decision
446 **Declaration** Council and Alzheimer's Research UKRI
448 **Declaration of interests**
449 Al, MR, 444
445
446
448
449
450 **444 Role of the funding source**
445 The funding sources had no role
446 for publication.
447 **Declaration of interests**
449 Al, MR, FF, and NP declare no co
450 AstraZeneca. AAC declares royal
451 Publications, and The Ge For publication.

445 The funding sources had no role in the writing of this manuscript or the decision

447 **Declaration of interests**

449 Al, MR, FF, and NP declare no competing interests. TPS declares employment with

447

448 **Declaration o**

449 Al, MR, FF, and

450 AstraZeneca. AA

451 Publications, an

452 reports consulta

453 Cytokinetics, Ge 448
449
451
452
453
454

- 449 Al, MR, FF, and NP declare no
450 AstraZeneca. AAC declares re
451 Publications, and The Geneti
452 reports consultancies or advi
453 Cytokinetics, GenieUs, GSK, I
454 Quralis, Sano, Sanofi, and Wa
455 has planned pate
- 450 AstraZeneca. AAC declares royalties from The Brain, A Beginner's Guide: Oneworld
451 Publications, and The Genetics of Complex Human Diseases, A Laboratory Manual.
452 reports consultancies or advisory boards for Amyly
- Publications, and The Genetics of Complex Human Diseases, A Laboratory Manual.

452 Publications, and The Genetics of Complex Human Diseases, A Laboratory Manual.

452 reports consultancies or advisory boards for Amylyx, A
-
- 453 Cytokinetics, GenieUs, GSK, Lilly, Mitsubishi Tanabe Pharma, Novartis, OrionPhari
454 Quralis, Sano, Sanofi, and Wave Pharmaceuticals. AAC is the deputy editor for Brains has planned patents for 'Use of CSF-Neurofilame
- reports consultancies or advisory boards for Amylyx, Apellis, Biogen, Brainstorm,
453 Cytokinetics, GenieUs, GSK, Lilly, Mitsubishi Tanabe Pharma, Novartis, OrionPharma,
454 Quralis, Sano, Sanofi, and Wave Pharmaceuticals. 2454 Cytralis, Sano, Sanofi, and Wave Pharmaceuticals. AAC is the deputy editor for Brain.
455 has planned patents for 'Use of CSF-Neurofilament determinations and CSF-Neurofila
456 thresholds of prognostic and stratificat
- has planned patents for 'Use of CSF-Neurofilament determinations and CSF-Neurofilamen

456 thresholds of prognostic and stratification value with regards to response to therapy in

457 neuromuscular and neurodegenerative d
-
- 456 thresholds of prognostic and stratification value with regards to response to therapy in
157 meuromuscular and neurodegenerative diseases'. AAC is Scientific co-lead for United to End
158 MND Partnership Coalition and 1467 thresholds and neurodegenerative diseases'. AAC is Scientific co-lead for United to
458 MND Partnership Coalition and Guarantor of Brain. AAC has stock options for Quralis.
458
- 458 MND Partnership Coalition and Guarantor of Brain. AAC has stock options for Quralis.
158 458 MND Partnership Coalition and Guarantor of Brain. AAC has stock options for Quralis.

It is made available under a CC-BY 4.0 International license. medRxiv preprint doi: [https://doi.org/10.1101/2023.07.03.23292187;](https://doi.org/10.1101/2023.07.03.23292187) this version posted July 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted med

 461 461

462 463
464
465
466
468
469 463 References:
464 1. lacoa
465 DNAscan: pe
466 Bioinform. 20
467 2. Weng
469 human geno
470 3. Illum 2465 DNAscan: personal computer compatible NGS analysis, annotation and visualisation. BN

466 Bioinform. 2019;20(1):213.

2. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accur

468 circular co Bioinform. 2019;20(1):213.

466 Bioinform. 2019;20(1):213.

467 2. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accuration

468 circular consensus long-read sequencing improves variant detectio 467 2. Wenger AM, Peluso
468 circular consensus long-read
469 human genome. Nat Biotec
470 3. Illumina. Accuracy Ir
471 Platform2019 07/09/2019...
472 <u>docs.illumina.com/documer</u>
473 <u>006/Content/Source/Inform</u> circular consensus long-read sequencing improves variant detection and assembly of a

469 human genome. Nat Biotechnol. 2019;37(10):1155-62.

470 3. Illumina. Accuracy Improvements in Germline Small Variant Calling with th 469 human genome. Nat Biotechnol. 2019;37(10):1155-62.
470 3. Illumina. Accuracy Improvements in Germline Small Variant Calling with the DRA
471 Platform2019 07/09/2019. Available from: https://science-
472 docs.illumina.c 470 3. Illumina. Accuracy Improvements in Germline Sr

471 Platform2019 07/09/2019. Available from: https://scier

472 docs.illumina.com/documents/Informatics/dragen-v3-ac

<u>006/Content/Source/Informatics/Dragen/dragen-v3-</u> Platform2019 07/09/2019. Available from: https://science-

472 docs.illumina.com/documents/Informatics/dragen-v3-accuracy-appnote-html-970-2019-

473 006/Content/Source/Informatics/Dragen/dragen-v3-accuracy-appnote-970-201 006/Content/Source/Informatics/Dragen/dragen-v3-accuracy-appnote-970-2019-

474 006/dragen-v3-accuracy-appnote-970-2019-006.html.

475 4. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive

476 evaluat 006/dragen-v3-accuracy-appnote-970-2019-006.html.

475 4. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensiv

476 evaluation of structural variation detection algorithms for whole genome sequenc

477 Ge 475 4. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M,
476 evaluation of structural variation detection algorithms
477 Genome Biol. 2019;20(1):117.
478 5. Rhoades R, Jackson F, Teng S. Discovery of rare
479 using next-genera evaluation of structural variation detection algorithms for whole genome sequencin

475 evaluation of structural variation detection algorithms for whole genome sequencin

477 Genome Biol. 2019;20(1):117.

478 5. Rhoades R Genome Biol. 2019;20(1):117.
478 5. Rhoades R, Jackson F, Teng S. Discovery of rare variants implicated in schizophr
479 using next-generation sequencing. J transl genet genom. 2019;3:1.
480 6. Davey JW, Hohenlohe PA, Ette 478 5. Rhoades R, Jackson F, T
479 using next-generation sequenc
480 6. Davey JW, Hohenlohe F
481 wide genetic marker discovery
482 Genet. 2011;12(7):499-510.
483 7. Lee JJ, Wedow R, Okba
484 polygenic prediction from a ge 478 5. Rhoades R, Jackson F, Teng S. Discovery of rare variants implicated in schizophrenia
479 using next-generation sequencing. J transl genet genom. 2019;3:1. using next-generation sequencing. J transl genet genom. 2019;3:1.
480 6. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-
481 wide genetic marker discovery and genotyping using next-generation se 6. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, I

481 wide genetic marker discovery and genotyping using next-generation

482 Genet. 2011;12(7):499-510.

7. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher Genet. 2011;12(7):499-510.
483 7. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and
484 polygenic prediction from a genome-wide association study of educational attainment in 1
485 million i 483 7. Lee JJ, Wedow R, Okl
484 polygenic prediction from a
485 million individuals. Nat Gene
486 8. Bycroft C, Freeman C
487 resource with deep phenoty
488 9. Hörster F, Kölker S, L
489 Screening Programmes in Eu 484 polygenic prediction from a genome-wide association study of educational attainment in 1.1
485 million individuals. Nat Genet. 2018;50(8):1112-21.
486 8. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et million individuals. Nat Genet. 2018;50(8):1112-21.

486 8. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank

487 resource with deep phenotyping and genomic data. Nature. 2018;562(7726):2 8. Bycroft C, Freeman C, Petkova D, Band G, Ell
187 mesource with deep phenotyping and genomic data.
188 9. Hörster F, Kölker S, Loeber JG, Cornel MC, Horster S, Loeber JG, Cornel MC, Horster S, Loeber JG, Cornel MC, Horst France with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9.

488 9. Hörster F, Kölker S, Loeber JG, Cornel MC, Hoffmann GF, Burgard P. Newborn

489 Screening Programmes in Europe, Arguments and Efforts Reg 487 resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9.
488 9. Hörster F, Kölker S, Loeber JG, Cornel MC, Hoffmann GF, Burgard P. Newborn 9. Hörster F, Kölker S, Loeber JG, Cornel MC, Hoffmann GF, Burgard P. Newborr
489 Screening Programmes in Europe, Arguments and Efforts Regarding Harmonisation:
490 on Organic Acidurias. JIMD Rep. 2017;32:105-15.
491 10. P Screening Programmes in Europe, Arguments and Efforts Regarding Harmonisation: F

489 Screening Programmes in Europe, Arguments and Efforts Regarding Harmonisation: F

491 10. Perrone F, Cacace R, Van Mossevelde S, Van den on Organic Acidurias. JIMD Rep. 2017;32:105-15.
491 10. Perrone F, Cacace R, Van Mossevelde S, Van den Bossche T, De Deyn PP, Cras P, et and 2021 (Senetic screening in early-onset dementia patients with unclear phenotype: 491 10. Perrone F, Cacace R, Van Mossevelde S, Va
492 Genetic screening in early-onset dementia patien
493 clinical diagnosis. Neurobiol Aging. 2018;69:292.e
494 11. Majumder MA, Guerrini CJ, McGuire AL. D
495 and Risk. An Genetic screening in early-onset dementia patients with unclear phenotype: relevance for
193 clinical diagnosis. Neurobiol Aging. 2018;69:292.e7-.e14.
11. Majumder MA, Guerrini CJ, McGuire AL. Direct-to-Consumer Genetic Te 493 clinical diagnosis. Neurobiol Aging. 2018;69:292.e7-.e14.
494 11. Majumder MA, Guerrini CJ, McGuire AL. Direct-to-Consumer Genetic Testing: Value
495 and Risk. Annu Rev Med. 2021;72(1):151-66.
496 12. Murray MF, Evans 11. Majumder MA, Guerrini CJ, McGuire AL. Direct-to
495 and Risk. Annu Rev Med. 2021;72(1):151-66.
496 12. Murray MF, Evans JP, Khoury MJ. DNA-Based Pop
497 Suitability and Important Knowledge Gaps. JAMA. 2019.
498 13. Dic and Risk. Annu Rev Med. 2021;72(1):151-66.

496 12. Murray MF, Evans JP, Khoury MJ. DNA-Based Population Screening: Potential

497 Suitability and Important Knowledge Gaps. JAMA. 2019.

498 13. Dickinson JA, Pimlott N, Gra 496 12. Murray MF, Evans JP, Khoury MJ. DNA
497 Suitability and Important Knowledge Gaps. JA
498 13. Dickinson JA, Pimlott N, Grad R, Singh
499 things go wrong. Can Fam Physician. 2018;64
500 14. Jansen ME, Lister KJ, van 497 Suitability and Important Knowledge Gaps. JAMA. 2019.
498 13. Dickinson JA, Pimlott N, Grad R, Singh H, Szafran O, Wilson BJ, et al. Screening
499 things go wrong. Can Fam Physician. 2018;64(7):502-8.
500 14. Jansen ME 13. Dickinson JA, Pimlott N, Grad R, Singh H, Szafran

1499 things go wrong. Can Fam Physician. 2018;64(7):502-8.

14. Jansen ME, Lister KJ, van Kranen HJ, Cornel MC. P

15. Genome UK: The future of healthcare.

15. Genome things go wrong. Can Fam Physician. 2018;64(7):502-8.

500 14. Jansen ME, Lister KJ, van Kranen HJ, Cornel MC. Policy Making in Newborn Screening

701 Needs a Structured and Transparent Approach. Front Public Health. 2017; 14. Jansen ME, Lister KJ, van Kranen HJ, Cornel MC.

14. Jansen ME, Lister KJ, van Kranen HJ, Cornel MC.

15. Genome UK: The future of healthcare.

16. Moorthie S, Hall A, Janus J, Brigden T, Villiers CB

16. Moorthie S, H Needs a Structured and Transparent Approach. Front Public Health. 2017;5(53).

15. Genome UK: The future of healthcare.

502 15. Genome UK: The future of healthcare.

503 https://www.gov.uk/government/publications/genome-u 15. Genome UK: The future of healthcare.

502 15. Genome UK: The future of healthcare.

503 https://www.gov.uk/government/publications/genome-uk-the-future-of-health.

504 16. Moorthie S, Hall A, Janus J, Brigden T, Villie 903 https://www.gov.uk/government/publications
504 16. Moorthie S, Hall A, Janus J, Brigden T, V
505 and clinical utility. University of Cambridge; 20
506 17. Adhikari AN, Gallagher RC, Wang Y, Cur
607 role of exome sequen 504 **16.** Moorthie S, Hall A, Janus J, Brigden T, Villiers CBd, Blackburn L, et al. Polygenic score
505 and clinical utility. University of Cambridge; 2021.
506 17. Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, and clinical utility. University of Cambridge; 2021.
506 17. Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, Bassaganyas L, et al. The
507 role of exome sequencing in newborn screening for inborn errors of metabo 506 17. Adhikari AN, Gallagher RC, Wang Y, Currier
507 role of exome sequencing in newborn screening fo
508 2020;26(9):1392-7. For the of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med.
 $2020;26(9):1392-7$. 508 2020;26(9):1392-7.

508 2020;26(9):1392-7.

509 18. Programs: The Promise and Challenges 2021 [Available from:

511 https://www.cdc.gov/genomics/events/newborn_screening_2021.htm.

512 19. Pain O, Gillett AC, Austin JC, Folkersen L, Lewis CM. A tool for translating polygeni 11 https://www.cdc.gov/genomics/events/newborn_screening

19. Pain O, Gillett AC, Austin JC, Folkersen L, Lewis CM. A t

19. Dain O, Gillett AC, Austin JC, Folkersen L, Lewis CM. A t

19. Loeber JG, Burgard P, Cornel MC, R For the absolute scale using summary statistics. Eur J Hum Gene
513 scores onto the absolute scale using summary statistics. Eur J Hum Gene
514 20. Loeber JG, Burgard P, Cornel MC, Rigter T, Weinreich SS, Rupp K,
515 scree 513 scores onto the absolute scale using summary statistics. Eur J Hum Genet. 2022;30:339-48
514 20. Loeber JG, Burgard P, Cornel MC, Rigter T, Weinreich SS, Rupp K, et al. Newborn
515 screening programmes in Europe; argum 20. Loeber JG, Burgard P, Cornel MC, Rigter T, Weinreich SS, Rupp K, et al. Newborn
515 screening programmes in Europe; arguments and efforts regarding harmonization. Part 1 –
516 From blood spot to screening result. J Inh screening programmes in Europe; arguments and efforts regarding harmonization. Part
516 From blood spot to screening result. J Inherit Metab Dis. 2012;35(4):603-11.
517 21. Tarini BA, Christakis DA, Welch HG. State Newborn 516 From blood spot to screening result. J Inherit Metab Dis. 2012;35(4):603-11.
517 21. Tarini BA, Christakis DA, Welch HG. State Newborn Screening in the Tandem Mass
518 Spectrometry Era: More Tests, More False-Positive 21. Tarini BA, Christakis DA, Welch HG. State Newborn Screening in the T
518 Spectrometry Era: More Tests, More False-Positive Results. Pediatrics. 2006;
22. Southern KW, Munck A, Pollitt R, Travert G, Zanolla L, Dankert-R 518 Spectrometry Era: More Tests, More False-Positive Results. Pediatrics. 2006;118(2):448.
519 22. Southern KW, Munck A, Pollitt R, Travert G, Zanolla L, Dankert-Roelse J, et al. A
520 survey of newborn screening for cyst 22. Southern KW, Munck A, Pollitt R, Travert G, Zanolla L, Dankert-Roelse J, et al. A
520 survey of newborn screening for cystic fibrosis in Europe. J Cyst Fibros. 2007;6(1):57-65.
521 23. Rinaldo P, Zafari S, Tortorelli S survey of newborn screening for cystic fibrosis in Europe. J Cyst Fibros. 2007;6(1):57-65
521 23. Rinaldo P, Zafari S, Tortorelli S, Matern D. Making the case for objective perforn
522 metrics in newborn screening by tande 23. (a) Sall 23. (a) Rinaldo P, Zafari S, Tortorelli S, Matern D. Making the case for objective performand the metrics in newborn screening by tandem mass spectrometry. Ment Retard Dev Disabil Republic Republic Republic Re metrics in newborn screening by tandem mass spectrometry. Ment Retard Dev Disabil Res

523 Rev. 2006;12(4):255-61.

524 24. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen

525 — The Clinic For the United States in new spectrum of the United States in New 2006;12(4):255-61.

524 24. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen

525 - The Clinical Genome Resource. N Engl J M 524 24. Rehm HL, Berg JS
525 — The Clinical Genome F
526 25. Hunter JE, Irving
527 evidence-based protocol
528 genomic variation. Gene
529 26. Biesecker LG. Ger
530 kettles of fish. Genome M 525 — The Clinical Genome Resource. N Engl J Med. 2015;372(23):2235-42.
526 25. Hunter JE, Irving SA, Biesecker LG, Buchanan A, Jensen B, Lee K, et al. A standardize
527 evidence-based protocol to assess clinical actionabi 25. Hunter JE, Irving SA, Biesecker LG, Buchanan A, Jensen B, Lee K, evidence-based protocol to assess clinical actionability of genetic disord

527 evidence-based protocol to assess clinical actionability of genetic disor evidence-based protocol to assess clinical actionability of genetic disorders associated with
528 genomic variation. Genet Med. 2016;18(12):1258-68.
529 26. Biesecker LG. Genomic screening and genomic diagnostic testing-tw 528 genomic variation. Genet Med. 2016;18(12):1258-68.
529 26. Biesecker LG. Genomic screening and genomic diagnostic testing-two very different
530 kettles of fish. Genome Med. 2019;11(1):75.
531 27. Hunink MGM, Weinstein 529 26. Biesecker LG. Genomic screening and genomic
530 kettles of fish. Genome Med. 2019;11(1):75.
531 27. Hunink MGM, Weinstein MC, Wittenberg E, Dr
532 al. Decision Making in Health and Medicine: Integratin
533 Cambridg kettles of fish. Genome Med. 2019;11(1):75.
531 27. Hunink MGM, Weinstein MC, Wittenberg E, Drummond MF, Pliskin JS, Wong JB, et
532 al. Decision Making in Health and Medicine: Integrating Evidence and Values. 2nd ed.
533 27. Hunink MGM, Weinstein MC, Wittenk

531 27. Hunink MGM, Weinstein MC, Wittenk

532 al. Decision Making in Health and Medicine: I

533 Cambridge: Cambridge University Press; 201

28. Bertram L, Tanzi RE. The genetic epid al. Decision Making in Health and Medicine: Integrating Evidence and Values. 2nd ed.
533 Cambridge: Cambridge University Press; 2014.
534 28. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Cl Cambridge: Cambridge University Press; 2014.
534 28. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J
535 Invest. 2005;115(6):1449-57.
536 29. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Ha 28. Bertram L, Tanzi RE. The genetic epidem
535 Invest. 2005;115(6):1449-57.
536 29. Langbehn DR, Brinkman RR, Falush D, P
537 prediction of the age of onset and penetrance is
538 length. Clin Genet. 2004;65(4):267-77.
539 1535 Invest. 2005;115(6):1449-57.

536 29. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. A new model for

537 prediction of the age of onset and penetrance for Huntington's disease based on CAG

158 length. Cl 536 29. Langbehn DR, Brinkma
537 prediction of the age of onset
538 length. Clin Genet. 2004;65(4
539 30. Brown RH, Al-Chalabi.
540 2017;377(2):162-72.
541 31. Hillert A, Anikster Y, B
542 Genetic Landscape and Epide prediction of the age of onset and penetrance for Huntington's disease based on CAG
538 length. Clin Genet. 2004;65(4):267-77.
539 30. Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med.
2017;377(2):162-72 537 prediction of the age of onset and penetrance for Huntington's disease based on CAG
538 length. Clin Genet. 2004;65(4):267-77.
539 30. Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med.
540 2017;377(2 539 30. Brown RH, Al-Chalabi A. Amyotr
540 2017;377(2):162-72.
541 31. Hillert A, Anikster Y, Belanger-Q
542 Genetic Landscape and Epidemiology o
543 2020;107(2):234-50.
544 32. van der Spek RAA, van Rheenen
545 The projec 2017;377(2):162-72.

540 2017;377(2):162-72.

541 31. Hillert A, Anikster Y, Belanger-Quintana A, Burlina A, Burton BK, Cardu

542 Genetic Landscape and Epidemiology of Phenylketonuria. Am J Hum Genet.

2020;107(2):234-50. 541 31. Hillert A, Anik
542 Genetic Landscape an
543 2020;107(2):234-50.
544 32. van der Spek
545 The project MinE dat
546 researchers and the J
547 40. Genetic Landscape and Epidemiology of Phenylketonuria. Am J Hum Genet.

543 2020;107(2):234-50.

544 32. van der Spek RAA, van Rheenen W, Pulit SL, Kenna KP, van den Berg LH, Veldink JH.

545 The project MinE databrowser: 2020;107(2):234-50.

543 2. van der Spek RAA, van Rheenen W, Pulit SL, Kenna KP, van den Berg

545 The project MinE databrowser: bringing large-scale whole-genome sequenci

7545 The project MinE databrowser: bringing large 544 32. van der Spek
545 The project MinE dat
545 The project MinE dat
547 40.
548 33. ALS Variant Se
550 34. Landrum MJ, The project MinE databrowser: bringing large-scale whole-genome sequencing in ALS to
546 researchers and the public. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:432
547 40.
548 33. ALS Variant Server [Internet] researchers and the public. Amyotroph Lateral Scler Frontotemporal Degener. 2019; 20:4
547 40.
548 33. ALS Variant Server [Internet]. [cited 02/2021]. Available from:
550 <u>http://als.umassmed.edu/</u>.
550 34. Landrum MJ, Lee 547 40.
548 33. ALS Variant Server [Internet]. [cited 02/2021]. Available from:
550 <u>http://als.umassmed.edu/</u>.
550 34. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar:
551 improving access t 548 33.
549 <u>http</u>
550 34.
551 imp
552 201
553 35. 549 http://als.umassmed.edu/.
550 34. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla
551 improving access to variant interpretations and supporting evidence. 1
2018;46(D1):D1062-D7.
553 35. Paulson H. Repeat 550 34. Landrum MJ, Lee JM
551 improving access to variant
552 2018;46(D1):D1062-D7.
553 35. Paulson H. Repeat e. 551 improving access to variant interpretations and supporting evidence. Nucleic Acids Res.
552 2018;46(D1):D1062-D7.
553 35. Paulson H. Repeat expansion diseases. Handb Clin Neurol. 2018;147:105-23.
553 35. Paulson H. Rep 552 $2018;46(D1):D1062-D7.$
553 35. Paulson H. Repeat expansion diseases. Handb Clin Neurol. 2018;147:105-23. 553 35. Paulson H. Repea 553 35. Paulson H. Repeat expansion diseases. Handb Clin Neurol. 2018;147:105-23.

554 36. ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of
556 ALS patients. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:207-15.
557 37. Zou Z-Y, Zhou Z-R, Che C-H, Liu C-Y, He R-L ALS patients. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:207-15.

557 37. Zou Z-Y, Zhou Z-R, Che C-H, Liu C-Y, He R-L, Huang H-P. Genetic epidemiology of

558 amyotrophic lateral sclerosis: a systematic review 557 37. Zou Z-Y, Zhou Z-R, Che C-H, Liu C-Y, He R-L, Huang H-P. Genetic epidemiolo
558 amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Net
559 Psychiatry. 2017;88:540-9.
560 38. Mehta PR, lac 558 amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosur
559 Psychiatry. 2017;88:540-9.
560 38. Mehta PR, lacoangeli A, Opie-Martin S, van Vugt J, Al Khleifat A, Bredin A, et al. 1
561 im 559 Bychiatry. 2017;88:540-9.
560 38. Mehta PR, lacoangeli A, Opie-Martin S, van Vugt J, Al Khleifat A, Bredin A, et al. Th
561 impact of age on genetic testing decisions in amyotrophic lateral sclerosis. Brain.
562 2022;1 560 38. Mehta PR, lacoange
561 impact of age on genetic te
562 2022;145(12):4440-7.
563 39. Abel O, Powell JF, A
564 bioinformatics tool for amy
565 51.
566 40. Renton AE, Majouni 561 impact of age on genetic testing decisions in amyotrophic lateral sclerosis. Brain.
562 2022;145(12):4440-7.
563 39. Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: A user-friendly online
564 bioinformatics tool f 2022;145(12):4440-7.

562 2022;145(12):4440-7.

563 39. Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: A user-friendly online

564 bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat. 2012;3

56 563 39. Abel O, Powell
564 bioinformatics tool for
565 51.
566 40. Renton AE, Ma
567 hexanucleotide repeat
568 FTD. Neuron. 2011;72
569 41. Cudkowicz ME, bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat. 2012;33(
565 51.
566 40. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et a
567 hexanucleotide repeat expansion in C9ORF7 565 51.
566 40. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A
567 hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-
568 41. Cudkowicz ME, McKenna-Yase 566 40.
567 hex
568 FTD
569 41.
570 Epid
571 of N
572 42. hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked
568 FTD. Neuron. 2011;72(2):257-68.
569 41. Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller B, Hayden DL, et al.
570 Epidemiology of 569 41. Cudkowicz ME, McKenna-
570 Epidemiology of mutations in sup
571 of Neurology. 1997;41(2):210-21.
572 42. Spargo TP, Opie-Martin S,
573 variant penetrance from family hi
574 scale data. Genome Med. 2022;14
575 43. S Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. A
571 of Neurology. 1997;41(2):210-21.
572 42. Spargo TP, Opie-Martin S, Bowles H, Lewis CM, lacoangeli A, Al-Chalabi A. Calcu
73 variant 571 of Neurology. 1997;41(2):210-21.
572 42. Spargo TP, Opie-Martin S, Bowles H, Lewis CM, lacoangeli A, Al-Chalabi A. Calculating
573 variant penetrance from family history of disease and average family size in population 572 42. Spargo TP, Opie-Martin S, I

573 variant penetrance from family his

574 scale data. Genome Med. 2022;14

575 43. Saeed M, Yang Y, Deng HX,

576 effect of SOD1 A4V mutation caus

577 44. Richards S, Aziz N, Bale S, variant penetrance from family history of disease and average family size in population-
574 scale data. Genome Med. 2022;14:141.
575 43. Saeed M, Yang Y, Deng HX, Hung WY, Siddique N, Dellefave L, et al. Age and founder
5 574 hexale data. Genome Med. 2022;14:141.
1975 heavie and Saeed M, Yang Y, Deng HX, Hung WY, Siddique N, Dellefave L, et al. Age and founder 575 43. Saeed M, Yang Y, Deng HX, Hung
576 effect of SOD1 A4V mutation causing AL
577 44. Richards S, Aziz N, Bale S, Bick D,
578 guidelines for the interpretation of sequent
580 Pathology. Genet Med. 2015;17(5):405-
581 4 576 effect of SOD1 A4V mutation causing ALS. Neurology. 2009;72(19):1634-9.
577 44. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and
578 guidelines for the interpretation of sequence varian 44. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Stand
578 guidelines for the interpretation of sequence variants: a joint consensus ree
580 the American College of Medical Genetics and Genomics and guidelines for the interpretation of sequence variants: a joint consensus recommend

579 the American College of Medical Genetics and Genomics and the Association for Mo

580 Pathology. Genet Med. 2015;17(5):405-23.

581 4 579 the American College of Medical Genetics and Genomics and the Association for Molecular
580 Pathology. Genet Med. 2015;17(5):405-23.
581 45. Akimoto C, Volk AE, van Blitterswijk M, Van den Broeck M, Leblond CS, Lumbros 930 Pathology. Genet Med. 2015;17(5):405-23.

581 45. Akimoto C, Volk AE, van Blitterswijk M, Van den Broeck M, Leblond CS, Lumbroso S,

582 et al. A blinded international study on the reliability of genetic testing for GG 580 Pathology. Genet Med. 2015;17(5):405-23.
581 45. Akimoto C, Volk AE, van Blitterswijk M, Van den Broeck M, Leblond CS, Lumbroso S, 581 45. Akimoto C, Volk AE, van Blitterswijk
582 et al. A blinded international study on the responsions in C9orf72 reveals marked differ
583 Genet. 2014;51(6):419.
585 46. Schulze A, Lindner M, Kohlmüller D,
586 Expanded et al. A blinded international study on the reliability of genetic testing for GGGGCC-repeat

s83 expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med

S84 Genet. 2014;51(6):419.

585 46 expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med
584 Genet. 2014;51(6):419.
585 46. Schulze A, Lindner M, Kohlmüller D, Olgemöller K, Mayatepek E, Hoffmann GF.
586 Expanded newborn s 584 Genet. 2014;51(6):419.
585 46. Schulze A, Lindner M, Kohlmüller D, Olgemöller K, Mayatepek E, Hoffmann GF.
586 Expanded newborn screening for inborn errors of metabolism by electrospray ionization-
587 tandem mass spec 585 46. Schulze A, Lindn
585 46. Schulze A, Lindn
586 Expanded newborn scre
587 tandem mass spectrom
588 2003;111(6):1399-406.
589 47. Ferini-Strambi L,
590 (RBD) as a marker of ne
591 48. Amado DA, Davi Expanded newborn screening for inborn errors of metabolism by electrospray ionizations.

586 Expanded newborn screening for inborn errors of metabolism by electrospray ionizations.

587 2003;111(6):1399-406.

588 2003;111(2003;111(6):1399-406.

589 tandem mass spectrom mass spectrometry: Fig. 3139-406.

589 tandem mass spectrometry: Calibration mass of the mass of the MSI (RBD) as a marker of neurodegenerative disorders. Arch Ital Biol. 201 589 47. Ferini-Strambi L,
590 (RBD) as a marker of ne
591 48. Amado DA, Davi
592 2021;29(12):3345-58.
593 49. Paquin RS, Mitte
594 perspectives on burden
595 genetic disorders. Gene (RBD) as a marker of neurodegenerative disorders. Arch Ital Biol. 2014;152(2-3):129-46.
591 48. Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther.
592 2021;29(12):3345-58.
593 49. Paquin RS, Mittendorf KF, Le 590 (RBD) as a marker of neurodegenerative disorders. Arch Ital Biol. 2014;152(2-3):129-46. 2021;29(12):3345-58.

593 49. Paquin RS, Mittendorf KF, Lewis MA, Hunter JE, Lee K, Berg JS, et al.

594 perspectives on burden, risk, tolerability, and acceptability of clinical interve

595 genetic disorders. Genet Med. 593 49. Paquin RS, Mit
593 49. Paquin RS, Mit
595 genetic disorders. Gen
595 50. Wadman RI, Ja
597 Intragenic and structu
598 atrophy. Brain Commu 593 49. Paquin RS, Mittendorf KF, Lewis MA, Hunter JE, Lee K, Berg JS, et al. Expert and lay
594 perspectives on burden, risk, tolerability, and acceptability of clinical interventions for For perspectives on burden, risk, tolerability, and acceptability of clinical interventions for genetic disorders. Genet Med. 2019;21(11):2561-8.
596 50. Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, et 595 genetic disorders. Genet Med. 2019;21(11):2561-8.
596 50. Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, et al.
597 Intragenic and structural variation of the SMN locus and clinical variability of sp 596 50. Wadman RI, Jansen MD, Stam M, Wijngaard
597 Intragenic and structural variation of the SMN locus
598 atrophy. Brain Commun. 2020;2(2):fcaa075.
599 597 Intragenic and structural variation of the SMN locus and clinical variability of spinal
598 atrophy. Brain Commun. 2020;2(2):fcaa075.
599 598 Intragent and structural variability of the SMN locus and clinical variability of spinal muscular and community
599
599 599
599
Brain Commun. 2020;