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Abstract 17 
1H-NMR metabolomics data is increasingly used to track various aspects of health and disease. 18 

With the availability of larger data resources and continuously improving learning algorithms 19 

Nightingale Health has recently updated the quantification and calibration strategy of their 20 

platform to further align their reported analytes with clinical standards. Such updates, however, 21 

might influence backward replicability and could hamper comparison of repeated measures in 22 

longitudinal studies. Based on data of the BBMRI.nl consortium (>25.000 samples across 28 23 

studies), we compared Nightingale data, as originally released in 2014 and 2016, with a re-24 

quantified version of this data released in 2020, of which both versions were based on the same 25 

original NMR spectra. Apart from 2 discontinued, and 23 newly defined analytes, we overall 26 

observe a high concordance between quantification versions, with 73 out of 222 (33%) showing a 27 

mean correlation > 0.9 across the 28 Dutch cohorts.  Nevertheless, five metabolites consistently 28 

showed relatively low correlations (R<0.7) between platform versions, namely acetoacetate 29 
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(acace), LDL particle size (ldl_d), saturated fatty acids percentage (sfa_fa), S-HDL-C (s_hdl_c) 30 

and sphingomyelins (sm). Previously trained multi-analyte scores, such as our previously 31 

published health predictors MetaboAge or MetaboHealth, might be particularly sensitive to 32 

platform changes. Whereas the MetaboHealth score replicated well between platform versions, the 33 

MetaboAge score indeed had to be retrained due to discontinued metabolites. Notably, both scores 34 

projected on the 2020 re-quantified data did recapitulate the original mortality associations 35 

observed in the previous version of the data. Concluding, we urge caution when utilizing data from 36 

different quantification versions to avoid mixing analytes capturing different underlying aspects 37 

of the NMR spectra, having different units, or simply being discontinued. 38 

Introduction 39 

Targeted 1H-NMR Metabolomics has rapidly gained popularity as a cost-effective and 40 

comprehensive method to perform metabolic profiling and risk prediction in large epidemiological 41 

studies. Various of such metabolomics-based age predictors were constructed, for example  42 

MetaboAge, an indicator of several future cardiovascular diseases [1] and MetaboHealth that 43 

predicts multiple health conditions and all-cause mortality [2]. Thus far, targeted 1H-NMR 44 

Metabolomics has shown promise to predict COVID hospitalization [3], various disease outcomes 45 

[4,5], and a plethora of conventional clinical risk variables [6]. 46 

 Targeted 1H-NMR approaches focus on the analysis of a limited and pre-defined set of 47 

analytes, whose associated peaks consistently appear at relatively fixed positions in the overall 48 

NMR spectrum of a specific biomaterial and can therefore be robustly quantified. Each of the 49 

associated peaks are quantified according to standardized rules and then transformed into absolute 50 

quantities with the aid of reference compounds [7]. While each change in the assayed biomaterials 51 

or isolation protocols would necessitate a considerable effort to re-calibrate a 1H-NMR-based 52 
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quantification setup, a rigid standardization of both the input material and the laboratory routines 53 

would allow for a cost-effective and metabolome profiling on an epidemiological scale.  54 

 Nightingale Health Plc is a major commercial supplier of targeted 1H-NMR metabolomics 55 

data with bench-to-data solutions for human serum, plasma, or urine, for a limited number of 56 

metabolic markers. Large consortia like BBMRI.NL [1], FINSK/THL [5], COMETS [8],  and 57 

more recently UK-Biobank [3] have set out to enrich their population studies with 1H-NMR 58 

metabolomics profiling and to date have accumulated data in respectively ~35.000, ~40.000, 59 

~46.000, and ~300.000 samples. Sample handling and processing inevitably varies during and 60 

between such large efforts and may introduce variation in the data that could potentially impede 61 

replication efforts. In parallel with their metabolomics profiling efforts in UK-Biobank, 62 

Nightingale Health updated the way their analytes are quantified to further improve the calibration 63 

of 37 of their analytes with clinically measured counterparts. While such updates constitute a 64 

further optimization of this biomarker platform, it may also introduce systematic changes with 65 

respect to previously assayed studies [9].  66 

 Here, we set out to quantify to which extent the most recent updates of the quantification 67 

procedure by Nightingale affected the reported analytes, and to what extent this could influence 68 

replication of previous findings. We investigated the metabolic-specific correlations in ~220 69 

features, quantified by Nightingale Health, available for the same samples across three different 70 

platform versions (2014, 2016 and 2020). We found that, while many analytes present a high 71 

degree of correlation between versions, a number of analytes present a moderate to low correlation. 72 

In addition, we demonstrate that the effect on multi-analyte scores may differ, and thus ideally 73 

would require their renewed validation for each platform update. For example, the MetaboHealth 74 

score exhibits similar associations with time to death, whereas the metabolomics-based age 75 
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predictor (MetaboAge) could no longer be readily applied due to use of discontinued metabolites 76 

yet could be successfully retrained on the new platform version and showed similar associations 77 

with disease outcomes.   78 
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Results 79 

All comparisons are done on data gathered within the BBMRI.NL consortium (~35,000 samples 80 

in 28 cohorts, Methods Table 1). Samples were assayed using the Nightingale Health platform in 81 

multiple waves of data generation, as indicated with their respective years: 2014 and 2016. After 82 

the complete platform update by Nightingale of 2020, BBMRI.NL decided to re-quantify their 83 

dataset completely to have metabolomics features comparable to other consortia. It is important to 84 

stress that re-quantification consisted of a novel (computational) analyte quantification of the 85 

original assays performed in 2014 and 2016; i.e., no new samples were assayed.  86 

 87 

An overview of changes in measured metabolic features  88 

With respect to marker availability, there are new and discontinued reported entities. Notably, the 89 

latest version of the platform (2020 version) includes 37 biomarkers which have been CE-approved 90 

for diagnostic purposes, i.e., ‘clinically validated’, making the Nightingale platform now not only 91 

interesting for epidemiological research, but also suited for use in the clinic [10]. In addition, 25 92 

new variables were added to the pool of metabolic markers now also readily measurable in EDTA 93 

plasma (Supplementary Materials). Moreover, the analyte pyruvate (pyr) is featured on the 94 

platform again, after being discontinued in 2016. Conversely, analytes showing insufficient 95 

replicability were discontinued, either already in the 2016 version (dag, dagtg, fallen, cla, cla_fa), 96 

or from 2020 onward (hdl2_c and hdl3_c), thus posing potential backward compatibility issues. 97 

 Looking more closely to the data, we also note some more subtle changes that nevertheless 98 

are helpful to highlight. Compared to older platform versions, the proportion of problematic values 99 

decreased in the re-quantified version of the platform, i.e., there are less values that failed to be 100 

detected (NaNs), were reported as zero, or were considered outliers (Figure S1). In addition, we 101 
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observe that some markers were reported using different units between, and occasionally within, 102 

platform versions. For instance, albumin (alb) changed unit from [signal area] in 2014 to [g/L] in 103 

2020. Particularly interesting are the different ranges of creatinine in the re-quantified 104 

measurements (2020 version), which in our case seems to depend on whether the first Nightingale 105 

metabolomics quantification was done either in 2014 or in 2016, with reported units in mmol/L 106 

and 𝜇mol/L respectively (Figure S2). These changes, if unnoticed, can impair replication of the 107 

results and application of multi-variate models. 108 

 109 

Correlation analyses of metabolomics measurements between 110 
platform versions 111 

First, we evaluated the correlation for each homonymous metabolic measurement across the 112 

different Nightingale platform versions within the Leiden Longevity study (LLS); a two-113 

generation cohort containing highly aged individuals (LLS-SIBS) and their offspring with the 114 

relative partners (LLS-PAROFFS), with repeated measures over different time-points (IOP1, 2 115 

and 3) (detailed description in Material and Methods). Considering same samples of LLS-116 

PAROFFS IOP1, measured the first time in 2014 and re-quantified in 2020 (Figure 1A), we 117 

observed that 36 out of the 65 homonymous non-derived analytes (55%), showed a correlation 118 

higher than 0.9, with one having a perfect correlation (glucose). 24 had a medium correlation (0.7 119 

≤ R < 0.9), and only five analytes had a correlation lower than 0.7 (acace, ldl_d, sfa_fa, s_hdl_c 120 

and sm). Some analytes showed a shift in mean values, presumably as a result of a recalibration 121 

step, as reflected by a change in levels, e.g. ldl_d: first wave [22.99÷25.5 nm] vs. re-quantified 122 

[23.4÷24.09 nm], or in units, e.g. alb: first wave [0.06÷0.14 signal area] vs. re-quantified 123 

[25.6÷62.78 g/l]. Furthermore, also 54 out of the remaining 169 analytes, mostly containing 124 

derived measures, showed lower correlations (R<0.7) (Figure S4).  125 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292168doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.03.23292168
http://creativecommons.org/licenses/by-nc/4.0/


 126 

 
Figure 1: Evaluation of the metabolic markers before and after re-quantification in LLS-
PAROFFS IOP1: [A] Spearman’s correlations of the homonymous analytes measured in the first 
wave (2014) with their re-quantified version (2020). 

When computing the same correlation analyses comparing LLS_PAROFFS IOP1 (2014 data) with 127 

another cohort measured in the first wave, LLS-SIBS (2014 data), or with data of the same cohort 128 

of the second wave LLS_PAROFFS IOP2 (2016 data), we observe highly similar trends (Fig2A 129 

and S5A). While the majority of analytes show consistently high correlations with their re-130 

quantified counterpart across waves and cohorts, we do observe some notable exceptions. Analytes 131 

with a low calibration correlation (R<0.7) in the first data wave (either LLS_PAROFFS, or LLS-132 

SIBS 2014 data) seem to show improvement in the second wave data (either LLS_PAROFFS, 133 

2016 data), except for ldl_d. Considering that we find similar results also in LLS-PAROFFS IOP3 134 

(Figure S5C-D), a second round of repeated measures quantified with the Nightingale platform 135 

2016, we concluded that this latter platform version is more similar to the re-quantified data as 136 

compared to 2014 version. 137 

 138 

To investigate how the correlations of metabolomic features between the different Nightingale 139 

platform version behave over different cohorts, we examined these on the whole BBMRI.NL 140 
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dataset comprising 28 cohorts (Figure 3). Observed correlations vary between -0.5 (generally for 141 

derived analytes, such as ratios or percentages) and perfect positive correlation (glucose).  The 142 

lower correlations were not due to a lower variance in the markers (Figure S5). Even though there 143 

are some cohorts that show generally lower correlations for all the analytes (e.g., BIOMARCS, or 144 

STEMI-GIPS), the other cohorts show consistent correlations for the different analytes. 73 145 

analytes had a mean correlation above 0.9 across all BBMRI.NL biobanks (Figure S6C, Table 5). 146 

33 and 8 of these markers overlap with the 65 (51%) and 14 (57%) analytes that were used to 147 

construct the MetaboAge and MetaboHealth score respectively (Figure S6D). 148 

A 

 

B 

 
Figure 2: Comparisons of the correlations of the metabolites before and after re-
quantification in different subgroups or platform versions: Each point of the scatterplots 
indicate the correlations of each metabolic markers before and after the re-quantifications 
in [A] LLS-PAROFFS IOP1 (x axis, first measured in 2014) and LLS-SIBS (y axis, first 
measured in 2014); and [B] LLS-PAROFFS IOP1 (x axis, quantification version 2014) 
with LLS-PAROFFS IOP2 (y axis, quantification version 2016). Metabolic markers were 
tagged if they show differences in correlations. 
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 149 
Figure 3: Correlations of all the metabolomics features before and after re-quantification in all 150 
the BBMRI.NL cohorts in data 2014 vs data 2020:  Each dot represents the correlation of a 151 
metabolomic feature with itself, colored based on the cohorts included in BBMRI.NL. Dots of the 152 
same cohort are connected with a line to highlight outlier patterns. A horizontal dotted line 153 
indicates a correlation of 0.9. 154 
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The clinically validated biomarkers show similar correlation, but 155 
improved calibration with respect to previous quantification 156 

The latest Nightingale metabolomics platform contains 37 analytes approved by the European 157 

community for diagnostics [10]. This is particularly interesting for Consortia like BBMRI.NL, as 158 

it allows for an efficient quantification of various routinely assessed clinical biomarkers in one 159 

single platform. For this purpose, we evaluated to what extent previously measured clinical 160 

variables within BBMRI.NL align with their corresponding analytes on the Nightingale platform. 161 

Four of the 37 clinical biomarkers (HDL-cholesterol, LDL-cholesterol, triglycerides, and total 162 

cholesterol) were available in 13 of the 28 cohorts (14,995 samples, Figure 4) and showed a 163 

medium to high correlation in most of the cohorts, apart for BIOMARCS, PROSPER, and 164 

UCORBIO [mean R= 0.6]. While different Nightingale versions generally showed very similar 165 

correlations with their clinical chemistry counterparts, notable differences are observed when 166 

considering the Median Absolute Distance (MAD). For the 2020 version, we observe an improved 167 

concordance between clinically measured biomarkers and their Nightingale counterpart, 168 

particularly for LDL-cholesterol and total cholesterol. 169 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292168doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.03.23292168
http://creativecommons.org/licenses/by-nc/4.0/


 170 
 171 

 172 
Figure 4: Correlations of Nightingale metabolomics markers, measured in 2014 and 202, with the 173 
clinically measured values in BBMRI.NL: Bar-plots of the [A] spearman’s correlations and [B] the 174 
Median Absolute Distance (MAD) of the hdl cholesterol, ldl cholesterol (calculated with the 175 
Friedewald equation), total cholesterol and triglycerides calculated with clinical chemistry, with 176 
their corresponding values in the Nightingale assay (hdl_c, ldl_c/clinical_ldl_c, serum_c and 177 
serum_tg). The results in blue indicate the results for the 2014 platform and in red the ones for the 178 
platform of 2020. The label on the y-axis indicates the biobank, the total number of samples with 179 
available quantification and the Standard Deviation of the clinically measured metabolite. 180 
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 181 

The MetaboHealth score shows a comparable association with 182 
mortality using re-quantified data 183 

Next, we evaluated whether the platform changes affected the replication of the MetaboHealth 184 

score [2]. The MetaboHealth score correlated on average ~0.83 between the 2014 platform and 185 

the re-quantification in 2020 over all the cohorts (Figure 5A); with a maximum of 0.91 (in LLS-186 

SIBS) and a minimum of 0.72 BIOMARCS. Higher correlations for LLS-SIBS [89÷103 y.o.] and 187 

PROSPER [70÷85 y.o.] might be explained by the stronger signal caused by the fact that these 188 

cohorts generally include older individuals, with a high frequency of mortality or cardiovascular 189 

events. Cohort-specific differences in correlations between platform versions could be explained 190 

by inconsistent correlations of acace, albumin, s_hdl_l and xxl_vldl_d that have relatively high 191 

coefficients in the MetaboHealth score (in Figure 5B). Indeed, we notice that patient cohorts such 192 

as BIOMARCS, RAAK and UCORBIO do have lower correlations.  193 

 194 

Since the MetaboHealth score maintained similar predictions in the platform with re-quantified 195 

metabolites, we next were interested whether the re-quantified score also showed similar 196 

associations with mortality. To this end, we modeled time-to-death using a Cox proportional 197 

Hazards model, while adjusting for age, sex and family relation, in LLS-SIBS (Ntotal=797, 198 

Nevents=791). Both versions remained significantly associated (2014: HR~2.18, p=5.42x10!"#, and 199 

2020: HR~1.98, p=1x10!$%) albeit with a slightly attenuated effect size for the 2020 platform 200 

version, but a more significant association (Figure 6). 201 

 202 

 203 
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204 

 205 

Figure 5: MetaboHealth score consistency over BBMRI.NL: [A] Bar-plot presenting the 206 
correlation of the MetaboHealth score calculated in all the BBMRI.NL biobanks with the 207 
metabolites in the data measured in 2014 or 2020; [B] Jitter-plot of the correlations of the metabolic 208 
markers used to build the MetaboHealth score calculated in data 2014 and 2020, divided per 209 
biobank. The heatmap on top shows the coefficients of each biomarker in the MetaboHealth score. 210 
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 212 
Figure 6: MetaboHealth score associations with Time to Death associations in LLS-SIBS: 213 
Association with Time to Death of the MetaboHealth score calculated with the metabolic markers 214 
quantified in 2014 (MetaboHealth_2014) and the metabolic markers quantified in 2020 215 
(MetaboHealth_2020). The two Cox regression models were performed on 797 individuals with 216 
791 reported deaths and corrected for age, sex and Family relationships. 217 

A retrained MetaboAge on re-quantified data shows similar 218 
associations with mortality compared to the previous version of 219 
MetaboAge 220 

Since two essential variables (hld2_c and hdl3_c) were discontinued in the 2020 platform, the 221 

original MetaboAge model (MetaboAge 1.0) could not be computed. Therefore, we decided to 222 

retrain the MetaboAge model using the re-quantified Nightingale 2020 measurements, either using 223 

a: 1) a linear model (LM), consistent with the previous MetaboAge model; and 2) an elastic net 224 

regression (EN), regularizing the contributions of each individual metabolite. 5-Fold Cross 225 

Validation, over the BBMRI.NL dataset (~20,366 samples, after quality control), showed overall 226 

similar accuracies, with a slight advantage for the linear model (MetaboAge 2.0: LM, 227 

R2=0.451; EN, R2=0.449, Figure S5). Correlations between the old and new versions of the models 228 

over all the BBMRI.NL biobanks showed cohort-specific differences, with low correlations in the 229 

RAAK cohort (R=0.5) and moderately to high correlations for the ERF and FUNCTGENOMICS 230 

cohorts (R=0.85 and 0.86, respectively) (Figure S8). Nonetheless, we observe an overall high 231 

correlation between the two novel versions of the MetaboAge models (R=0.99) (Figure 7B), 232 

p−value= 5.42e−28
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despite that the informative metabolomics features are quite different across the three models 233 

(Figure 7A). Yet the elastic net version has a slightly higher correlation with the MetaboAge 234 

1.0 (LM: R= 0.82 and EN: R=0.83, Figure 7A). Nonetheless, the linear model assigns higher 235 

coefficients to only few features compared to the elastic net model (Figure 7A) (MetaboAge 236 

1.0 [range: -150,150], MetaboAge 2.0: LM [range: -40000, 1000000], MetaboAge 2.0: 237 

EN [range: -100, 50]).  238 

 239 

Finally, we performed a Cox-regressions analysis to predict time-to-death (corrected for age sex 240 

and family relation) in the LLS-SIBS cohort (Ntotal=806, Nevents=800) (Figure 7C). The associations 241 

with mortality are quite similar (equivalently significant and moderate effect sizes) across all 242 

models, but slightly higher for the MetaboAge 2.0 models (LM: HR~1.2, p=1.69x10!%# and 243 

EN: HR~1.2, p=2.39x10!%#, MetaboAge 1.0: HR~1.18, p=2.89x10!%&). 244 
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 245 

Figure 7: MetaboAge 2.0 evaluations: [A] Coefficients of MetaboAge1.0 and Metaboages2.0 246 

ordered in the same manner; [B] Correlation between age, MetaboAge1.0, MetaboAge2.0 linear 247 

model (LM) and ElasticNET (EN); [C] Associations of time to death with the three age predictors.  248 
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Discussion 249 

Using the BBMRI.NL biobanking consortium we evaluated the replicability across Nightingale 250 

Health platform updates between 2014, 2016, and 2020 (re-quantification). We observe 251 

improvements regarding the overall quantification quality, i.e.: a decrease in missingness; lower 252 

numbers of values that are reported as zero; and a better concordance with clinical measurements. 253 

On the other hand, there are discontinued metabolites, and changes in reported units between and 254 

sometimes within quantification versions that could affect replication efforts. Some analytes 255 

displayed low calibration correlations between the 2014/2016 and 2020 platform versions, with 256 

the 2016 version being more similar to the re-quantified data as compared to the 2014 version. 257 

Replication over the BBMRI-nl cohorts indicated similar results, however, with lower 258 

concordance for some studies (e.g., BIOMARCS, or STEMI-GIPS).  Nevertheless, we identified 259 

a list of 73 variables more consistent between quantification versions across the BBMRI.NL data 260 

set (mean R>0.9). Moreover, the MetaboHealth score did generally replicate well between 261 

platform version in the BBMRI-nl cohorts (mean R= 0.83, min R 0.72, BIOMARCS, and max R= 262 

0.91, LLS-SIBS). Lower correlations were attributed to inconsistencies in some score-related 263 

analytes (acace, albumin, s_hdl_l and xxl_vldl_d). Importantly, the time-to-death association of 264 

the MetaboHealth score was not significantly affected by the platform updates. We retrained the 265 

MetaboAge score in BBMRI-nl due to the absence of 2 analytes in the new platform version. 266 

Interestingly, the retrained version of MetaboAge recapitulated the association with time-to-death, 267 

indicating that correlations with the original MetaboAge model (MetaboAge 1.0) showed 268 

moderately high concordance over all cohorts in BBMRI.NL, apart for RAAK (cor~0.5), which is 269 

a relatively small cohort of atherosclerotic people. Between the 2 versions of the MetaboAge 2.0 270 
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we believe the elastic net version to be the better model as the regularization warrants for future 271 

changes of the platform.  272 

 273 

In conclusion, replication of previous findings and analysis of repeated measures is one of the 274 

cornerstones of epidemiological research. Hence, we call for caution when utilizing Nightingale 275 

data quantified at different time points. Moreover, is important to realize that pre-trained metabolic 276 

models cannot readily be applied across different versions of the data. In these circumstances, we 277 

recommend retraining of the score, or, if this is not possible, an extensive re-evaluation of the 278 

models and their associations with endpoints. 279 

Acknowledgements 280 

This work was performed within the framework of the BBMRI Metabolomics Consortium funded 281 

by BBMRI.NL (a research infrastructure financed by the Dutch government, NWO 184.021.007 282 

and 184.033.111), by X-omics (NWO 184.034.019), VOILA (ZonMW 457001001) and Medical 283 

Delta (scientific program METABODELTA: Metabolomics for clinical advances in the Medical 284 

Delta). EvdA is funded by a personal grant of the Dutch Research Council (NWO; VENI: 285 

09150161810095). A full list of acknowledgements for all the contributing studies can be found 286 

in the Supplementary Materials (BBMRI.NL Cohort description). 287 

Contributors 288 

EbvDA, DB, MJTR, PES and MB conceived and wrote the manuscript. DB performed the 289 

analyses. DB and MB verified the underlying data. EBvDA and MJTR verified and supervised the 290 

analyses. All authors discussed the results and contributed to the final manuscript. All authors read 291 

and approved the final version of the manuscript. 292 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292168doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.03.23292168
http://creativecommons.org/licenses/by-nc/4.0/


 293 

Data and code availability 294 

The data is available upon request at https://www.bbmri.nl/. A presentation of the results with 295 
the code to reproduce this work can be found at 296 
(https://github.com/DanieleBizzarri/NightingaleMetabolomics_Requantification2020). 297 

Competing interests 298 

The authors declare that there are no competing interests.  299 

Materials and Methods 300 

1. Dataset descriptions 301 

The Dutch Biobanking and BioMolecular resources and Research Infrastructure (BBMRI.NL) 302 

is a large consortium composed of 28 Dutch cohorts, which quantified their samples with the 303 

Nightingale Health platform in different time points, allowing an investigation on the platform 304 

differences over the years. About 25,000 samples from 26 cohorts were quantified during the 305 

first wave in 2014. A second wave of 10,000 samples was then obtained in 2016, including 306 

some longitudinal time-points and 2 new cohorts. Finally, after the 2020 update of the platform, 307 

the entire BBMRI.NL (35,000 samples from 28 cohorts) was re-quantified to have comparable 308 

measures to other Consortia.  309 

 310 

A. BBMRI.NL 311 

BBMRI.NL (https://www.bbmri.nl/) is a Dutch Consortium which includes a total of 35,000 312 

samples from the following 28 Dutch biobanks: ALPHAOMEGA, BIOMARCS, CHARM, 313 

CHECK, CODAM, CSF, DMS, DZS_WF, ERF, FUNCTGENOMICS, GARP, HELIUS, HOF, 314 

LIFELINES, LLS_PARTOFFS, LLS_SIBS, MRS, NESDA, PROSPER, RAAK, RS, 315 
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STABILITEIT, STEMI_GIPS-III, TACTICS, TOMAAT, UCORBIO, VUMC_ADC, VUNTR. 316 

Complete descriptions and ethics statement of each cohort is added to the Supplementary Material. 317 

Metabolomics Dataset: Nightingale Health performed the quantification of high throughput 318 

proton Nuclear Magnetic Resonance (1H-NMR) for the EDTA plasma for BBMRI.NL in separate 319 

waves (Table 1). The first wave was performed in 2014, on a great portion of the data (~25,000 320 

samples). The second wave was performed in 2016 to quantify 1H-NMR metabolomics in the 321 

cohorts HOF and STABILITEIT, but also to quantify follow-ups sampling from different cohorts. 322 

Finally, in 2021 a re-quantification was performed almost to the entire dataset to update the 323 

metabolomics measurements to the latest platform version (platform version 2020). 324 

Table 1: Data and platform versions available in BBMRI.NL 
 N. Samples N. Biobanks Platform version 
First wave 24,994 26 Version 2014 
Second wave 9,880 10 Version 2016 
re-quantifications 34,015 28 Version 2020 

 325 

B. The Leiden Longevity Study 326 

The Leiden Longevity Study is one of the cohort included in BBMRI.NL, which comprises a 327 

first generation subgroup of long-lived parents (LLS-SIBS, age= 89 ÷ 103 years old) and a second 328 

generation which includes their middle-aged offspring with the relative partner (LLS-PAROFFS 329 

age median =  30 ÷ 79 years old) [11].  330 

Metabolomics Dataset: While only one sample collection was performed on the older individuals 331 

of LLS-SIBS [998 individuals], there are three time-points available for LLS-PAROFFS drawn 332 

with ~3 years gap one after the other (IOP1, IOP2 and IOP3) (Table 1). The first-time point (IOP1, 333 

2,313 individuals) was quantified during the first wave in 2014, while the second and third samples 334 

measurements (IOP2 and IOP3, respectively 670 and 498 individuals) were included in the second 335 

wave, with the platform version 2016. All the samples were then re-quantified in 2021 with the 336 
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rest of BBMRI.NL data. The last column of the table shows the number of common samples after 337 

the quality control of the two datasets, described in the next paragraph. 338 

Table 2: Data and platform versions available in the Leiden Longevity study 
LLS-PAROFFS [30-79 years old] 
 Wave Platform 

version 
re-quantification Total N. samples N. samples after 

quality control 
IOP1 First 

wave 
Version 
2014 

Version 2020 2,313 1,983 

IOP2 Second 
wave 

Version 
2016 

Version 2020 670 588 

IOP3 Second 
wave 

Version 
2016 

Version 2020 498 388 

LLS-SIBS [89-103 years old] 
IOP1 First 

wave 
Version 
2014 

Version 2020 998 942 

 339 

2. Comparison of the metabolomic analytes 340 

Preprocessing: All the three versions of the metabolomics assays were run by Nightingale 341 

Health on EDTA-plasma samples handled by the BBMRI.NL cohorts. More than 220 analytes are 342 

included in all nightingale platform, however we decided to mostly focus our attention on the 63 343 

mutually independent analytes used to build the previous metabolomics-based models [2,6,12]. 344 

However, since 2 of these analytes were discontinued (hdl2_c and hdl3_c), we substituted them 345 

with 4 biologically equivalent analytes, upon Nightingale’s Health advice (xl_hdl_c, l_hdl_c, 346 

m_hdl_c, s_hdl_c) (lists in Supplementary Materials), which are available in all datasets. We then 347 

removed samples with more than 1 missing value, more than one zero and more than one outlier, 348 

defined as having a concentration more than 5 standard deviations away from the mean of the 349 

analyte. 350 

Analyses: We used Spearman’s correlation to measure the strength and direction of monotonic 351 

associations between the analytes in the different versions of the platform. We also used a Median 352 

Absolute Distance to evaluate the error of Nightingale Health’s analytes to the clinically measured 353 

values. The Mean absolute distance is obtained by using mean and standard deviations of the 354 
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clinical measures to scale all measures (both clinical and Nightingale quantifications) to have 355 

comparable results. 356 

3. MetaboHealth Score 357 

Preprocessing: The MetaboHealth score was applied to both the datasets (the first wave and 358 

the re-quantified), according to the description by Deelen et al. [2], using the R-package MiMIR 359 

[13]. First, a logarithm transformation was applied to the analytes, while adding a value of 1 to all 360 

analytes containing any zero. A z-scale normalization was then applied to the log-transformed 361 

analytes in each cohort separately. Finally, the coefficients as indicated by Deelen et al. [2] were 362 

applied to the dataset. 363 

Analyses: Once we obtained the score, we used spearman’s correlation to compare the 364 

differences in MetaboHealth score before and after re-quantification. Cox proportional hazard 365 

models are then used to test the associations between the two MetaboHealth scores and time to 366 

death. 367 

4. MetaboAge 368 

Preprocessing: The quality control process used for the dataset in the first wave of measures 369 

(data 2014) is discussed in details in our previous publications [6,12]. We used the same steps also 370 

in the re-quantified dataset. From the above-mentioned list of 65 analytes, we decided not to 371 

consider analytes with low detection rates in several cohorts (citrate and 3-hydroxybutyrate). We 372 

then excluded cohorts with several problems in the 65 selected analytes. VUNTR (N=3559) has 373 

high levels of missingness in pyruvate and glutamine, while CODAM (N=145) presented outliers 374 

in several metabolic features. We also removed samples with 1 or more missing value (65 375 

samples), one or more zeroes per sample (1 sample) and one or more concentration more than 5 376 

times the standard deviations away from the general mean of the feature (644 samples). The 377 
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remaining 265 missing values (0.021% of the remaining values) were imputed using nipals (in the 378 

R package pcaMethods). The final dataset, comprising 20,366 samples and 63 analytes, was z-379 

scaled to have comparable concentrations across all features. 380 

Analyses: Due to discontinued analytes, we had to retrain the models and we decided to train 381 

2 different types of models: a linear regression model, to maintain the model as close as possible 382 

to the previous version, and an ElasticNET regression, which avoids overfitting thanks to a 383 

regularization technique. To train and evaluate both models we employed a 5-Fold Cross 384 

Validation scheme.  During the training of the ElasticNET model we fixed the mixing parameter 385 

𝛼 to 0.5 and optimized the shrinkage parameter 𝜆 (like it was done in previous papers [6,14,15]). 386 

As for the MetaboHealth, we then used spearman’s correlations to compare the different models 387 

and Cox proportional hazard models to investigate the associations with time to death. 388 
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