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Abstract 

Human organoids recapitulate the cell type diversity and function of their primary organs holding 

tremendous potentials for basic and translational research. Advances in single-cell RNA sequencing 

(scRNA-seq) technology and genome-wide association study (GWAS) have accelerated the 

biological and therapeutic interpretation of trait-relevant cell types or states. Here, we constructed a 

computational framework to integrate atlas-level organoid scRNA-seq data, GWAS summary 

statistics, expression quantitative trait loci, and gene-drug interaction data for distinguishing critical 

cell populations and drug targets relevant to COVID-19 severity. We found that 39 cell types across 

eight kinds of organoids were significantly associated with COVID-19 outcomes. Notably, subset of 

lung mesenchymal stem cells (MSCs) increased proximity with fibroblasts predisposed to repair 

COVID-19-damaged lung tissue. Brain endothelial cell subset exhibited significant associations with 

severe COVID-19, and this cell subset showed a notable increase in cell-to-cell interactions with 

other brain cell types, including microglia. We repurposed 33 druggable genes, including IFNAR2, 

TYK2, and VIPR2, and their interacting drugs for COVID-19 in a cell-type-specific manner. Overall, 

our results showcase that host genetic determinants have cellular specific contribution to COVID-19 

severity, and identification of cell type-specific drug targets may facilitate to develop effective 

therapeutics for treating severe COVID-19 and its complications. 

 

Introduction 

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), is characterized by heterogeneous clinical manifestations ranging 

from asymptomatic to severe disruptions [1]. Multiple lines of evidence have demonstrated that 

increased number of severe COVID-19 patients have significant extrapulmonary complications [2, 3], 

which deteriorate the condition of infected patients. Although vaccines have now been developed for 

preventing COVID-19 infection, it is unclear how long it will take to gain herd immunity, or if novel 

mutations will enable SARS-CoV-2 to escape the protection from current vaccines [4]. To date, there 
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is still no specific antiviral drugs to target SARS-CoV-2 for alleviating established diseases [5]. Thus, 

it is an urgent need to rapidly highlight existing drugs that can be repurposed for management in 

severe COVID-19 and its complications. 

 

Human organoids, self-organizing three-dimensional (3D) cultured systems, recapitulate numerous 

core features of human organ development and biological functions. Hence, these 3D in vitro 

structures hold tremendous potential as avatars for preclinical drug developments and interventional 

experiments that are difficult or impossible to carry out in human subjects [6, 7]. Although having 

incredibly powerful capabilities, human organoids are biomimetic and heterogeneous model systems 

with complicated cell types and states, which is intractable to analyze through the conventional 

technologies, e.g., immunohistochemistry. Advancing single-cell RNA sequencing (scRNA-seq) 

technique provides an unprecedented opportunity to dissect the cellular and molecular heterogeneity 

in primary human organs/tissues [8-10]. Compared with transcriptome measurements from bulk 

samples, single-cell sequencing methods not only generate cell states and transcription regulatory 

programs in these 3D model systems at single-cell resolution, but also gain insights into the 

disease-related processes and complex cellular interactions [11-13]. Since the COVID-19 outbreak, 

many scRNA-seq studies have demonstrated that numerous types of organoids, including lung, 

intestinal, kidney, brain, and choroid plexus organoids, enable to investigate the tropism of 

SARS-CoV-2 infection [11, 14, 15]. 

 

Genome-wide association studies (GWAS) have been widely used for identifying significant 

genotype-phenotype associations for complex diseases or traits [16]. To date, several GWASs have 

reported that a large amount of genetic variants show notable associations with COVID-19 severities 

[17-20]. Integrating GWAS summary statistics and expression quantitative trait loci (eQTL) data, 

recent studies have distinguished several candidates as putative drug targets for treating COVID-19 

[4, 21, 22]. Moreover, linking genome-wide polygenic signals with single-cell expression 

measurements from scRNA-seq data has considerable potential to unveil critical cell types or 

subpopulations relevant to complex diseases [23]. Our and other recent studies [24-26] have 

identified numerous immune and lung cell types that are impacted by genetic variants associated 
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with COVID-19; e.g., alveolar type 2 cells and CD8+T cells in lung [26], and CD16+ monocytes, 

megakaryocytes and memory CD8+ T cells in peripheral blood [24]. Nevertheless, these reported 

studies largely focused on predefined cell type annotations, which considerably ignored the 

intra-heterogeneity within cell types. To date, no atlas-level analysis of combining scRNA-seq data 

across multiple tissues and organs with GWAS summary statistics to systematically identify 

COVID-19-relevant cell populations and drug targets at a single-cell resolution. 

 

In light of the vital role of human organoids in drug developments, we collected and unifiedly 

processed numerous scRNA-seq datasets across 10 kinds of human organoids with more than one 

million cells, and developed a computational framework to integrate these human organoids 

scRNA-seq data, GWAS summary statistics, eQTL data, and gene-drug interaction data for 

distinguishing critical cell types/subpopulations and drug targets relevant to severe COVID-19. We 

found that numerous cell types across different human organoids were remarkably associated with 

COVID-19 severities. Notably, we showed that prioritizing COVID-19-relevant cell type-specific 

gene-drug interacting pairs in lung MSCs, intestinal tuft cells, and brain endothelial cells might 

conduce to repurpose drugs for treating severe COVID-19 and accompanied complications. 

 

Results 

Computational framework of COVID-19-relevant cell types and drug repositioning 

To facilitate the data integration and minimize the batch effects, we have built a unified pipeline to 

conduct re-alignment, quality control, and standard analysis of all human organoids (n = 1,159,206 

cells) and fetal scRNA-seq datasets (n =223,334 cells, Supplementary Figure S1 and Table S1). To 

distinguish critical cell types/subpopulations and repurpose potential drugs and interacting targets for 

the treatment of severe COVID-19, we devise a computational framework to incorporate these 

organoids and fetal scRNA-seq data and large-scale meta-GWAS summary statistics on three 

COVID-19 phenotypes (i.e., very severe, hospitalized, and susceptible COVID-19; Figure 1, and 

Supplementary Table S2 and Figures S2-S3). There are three main sections: (1) integrating GWAS 

summary statistics with human organoids scRNA-seq datasets to genetically map trait-relevant 

single-cell landscapes for three COVID-19 outcomes (Figure 1A); (2) combining GWAS summary 
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statistics with eQTL data in the GTEx database to identify putative risk genes and critical pathways 

associated with COVID-19 severities (Figure 1B); and (3) prioritization of cell type-specific 

gene-drug interaction pairs for treating severe COVID-19 and related complications at a fine-grained 

resolution (Figure 1C).  

 

Systematic integrative analysis for discerning COVID-19-relevant cell types 

We initially applied the scPagwas-based polygenic regression model [27] to incorporate genetic 

signals from GWAS summary statistics on three COVID-19 outcomes with single-cell transcriptomic 

profiles from 10 kinds of human organoids scRNA-seq data for identifying critical cell types relevant 

to COVID-19 severities. Among them, 39 cell types in 8 human organoids showed notable 

associations with at least one COVID-19-related phenotype (Figure 2A and Supplementary Table S3). 

Notably, there existed highly consistent results among very severe, hospitalized, and susceptible 

COVID-19 (rho = 0.99 and P = 2.58×10-6, rho = 0.948 and P = 3.4×10-4; Figure 2B-C and 

Supplementary Figure S4). As for lung organoids, the cell type of mesenchymal stem cells (MSCs) 

was significantly enriched for all three COVID-19 phenotypes (Figure 2A). Previous studies [28-30] 

have suggested that MSCs have a substantially therapeutic potential to improve the outcomes of 

COVID-19 patients by facilitating to repair lung-tissue injury for relieving acute pulmonary edema. 

Several recent clinical trials have been conducted to determine the positive effects of MSCs on the 

treatment of critically ill patients with coronavirus infection (Identifiers: NCT04898088, 

NCT04336254, and NCT04573270). 

 

There were six cell types including membranous cell, enterocyte, and tuft in intestine organoids 

associated with three COVID-19 phenotypes. Earlier studies have demonstrated that the 

angiotensin-converting enzyme 2 (ACE2) as a direct mediator regulate the SARS-CoV-2 entry into 

enterocytes in the gastrointestinal tract [31, 32], and COVID-19 patients often show gastrointestinal 

symptoms including vomiting, belly pain and diarrhea [33, 34]. For brain organoids, eight cell types, 

including endothelial cell and microglia, exhibited notable associations with severe COVID-19. 

Previous evidence have documented that cerebral endothelial dysfunction may be the cause of 

increased rates of cerebrovascular pathology relevant to COVID-19 [35], and severe COVID-19 
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patients experiencing a severe cytokine storm have considerable potential to induce microglia 

activation that lead to neurotoxicity [36, 37]. In addition, there existed seven cell types in eye 

organoids significantly associated with very severe COVID-19, including horizontal cells, rod, RPC, 

and cone. Our recent study [38] has indicated that host genetic factors play critical roles in 

facilitating SARS-CoV-2 infection in the ocular surface cells. For other organoids, we found that two 

cell types of nephron progenitor cell (NPC) and differentiating nephron (DN) in kidney organoids, 

three cell types of stellate, cholangiocyte, and hepatocyte in liver organoid, three cell types including 

endothelial cell and alpha in pancreas organoid, and two cell types of endothelial cell and pluripotent 

cell in heart organoids were significantly associated with COVID-19 severities (Figure 2A). 

 

For validation, we used the RISmed method [39] that performs a PubMed search for resorting to 

reported evidence concerning the association between the trait of interest and a particular cell type. 

By counting the number of reported publications using the keyword pairs between COVID-19 and 

specific cell type, we computed the correlation between the number of publications and the 

significant percent of each cell type identified by scPagwas, and found significantly or suggestively 

positive correlations between scPagwas-identified cell-type results and PubMed search results across 

three COVID-19 phenotypes (Supplementary Figure S5A-F). Moreover, to replicate the biological 

findings from human organoids, we applied the same regression model to integrate GWAS summary 

data on very severe COVID-19 with human fetal scRNA-seq data with multiple tissues. The 

aforementioned observations remained reproducible in analyzing human fetal scRNAs-seq data 

(Supplementary Figure S6). For example, lung MSCs, intestinal tuft and enterocyte cells, eye cone 

and horizontal cells, and brain endothelial cells and microglia were notably associated with very 

severe COVID-19 in human fetal tissues. Taken together, we provide new insights for inferring 

critical cell types by which genetic variants influence COVID-19 severities. 

 

Transcriptome-wide association analysis identifies causal genes for three COVID-19 outcomes 

To identify putative causal genes for COVID-19 severities, we applied the S-MultiXcan method [40] 

to integrate GWAS summary statistics and eQTL datasets based on 49 GTEx tissues. There were 243, 

277, and 158 genes identified to be significantly associated with susceptible, hospitalized, and very 
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severe COVID-19, respectively (total N = 438 genes, FDR < 0.05, Figure 3A, and Supplementary 

Figure S7 and Tables S4-S6). Many of these identified genes, including ACE2, SLC6A20, OAS3, 

CCR1, CXCR6, IFNAR2, IL10RB, and DPP9, have been reported to be associated with COVID-19 

susceptibility in previous studies [20, 24, 41-45]. By overlapping these three COVID-19-associated 

gene sets, we found that 67 common genes whose genetically regulated expression have potentially 

important roles in COVD-19 initiation and progression (FDR < 0.05, Figure 3B and Supplementary 

Figure S8A and Table S7).  

 

Network enrichment analysis exhibited that 40 of 67 common genes were significantly enriched in a 

protein-protein interaction (PPI) subnetwork (enriched P = 9.1×10-15, Figure 3C and Supplementary 

Figure S8B-C), which is in line with the consensus that disease-causing genes are more likely to be 

interacted [46, 47]. By conducting S-PrediXcan analyses of lung and blood tissues that were most 

relevant to SARS-CoV-2 infection, 280 of 438 risk genes (63.93%) identified from 

S-MultiXcan-based analyses were validated to be relevant to at least one COVID-19 outcome (P < 

0.05, Supplementary Figure S9 and Tables S8-S9). Moreover, using MAGMA as an independent 

technique for validation (see Supplementary Methods), we found that there was a high consistence 

between results from MAGMA and S-MultiXcan analyses for three COVID-19 phenotypes (JSI = 

0.28~0.31, empirical P < 1×10-5, Supplementary Figures S10-S12 and Table S10). 

 

Furthermore, we performed pathway-based enrichment analyses for three S-MultiXcan-identified 

gene sets to enrich critical pathways implicated in COVID-19 severities. We observed that the 

number of significant pathways was elevated with increased severities of COVID-19 (Figure 3D and 

Supplementary Figure S13A-C), which is consistent with the findings in an earlier study [24]. There 

was a large proportion of significant pathways (n = 23) in common among susceptible, hospitalized, 

and very severe COVID-19 (Figure 3E and Supplementary Table S11). We also noticed that the 

significant level of these common pathways showed an increased notable pattern with the increase of 

COVID-19 severities (FDR < 0.05, Figure 3F). Several of these pathways, including 

cytokine-cytokine receptor interaction and chemokine signaling pathway, have been documented to 

involve in the COVID-19 susceptibility in previous studies [20, 24, 48]. In sum, our integrative 
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genomic analysis identifies that 438 risk genes involved in critical biological pathways show notable 

associations with COVID-19 severities. 

 

Genetic correlations between three COVID-19 outcomes and complex diseases  

Previous epidemiologic and clinical studies have documented that the clinical manifestations of 

COVID-19 are heterogeneous, and many of COVD-19 cases are identified as having at least one 

comorbidity, including hypertension, diabetes, and other cerebrovascular, cardiovascular, and 

gastrointestinal complications, which may lead to poorer clinical outcomes [49, 50]. Given the high 

genetic heritability of these putative complications, we calculated the genetic correlations of 66 

diseases/traits from six main disease categories with three COVID-19 phenotypes using the LDSC 

method[51]. We found that 29 of them (43.94%), including anorexia nervosa, attention deficit 

hyperactivity disorder, multiple sclerosis, neuroticism, ischemic stroke, cognitive performance, 

hypertension, type 2 diabetes, and pulmonary embolism, exhibited significantly genetic correlations 

with COVID-19 severities (P < 0.05, Figure 4, and Supplementary Table S12), suggesting that the 

shared genetic risk factors of these comorbidities may aggravate the severities of COVID-19.  

 

Given that the primary goal of current study was to characterize the context-specific genetic etiology 

of COVID-19 severities, we concentrated the subsequent analyses on identifying severe 

COVID-19-relevant cell subpopulations across three main human organoids (i.e., lung, intestine, and 

brain), and used these 438 risk genes to reposition drug targets for treating severe COVID-19 and 

related complications.  

 

Identifying severe COVID-19-relevant cell subpopulations in lung organoids 

Respiratory failure is the leading cause of death in severe COVID-19 patients [52, 53]. It is important 

to study pathologic cells associated with COVID-19 in human lung organoids for facilitating to 

explore key features of viral biology and drug repositioning [54]. Thus, we sought to identify severe 

COVID-19-relevant cell subpopulations by integrating GWAS summary statistics with human lung 

organoid scRNA-seq data [55] using the scPagwas method. Among three main cell types, we found 

that the MSCs with higher trait-relevant scores (TRSs) exhibited striking enrichments in very severe 
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COVID-19 (Figure 5A-C and Supplementary Figure S14), reminiscing that the cell type of MSCs 

was identified to be associated with COVID-19 severities in human fetal lung tissue (Supplementary 

Figure S6). There was a prominently higher proportion of scPagwas positive cells in MSCs (42.14%) 

compared to other two cell types (Figure 5D). Because of the binary trait settings of very severe 

COVID-19 and healthy population, these scPagwas positive cells should be associated with 

COVID-19 severity, and scPagwas negative cells should be relevant to the normal phenotype. 

Moreover, we used the recent cell-scoring method, scDRS[56], to re-analyze the same data, and 

found that these results were remarkably consistent (rho = 0.926, P < 2.2×10-16, Supplementary 

Figure S15A-B).  

 

As shown in Figure 5E, MSCs were clustered into five cell clusters. Among the 9,795 MSCs cells, 

scPagwas identified 4,128 positive cells that are most relevant to severe COVID-19 

(Bonferroni-corrected P < 0.05, Figure 5F). These severe COVID-19-relevant positive cells with 

higher TRSs were overrepresented in clusters 0 and 1, whereas cluster 2 exhibited the lowest TRSs 

(heterogeneous FDR = 3.332×10-4, C’ value = 0.924; Figure 5F and Supplementary Figure S16A-B), 

which is consistent with the results from the scDRS analysis (concordance rate = 88.25%, 

Supplementary Figure S15C-E). Furthermore, the per-cell genetic risk scores using the 438 

COVID-19-relevant genes showed a notable correlation with scPagwas TRSs across all MSCs (P < 

2.2×10-16, Supplementary Figure S16C-D). On CytoTRACE analysis [57] for predicting 

differentiation states from MSCs, we found that cells in clusters 0 and 1 were predicted to be more 

differentiated than that in cluster 2 (Figure 5G and Supplementary Figure S16E). By performing an 

unsupervised trajectory inference analysis [58], MSC positive cells in clusters 0 and 1 were largely 

distributed in the middle and end positions of the trajectory (Figure 5H-J). The pseudotime of MSCs 

were positively correlated with corresponding TRSs (rho = 0.664, P < 2.2×10-16, Supplementary 

Figure S16F-G). Notably, these top branch-dependent genes related to MSC positive cells exhibited 

notable enrichments in several critical biological processes, which are relevant to lung and 

respiratory proliferation and growth (Supplementary Figure S16H).  

 

Recent evidence [59] suggested that increased numbers of MSCs and fibroblasts concomitant with 
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increased proximity between these two cell types during the COVID-19 progresses, which probably 

reflects a response to repair the damaged lung tissue. Thus, we further sought to examine whether 

MSC positive cells have higher proximity with fibroblasts than negative cells. As expected, we found 

that the fibroblast-relevant cell state scores by collapsing the expression levels of fibroblast marker 

genes were significantly higher among MSC positive cells compared to negative cells (P < 2.2×10-16, 

Supplementary Figure S17A-C). These results indicate that MSC positive cells tend to have 

differentiation potentials for facilitating to repair COVID-19-induced lung-tissue injury. Compared 

with negative cells, there were 1,142 significantly up-expressed genes in MSC positive cells, such as 

FN1, VEGFA, IL1R1, TNFAIP6, and PHC2 (Figure 5K and Supplementary Figure S16I). The gene of 

FN1, known to be a driver of pulmonary fibrosis, was reported to be upregulated in COVID-19 

survivors [60]. Functionally, these up-regulated genes were significantly overrepresented in 40 

biological pathways (FDR < 0.05, Figure 5L and Supplementary Table S13), including human 

papillomavirus infection, PI3K-AKT signaling pathway, and JAK-STAT signaling pathway, recalling 

that many of them have been strikingly enriched in aforementioned genetics-based pathway analyses 

(Figure 3F).  

 

To prioritize critical gene-drug pairs, we applied the scDrugHunter method [61] to reposition 

MSC-specific druggable genes and interacting drugs for treating severe COVID-19. Among 438 

genetic risk genes (Supplementary Table S8), we found that 98 genes (22.4%) were targeted at least 

one known drug, and 15.3% of these 98 genes were documented to be targets for potential 

COVID-19-relevant drugs based on registers of clinical trials for COVID-19 [62], which is notably 

higher than that from random selections based on in silico permutation analysis (permuted P < 0.001, 

Supplementary Figure S18A-B). Of note, there were 19 druggable genes with 117 targeting drugs 

yielding remarkably higher single-cell druggable gene scores (scDGSs > 120 and FDR < 0.05 ) in 

lung MSCs for treating severe COVID-19, including CCR1, TNFRSF4, PDE4A, and IFNAR2 (Figure 

5M, Supplementary Figure S19A-B and Table S14). Notably, we found that 12 of these interacting 

drugs, including IBUDILAST, ILOPROST, INTERFERON ALFA-2B, and INTERFERON 

BETA-1B, were tested in 60 double-blind and placebo-controlled clinical trials for the treatment of 

COVID-19 (Clinicaltrials.gov, Supplementary Figure S20A). Consistently, we performed 
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evidence-driven analysis using the RISmed method[39], and found that a high proportion of these 

prioritized drugs have been associated with COVID-19 (proportion = 42.74%, Supplementary Figure 

S20B). Collectively, these results demonstrate that cell subsets of MSCs are highly relevant to severe 

COVID-19, and these highlighted druggable genes potentially have therapeutic functions in MSCs 

for severe COVID-19. 

 

Discerning severe COVID-19-relevant cell subpopulations in intestine organoids 

Although COVID-19 primarily manifests pulmonary infection, it has significant extrapulmonary 

complications to damage other organ systems, including the intestinal tract [63]. Due to the extensive 

surface area of intestinal capillaries, intestinal epithelial cells are more likely to be infected by 

SARS-CoV-2 than other extrapulmonary organs [64]. To understand the mechanism underlying 

severe COVID-19-associated intestinal injury, we performed an integrative analysis by incorporating 

the GWAS summary dataset and human intestinal organoids scRNA-seq data [65]. Among the five 

cell types, we found that severe COVID-19-relevant cells with higher TRSs were mainly from tuft 

cells (n = 2,167 cells, Figure 6A-C and Supplementary Figures S21-S22). At cell-type level inference, 

two cell types of tuft cells and membranous cells (M cells) demonstrated a significant association 

with severe COVID-19 (Figure 6D), which is consistent with the results based on human fetal 

intestine tissue (Supplementary Figure S6). This observation remained reproducible by using the 

scDRS method [56] with the inclusion of the same single-cell dataset (rho = 0.981, P < 2.2×10-16, 

Supplementary Figure S23A-B). While tuft cells are chemosensory epithelial cells, they serve as the 

primary physiologic target of viral infection and drive an inflammatory adaptive immune response, 

which is classically correlated with allergy and parasitic infection [66, 67].  

 

As shown in Figure 6E, tuft cells were grouped into three cell clusters. Among them, we found that 

severe COVID-19-associated genetic signals were highly enriched in cluster 0 (heterogeneous FDR 

= 3.33×10-4, C’ value = 0.812, Figure 6F-G). Consistently, clusters 0 and 2 had a higher proportion 

of positive cells relevant to COVID-19 severities than that in cluster 1 (Figure 6H-I), which is in 

concordance with tuft positive cells identified using the scDRS method (concordance rate = 0.984, 

Supplementary Figure S23C-E). Moreover, this result was also validated by using the per-cell 
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genetic risk scores of 438 COVID-19-relevant genes (P =2.86×10-8, Supplementary Figure S24A-B). 

Cellular communication analysis indicated that tuft positive cells had a significantly higher number 

of receptor-ligand interactions with other intestinal cell types than that of tuft negative cells (P = 

0.0032, Figure 6J, Supplementary Figure S24C-E). For example, tuft positive cells showed relatively 

high communications with M cells, containing 32 significant receptor-ligand interactions; for 

example, several unique interacted pairs of WNT5A-FZD5, SEMA3A-(NRP1+PLXNA3), and 

PTN-SDC3 (Supplementary Figure S24F-G).  

 

By performing a differential expression analysis, we found that 758 genes showed significantly 

higher expressions in tuft positive cells compared to negative cells, including COL3A1, COL1A2, 

IFITM3, RPL10, VIM, and LGALS1 (Figure 6K). These extracellular matrix genes, including 

COL3A1 and COL1A2, were reported to be up-regulated in COVID-19 microvessels and lung lower 

lobes [52, 68, 69]. Genetic variants in the interferon-induced transmembrane protein (IFITM3) have 

been demonstrated to be associated with SARS-CoV-2 infection and COVID-19 severities [70-72]. 

Functionally, these highly expressed genes showed notable enrichments in several critical pathways, 

including ribosome, TNF signaling pathway, and relaxin signaling pathway (Figure 6L and 

Supplementary Table S15), of which several have been reported to be implicated in COVID-19 

infection [24, 73]. For example, previous evidence has suggested that ribosomal proteins potentially 

play crucial roles in blocking viral replication by binding to the specific phosphoproteins for the host 

immune factors [74], and the immunosuppression and low expression of ribosomal protein genes 

were related to the persistence of the viral infection in COVID-19 patients [75]. 

 

Moreover, we also repurposed tuft-specific druggable genes and interacting drugs for treating severe 

COVID-19 and intestinal comorbidities. Among 438 genetic risk genes, we found that 17 druggable 

genes with 151 interacting drugs yielded higher scDGSs (> 120, and FDR < 0.05) in tuft cells for 

treating severe COVID-19, including IL10RB, ICAM1, TYK2, SENP7, and VIPR2 (Figure 6M and 

Supplementary Figures S25-S26 and Table S16). Among these identified gene-drug pairs, 14 drugs, 

including PEGINTERFERON LAMBDA-1A, TOFACITINIB, TADALAFIL, and 

PENTOXIFYLLINE, have been examined in 89 clinical trials for treating COVID-19 patients 
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(Clinicaltrials.gov, Supplementary Figure S27A). Furthermore, the RISmed analysis consistently 

demonstrated that a large number of these identified drugs (n = 64) were relevant to the treatment of 

COVID-19 (proportion = 42.38%, Supplementary Figure S27B). Together, our results indicate that 

subset of tuft cells exhibit notable associations with severe COVID-19, and critical drug targets, 

including IL10RB, ICAM1, and VIPR2, are prioritized for treating severe COVID-19 and 

concomitant intestinal symptoms. 

 

Distinguishing severe COVID-19-relevant cell subpopulations in brain organoids 

Accompanied with respiratory and gastrointestinal symptoms, severe COVID-19 patients often 

present with short- and long-term neuropsychiatric symptoms and brain sequelae [36, 76]. Brain 

organoids provide a promising tool for uncovering the pathophysiologic mechanisms and potential 

therapeutic options for neuropsychiatric complications of severe COVID-19 [77]. We leveraged the 

scPagwas method [27] to integrate the GWAS summary dataset on very severe COVID-19 and 

human cerebral organoids scRNA-seq data [78]. Among eight main cell types, we identified that both 

endothelial cells (P = 6.96×10-6) and microglia (P = 5.29×10-5) yielding higher TRSs were 

significantly associated with very severe COVID-19 compared to other cell populations (Figure 

7A-C), recalling that these two cell types were identified to be associated with COVID-19 severities 

in human fetal brain tissue (Supplementary Figure S6). Consistently, these results were notably 

reproduced by using the scDRS method [56] in the same dataset (rho = 0.98, P < 2.2×10-16, 

Supplementary Figure S28A-B). Earlier studies [36, 79] have indicated that SARS-CoV-2 invade 

into central nervous system via endothelial cells resulting in inflammation, thrombi, and brain 

damage. 

 

Among endothelial cells with five clusters, we identified 3,443 positive cells that were significantly 

associated with very severe COVID-19 (Bonferroni-corrected P < 0.05, proportion = 56.6%, Figure 

7D-E and Supplementary Figure S29). Remarkably heterogeneous associations between brain 

endothelial cells and severe COVID-19 were uncovered (heterogeneous FDR = 3.33×10-4, C’ value = 

0.841, Figure 7E). Of note, clusters 0 and 3 exhibited a higher proportion of positive cells than other 

clusters (Figure 7F and Supplementary Figure S30A-B), which is in accordance with the results from 
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the scDRS analysis (concordance rate = 0.74, Supplementary Figure S28C-E). Compared with 

endothelial negative cells, we found that 341 genes, including NRP1, CEBPD, and EGR1, were 

significantly up-regulated in positive cells (Figure 7G). The cell surface receptor of neuropilin-1 

(NRP1) was reported to serve as an entry factor and potentiate SARS-CoV-2 infectivity, and it 

up-regulated expression is critical in angiogenesis, viral entry, immune function, and axonal 

guidance [80, 81]. Functionally, these highly up-regulated genes were enriched in multiple critical 

pathways and biological processes, including PI3K-AKT signaling pathway, focal adhesion, TNF 

signaling pathway, ECM-receptor interaction, and angiogenesis (Figure 7H, and Supplementary 

Figure S30C and Tables S17-S18). 

 

To gain refined insights into endothelial positive cells, we conducted a cell-to-cell interaction 

analysis among cell populations in human brain organoids. Through constructing the aggregated 

cellular interaction network based on the count of receptor-ligand pairs, endothelial positive cells 

exhibited the highest incoming interaction strength than other cell types (Figure 7I). Compared to 

endothelial negative cells, we found a significant increase in cell-to-cell interactions with other brain 

cell types (P = 1.28×10-6, Figure 7J and Supplementary Figure S31A-B). By summarizing the 

communication probability among cellular interactions, there were 25 significant ligand-receptor 

interactions of endothelial positive cells, including CXCL12-CXCR4, FGF7-FGFR1/2, PTN-NCL, 

and MDK-NCL (Supplementary Figure S31C-D). For communicating with microglia, three unique 

ligand-receptor pairs of MIF-ACKR3, NAMPT-INSR, and NAMPT-(ITGA5+ITGB1) were detected in 

endothelial positive cells compared to negative cells. SARS-CoV-2 infection enable to damage 

endothelial cells leading to inflammation that further induce the activation of microglia, which may 

result in region- and neurotransmitter-specific neuropsychiatric symptoms [36, 82, 83]. Collectively, 

our results indicate that both endothelial cells and microglia have considerable potential to contribute 

risk to severe COVID-19. 

 

Subsequently, the scDrugHunter method was used to discern brain endothelial cell-specific 

druggable genes and interacting drugs for treating severe COVID-19 and corresponding 

neuropsychiatric complications. Among these putative COVID-19-risk genes, we uncovered that 18 
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druggable genes with 154 interacting drugs obtained notably higher scDGSs (> 120, FDR < 0.05) in 

brain endothelial cells, including top-ranked genes of PLRKHA4, LTF, ICMA1, and P4HA2 (Figure 

7K, Supplementary Figures S32-S33 and Table S19). Of note, 16 of these prioritized drugs have been 

demonstrated to be tested in 96 clinical trials for the treatment of COVID-19 (Clinicaltrials.gov, 

Supplementary Figure S34A). Consistently, the RISmed analysis indicated that 74 drugs have been 

associated with the treatment of COVID-19 (48.05%, Supplementary Figure S34B). 

 

By performing a comparison analysis, we further found that seven druggable genes of IFNAR2, 

TYK2, VIPR2, PLEKHA4, PDE4A, P4HA2, and PTGFR were identified to be common targets across 

three COVID-19-relevant cell types of lung MSCs, intestinal tufts, and brain endothelial cells 

(Supplementary Figure S35A). Eight druggable genes of COL11A2, SACM1L, HCN3, CA11, 

SLC22A4, CLK2, IMPG3, and SLC5A3 were specific to lung MSCs, four druggable genes of DBP, 

CLK3, BGLAP, and THRA were specific to intestinal tufts, and seven brain endothelial cell-specific 

druggable genes of CSF3, LTF, PSORS1C1, SPARC, CCR9, CPOX, and CYP3A43. Collectively, we 

repurposed 33 putative druggable genes and 215 interacting drugs for the treatment of severe 

COVID-19 and corresponding complications, and these 33 druggable genes were jointly enriched in 

a functional subnetwork (Supplementary Figure S35B). 

 

Discussion 

Multiple lines of evidence [23, 24, 27, 39, 56] have demonstrated that integrating scRNA-seq data 

and polygenic risk signals from GWAS is a promising approach to uncover the cellular mechanisms 

through which these variants drive complex diseases. In the current study, we sought to identify 

critical cell types/subpopulations relevant to COVID-19 severities by combining large-scale GWAS 

summary statistics and human organoids single-cell sequencing data. Crucially, 39 main cell types in 

eight kinds of organoids were identified to be associated with COVID-19 severities. We further 

concentrated on unveiling the functions of COVD-19-relevant cell subpopulations across three main 

organoids of lung, intestine, and brain, which contribute to characterize important features of viral 

biology and facilitate to the identification of repurposable drug candidates against SARS-CoV-2 

infection and its related comorbidities.  
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Although vaccines have been developed to prevent SARS-CoV-2 infection, no specific antiviral drug 

exist to mitigate the established disease of severe COVID-19 [5]. As developing a new drug takes 

years to a decade and substantial cost, drug repurposing is an effective way that can notably 

accelerate the development cycle of therapeutic strategies for treating COVID-19 [4]. There are two 

main approaches, virus-based and host-based treatment options, to test candidate targets in clinical 

trials. Of them, the host-based approaches target critical host factors that are used by SARS-CoV-2 

for viral replication or stimulate host innate antiviral responses [84]. The key to host-based drug 

repurposing for the treatment of COVID-19 infection is to distinguish the true host risk genes. 

GWAS-identified disease risk genes were more prone to code for proteins that are “biopharmable” or 

“druggable” than the rest of the human genome [85]. In the present investigation, we leveraged 

integrative genomic analyses to analyze large-scale GWAS data and prioritized 438 

COVID-19-relevant risk genes, including IFNAR2, CCR1, ICAM1, VIPR2, and IL10RB, which are 

attributable to search genuine drug targets for COVID-19 severities. 

 

Despite the success of GWASs, nearly 90% of disease-associated variants are identified to be located 

in the non-coding regions, which are enriched in cell-type-specific transcriptional regulatory 

elements relevant to disease risk [86-88]. Integration of GWAS summary data and eQTL data has 

been extensively used to discern novel candidate genes and yield functional insights into 

disease-relevant pharmacological effects [4, 20, 21], however, few of these insights has considered 

the cell-type-specific effects of drug targets. Thus, in the present study, we repositioned drugs and 

their interacting targets for treating severe COVID-19 in a cell-type-specific context. Collectively, 

we found that 33 druggable genes and 215 interacting drugs were considered as putative candidates 

for severe COVID-19 and relevant complications. Large proportions of these drugs have been 

experimented for the treatment of severe COVID-19. For example, the FDA-approved drugs of 

INTERFERON ALFA-2B and INTERFERON BETA-1B exhibited agonist-receptor interactions with 

IFNAR2, which could be used alone or in conjunction with other anti-virus drugs for against 

COVID-19 initiation and progression [89, 90]. 
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Several limitations of this study should be cautious. First, the power of the cell-type-level integration 

analysis is limited by the lack of scRNA-seq data and matched genetic information in each sample 

for discerning COVID-19-relevant cell types. To diminish the impact of this limitation, we adopted a 

powerful approach by incorporating a large-scale GWAS summary dataset and human organoids 

scRNA-seq data with a large amount of cells, as reference to previous studies [8, 23, 24, 27, 56]. 

Second, the identification of COVID-19-relevant cell types or subpopulations does not imply 

causality but may reflect indirect discovery of causal phenotype-cell associations, analogous to 

earlier studies [24, 56]. Third, we removed the MHC region from all genomic analyses to reduce the 

influence of the complex genetic architecture and extensively high levels of LD, parallel to previous 

studies [8, 24]. However, it should be noted that COVID-19-relevent genetic signals in this locus 

might be ignored. Finally, we adopted a default strategy that linking SNPs into genes based on the 

proximal distance of a 20kb window. Other powerful strategies, including the enhancer-gene linking 

approaches from Roadmap and Activity-By-Contact models [23, 91], can also be used to establish 

the link between SNPs and genes.  

 

Conclusions 

In summary, we provide systematic insights that the effects of host genetic factors on COVID-19 

initiation and progression in a cellular context, and first repurpose COVID-19-relevant 

cell-type-specific druggable targets and interacting drugs. Numerous critical cell types or 

subpopulations, including lung MSCs, intestinal tuft cells, and brain endothelial cells, contribute 

higher risk to COVID-19 severities. The integration of human genetics, single-cell transcriptomic 

data, and large-scale compound resources should improve in silico pharmacology for drug 

repurposing, which will provide novel insights in therapy discovery and development for the 

infection pandemic. 

 

Methods 

Human organoids scRNA-seq datasets  

In this study, we collected and curated 93 independent scRNA-seq datasets of 10 kinds of 

widely-adopted human organoids (i.e., brain, lung, intestine, heart, eye, liver & bile duct, pancreas, 
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kidney, and skin) spanning 1,159,206 cells with 62 main cell types from two widely-used databases 

of Gene Expression Omnibus (GEO) [92] and ArrayExpress [93]. Only datasets with publically 

available raw reads (e.g., SAR, bam file, or fastq) were included. We leveraged a unified pipeline to 

conduct re-alignment, quality control, and standard analysis for facilitating the data integration and 

minimize the batch effects (Supplementary Figure S1). Human cancer-derived organoid scRNA-seq 

datasets were excluded from our current analyses. A common dictionary of gene symbols was used to 

annotate genes for allowing comparison analysis across samples and datasets, and these 

unrecognized symbols were removed. 

 

Human fetal scRNA-seq datasets 

To validate the reliability of human organoids-based significant results, we also collected nine 

independent scRNA-seq datasets containing eight kinds of de facto human fetal organs (i.e., brain, 

lung, intestine, liver, kidney, eye, pancreas, and skin) across 48 samples from the Gene Expression 

Omnibus (GEO) [92] and ArrayExpress [93] databases. Analogue to organoids scRNA-seq data, we 

only included datasets with publically available raw reads (e.g., .SAR, .bam file, or .fastq) and used 

the unified pipeline to carry out re-alignment, quality control, and standard analysis (Supplementary 

Figure S1). In total, there were 223,334 cells across all human fetal organs, ranging from 1,745 to 

63,020 cells in each dataset. 

 

Single-cell RNA sequencing data processing 

We initially applied two widely-used tools of SRA-toolkit (version 3.0.5) [94] and bamtofastq 

(version 2.31.0)[95] to convert single-cell transcriptomic profiles in .SRA and .bam format to .fastq 

format. The CellRanger (version 6.1.2) [96] and STARsolo (version 2.7.10a) [97] were used for 

separately processing human organoid or fetal scRNA-seq data from 10× Genomics sequencing 

platform and Drop-seq sequencing platform to debarcode cells and generate a matrix of unique 

molecular identifiers (UMIs) for each sample. For both sequencing platforms, we used the human 

reference genome assembly hg38 [98] to align reads tagged with a cell barcode and UMI. 

Subsequently, featureCounts (version 1.22.2) [99] was used for assigning tagged reads to 

corresponding genes, and SCANPY (version 1.9.1) [100] was utilized for filtering out cells with < 
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500 or >20,000 detectable genes, >30,000 expressed gene counts, and >10% mitochondrial rate.  

 

Moreover, we used the FindVariableFeatures() function in Seurat (version 4.3.0) [101] to select top 

2,000 high variable genes (HVGs), and employed the NormalizeData() and ScaleData() in Seurat to 

transform and scale human organoid and fetal scRNA-seq data. The Harmony (version 3.8) [102] 

tool was adopted to integrate samples and remove batch effects, and the Principal component 

analysis (PCA) was applied to obtain top 30 the most different principal components (PCs), which 

could explain the most variance of top 2,000 HVGs in the aforementioned step of finding variable 

features. High quality cells were embedded into two dimensions by using the uniform manifold 

approximation and projection (UMAP), and annotated to specific cell types using the transfer 

learning method of scArches (version 0.5.1) [103] with manually validation. 

 

GWAS summary data on COVID-19-related phenotypes 

The COVID-19 meta-analytic GWAS summary statistics were downloaded from the official website 

of COVID-19 Host Genetics Initiative [104] (https://www.covid19hg.org/; COVID19-hg GWAS 

meta-analyses round 7, released date of April 8, 2022). For the current investigation, we used three of 

these GWAS meta-analyses, which included 81 independent studies containing mixed population 

ancestries (Supplementary Figures S2-S3 and Table S2). Most cohorts were based on European 

ancestry. Three examined COVID-19-related phenotypes includes: 1) very severe respiratory 

confirmed COVID-19 (Very severe, file named A2_ALL_leave_23andme, n = 18,152 cases) vs 

population (n = 1,145,546 controls), 2) hospitalized COVID-19 (Hospitalization, file named 

B2_ALL_leave_23andme, n = 44,986 cases) vs population (n = 2,356,386 controls), and 3) 

susceptibility to COVID-19 (Susceptible, file named C2_ALL_leave_23andme, n = 159,840 cases) 

vs population (n = 2,782,977).  

 

As referenced to a previous study [17], very severe COVID-19 patients were defined as hospitalized 

COVID-19 patients as the primary reason for hospital admission with laboratory-confirmed 

SARS-CoV-2 infection and death or respiratory support. Simple supplementary oxygen (e.g., 2L 

min-1 through nasal cannula) did not meet the definition of very severe status. Hospitalized 
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COVID-19 patients were defined as individuals hospitalized with laboratory-confirmed 

SARS-CoV-2 infection, where the hospitalization of patients because of COVID-19-relevant 

symptoms. Susceptibility to COVID-19 patients were defined as individuals with self-reported 

infection, health-record infections, or laboratory-confirmed SARS-CoV-2 infection. In comparison, 

controls were defined as those individuals in the participating studies who did not qualify the 

definition of cases. The meta-GWAS summary datasets contained p-value for each single nucleotide 

polymorphism (SNP), effect size on log(OR) scale, standard error of effect size, minor allele 

frequency (MAF), and p-value from Cochran’s Q heterogeneity test. After stringent quality control, a 

total of 11,732,503, 12,030,868, and 14,335,927 genetic variants with MAF over 0.0001 and the 

imputation score (R2) of greater than 0.6 were satisfied in the A2, B2, and C2 meta-GWAS datasets, 

respectively. Results from 23&Me cohort GWAS summary statistics were removed from the current 

investigation. The qqman [105] R package was applied to visualize Manhattan plot and 

quantile-quantile (QQ) plot. 

 

Integration of GWAS summary statistics and scRNA-seq data 

To distinguish critical cell types/subpopulations by which genetic variants influence COVID-19 

severities, we implemented our own developed pathway-based polygenic regression method, 

scPagwas (version 1.1.0) [27], to integrate GWAS summary data on three COVID-19 outcomes with 

human organoids and fetal scRNA-seq datasets. Initially, scPagwas annotates SNPs to their proximal 

genes (a default window size of 20kb) of the corresponding pathways, which are based on the 

experimentally validated canonical pathways in the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database [106]. Then, scPagwas leverages the singular value decomposition algorithm to 

transform a scaled scRNA-seq matrix into a pathway activity score (PAS) matrix. The projection of 

the features of genes in a given pathway on the direction of the first principal component 

(PC1) eigenvalue to define PAS i , js  for the pathway i  in cell j . 

 

scPagwas assumes a priori that SNPs’ effect sizes b
iS  in the pathway i  follow the 

multi-variable normal distribution 2
| | | |~ MVN(0, )b I

i i iS i S Sσ × , where 2σ  is the variance of 
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effect-sizes for SNPs in the pathway, and I is the | | | |i iS S×  identity matrix. The notation 

{ : ( ) }i iS k g k P= ∈  is used to indicate the set of SNPs within pathway i , and the notation 

iP  indicates the set of genes in the pathway i . The variance 2σ  is estimated by using 

the linear weighted sum method: 

2
0 , ( ),

i
i i j g k j

j

eσ τ τ= +∑ %  

where 0τ  indicates an intercept term, ,i jτ  indicates the coefficient for the pathway i  in 

cell j , and ,
i
g je%  is the expression level for each gene g adjusted by the pathway activity 

i , js in the given pathway i . scPagwas estimates ,ˆi jτ  by the following equation:  

2 2 2
, 0 , ( ),

ˆ( ) ( ) ( )R
i

i
k S k k i j g k j e

j

E eβ τ τ σ= + +∑ %  

where 2R
iS  represents the kth diagonal element of matrix and denotes the linkage 

disequilibrium (LD) matrix. The 1,000 Genomes Project Phase 3 Panel [98] is used to 

compute the LD among SNPs extracted from COVID-19-related GWAS summary 

statistics.  

 

The genetically-associated PAS (gPAS) for each pathway in a given cell is calculated by 

summing the product between estimated coefficient ,ˆi jτ  and weighted pathway activity. 

Then, trait-relevant genes are prioritized by ranking the Pearson correlation coefficients 

between the expression of each gene and the sum of gPASs over all pathways in each cell 

across cells. The trait-relevant score (TRS) for each individual cell is calculated using top 

1,000 trait-relevant genes based on the AddModuleScore() function in Seurat [101]. scPagwas 

assesses the statistical significance of each cell by using the percent ranks of these 

trait-relevant genes across individual cells. In addition, scPagwas is also used to infer 

COVID-19-relevant predefined cell types based on the block bootstrap method [107]. We 

only include the SNPs on autosomes with MAF > 0.01. The major histocompatibility 

complex region (chr6: 25-35 Mbp) is removed because of the extensive LD in this genomic 
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region. For more detailed information, please refers to the original paper [27]. 

 

Assessment the heterogeneity of a given cell type relevant to COVID-19 

Following a previous study [108] , we adopt the Geary’s C method [109] measure the 

spatial autocorrelation of TRS across cells within a given cell type/subpopulation with 

regard to a cell-cell similarity matrix. The autocorrelation statistic �� is calculated as the 

following equation:  

�� � 1 �   
�� � 1� ∑ ∑ 
������ � �������

2�∑ 
���,� � ∑ ���� � ����������

 

where n indicates the total number of cells within a given cell type/subpopulation, TRS 

indicates the TRS of each cell, ������� �
�

�
∑ ���

�
��� , and W  represents the weight between 

cells. First, the nearest k neighbors (e.g., 5) should be determined for each cell in the 

latent model. Subsequently, a Gaussian kernel to the distances between nearest neighbors 

is used to compute the weights. Higher weights are assigned to similar cells, and zeroed 

weights are assigned to distant cells. In this way, the Geary’s C method provides a measure 

of how similar the TRS ranks for neighboring cells given a latent mapping. The �� value 

is defined as the autocorrelation effect size that a 1 indicates maximal autocorrelation and 

a 0 intuitively indicates no autocorrelation. The �� value notably close to 1 indicates 

strongly spatial autocorrelation, reflecting that there is a remarkable trait-association 

heterogeneity across the given cell type or cell cluster. The VISION R package [108] is  

used to evaluate the heterogeneity of cells within three COVID-19-relevant cell types of 

lung MSCs, intestinal tuft cells, and brain endothelial cells using default parameters. 

  

Transcriptome-wide association analysis 

To prioritize genetically-regulatory expression of genes relevant to COVID-19, we perform an 

integrative genomics analysis of incorporating GWAS summary statistics on three COVID-19-related 

phenotypes (released round 7) with expression quantitative trait loci (eQTL) data for 49 tissues from 

the GTEx Project (version 8) by using the S-PrediXcan [110] method. S-PrediXcan primarily 

leverages two linear regression models to analyze the association between predicted gene expression 
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and COVID-19-related phenotypes: 

11 εXαY ++= ll β  

22 εGαY ++= ggγ  

where 1α  and 2α  are intercepts, 1ε  and 2ε  are stochastic environmental error terms, Y  is the 

n  dimensional vector for n  individuals, lX  indicates the allelic dosage for SNP l  in n  

individuals, lβ  indicates the effect size of SNP l , ∑∈
=

)(ggenei iigg XG ω  indicates the predicted 

expression calculated by lgω  and lX , in which lgω  is generated by using the GTEx 

tissue-specific eQTL dataset, and gγ  is the effect size of gG . The Z-score (Wald-statistic) of the 

association between predicted gene expression and COVID-19-related phenotypes can be written as:  
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where gσ̂  indicates the standard deviation of gG , lβ̂  represents the effect size from GWAS on 

COVID-19 and lσ̂  indicates the standard deviation of lβ̂ . For each COVID-19-related phenotype, 

S-PrediXcan-based integration analysis is conducted for each of 49 tissues. 

 

To enhance the power to distinguish potential causal genes, S-MultiXcan [40] is adopted to 

meta-analyze the substantial shared eQTLs across 49 GTEx tissues. By taking into account the 

correlation structure across multiple panels, the multivariate linear regression model of S-MultiXcan 

is fitted as the following equation:  

eTgeTY +=+=∑
=

j

p

j
j g

1

 

where ∑∈
=

)(

~
jgenei iij XT ω  indicates the predicted expression of tissue j , and jT  indicates the 

standardization of jT
~

 to 0=mean  and 1=deviation standard . jg  indicates the effect size for 

the predicted gene expression in tissue j , e  represents a stochastic environmental error term with 

variance 2
eσ , and p  represents the count of chosen tissues. A gene with false discover rate (FDR) 
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≤ 0.05 is considered to be of significance. 

 

MAGMA-based gene-level association analysis  

To conduct gene-level genetic association analyses of meta-GWAS summary statistics on three 

phenotypes of COVID-19, we apply the updated version SNP-wise Mean Model of the Multi-marker 

Analysis of GenoMic Annotation (MAGMA) [111]. Using this model, MAGMA computes a test 

statistic as the following algorithm: 

� �  � ���
�

�

�  ��Z  
where M is the number of variants (e.g., SNP1, SNP2, …, SNPi, � � 	) in a given gene 
��, � � �. 

N is total number of genes annotated in the GWAS summary dataset. We assign a specific SNP to a 

given gene 
 according to the location of the SNP whether located into the gene body or within an 

extended +/- 20 kb upstream or downstream region of the gene. Notably, )( ii pZ φ= , where φ 

indicates the cumulative normal distribution function, and ip  indicates the marginal p-value for a 

specific SNP i. Moreover, the gene-level converging model assumes  S0Z ),MVN(~ , where S  is 

the LD matrix among SNPs. The LD matrix can be diagonalized and written as TQAQS = , where 

Q  is an orthogonal matrix and � � ���
���, ��, … , �� with �� being the mth eigenvalue of S . 

The 1,000 Genomes Project Phase 3 Panel[112] is adopted as a reference for calculating the LD 

matrix. ),MVN(~ KI0D  indicates a random variable, where ZQAD T-0.5= . Thus, the sum of 

squared SNP Z-statistics can be calculated: 

∑==== N

i i
0.50.5 ADDDQADQAZZ 2)( i

TTT DT λ  

where N(0,1)~iD  and 2
1

2 ~ χiD . T  follows a mixture distribution of independent 2
1χ  random 

variables. The Benjamini-Hochberg FDR method is used to adjust for multiple testing correction, 

and a gene with FDR ≤ 0.05 is interpreted as significance. 

 

In silico permutation analysis 

As referenced previous methods [24, 113, 114], an in silico permutation analysis of 100,000 times of 
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random selections is leveraged for assessing the concordance of findings between S-MultiXcan and 

MAGMA analyses across three COVID-19 outcomes. The notation of G1 represents the number of 

genes identified from the S-MultiXcan analysis, and G2 is the number of genes identified from the 

MAGMA analysis. At first, we count the overlapped genes between G1 and G2 (���������	
�  �

 G� � G�. Then, we adopt the total genes in the MAGMA analysis as background genes (GBackground). 

By randomly selecting the same number of genes as gene set G2 from the background genes 

GBackground, and after repeating it 100,000 times (NTotal), we count the overlapped genes between gene 

set G1 and the sample randomly selected each time (NRandom).We compute the empirically permuted P 

value as follows: � �  
�����������	
������

�����
, and empirical P value ≤ 0.05 is treated as significance. 

To measure the similarity between gene sets from S-MultiXcan and MAGMA analyses, we further 

leverage the Jaccard Similarity Index (JSI) [115], which is defined as the intersection size divided by 

the union size of both gene sets: �	
���, �� �  
|�����|

|�����|
�  

|�����|

|��|�|��|�|�����|
, where 0 �

�	
���, �� �1. 

 

Functional enrichment analysis 

To elucidate the biological functions of S-MultiXcan- and MAGMA-identified risk genes for 

COVID-19 outcomes, we conduct functional enrichment analyses by using the WEB-based Gene 

SeT AnaLysis Toolkit (WebGestlat, http://www.webgestalt.org/) [116] with default parameters based 

on the KEGG [106] and Gene Ontology (GO) database [117]. The biological process category, which 

is removed the redundant GO terms, is used in the GO-based functional enrichment analysis. 

Moreover, we also performed KEGG pathway enrichment analyses by using significantly 

up-regulated genes in scPagwas-identified positive cells among lung mesenchymal stem cells 

(MSCs), intestinal tuft cells, and brain endothelial cells. The over-representation algorithm is 

leveraged to compute the significant level for each enrichment analysis, and the Benjamini-Hochberg 

FDR method is applied for multiple correction.  

 

LDSC analysis 

The LDSC (version 1.0.1) method [51] is used to evaluate the genetic correlations between each of 
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three COVID-19 phenotypes and each of 66 complex diseases/traits from six main disease categories 

(Supplementary Table S2). Differences in genetic correlations are computed with a block jackknife 

method to compute their corresponding standard errors. The significant association threshold is set to 

P < 0.00025 (0.05/198) after stringent Bonferroni correction, and P < 0.05 is considered to be 

suggestively significant.  

 

Cell-type-specific prioritization analysis of gene-drug interacting pairs for COVID-19 

To identify cell type-specific drug targets relevant to severe COVID-19, we used scDrugHunter 

(version 1.1.0) [61] to integrate multiple layers of omics evidence, including human organoid 

scRNA-seq data, GWAS summary statistics on very severe COVID-19, eQTL data from the GTEx 

project [118], and gene-drug interactions from the Drug Gene Interaction database (DGIdb v4.2.0, 

https://www.dgidb.org/) [119]. In reference to previous methods [120, 121], scDrugHunter employs 

multiple computational algorithms to extract four dimensional features, which include cell type 

specificity scores of genes, gene relevance score (reflecting the relevance of genes for traits of 

interest in a given cellular context), gene significance scores (reflecting the association between 

genes whose genetically predicted expression levels and interested traits), and gene-drug interaction 

scores. scDrugHunter then ranks and scales the descending order of gene-specific scores for each 

feature in a particular cell type and uses a synthetic measures method [122] to combine the scaled 

ranks from the four dimensional features to compute the area of the patch in the Radar Chart for each 

gene-drug pair (called the single-cell druggable gene score, scDGS), according to the following 

equation: 1
1

1 2
scDGS( ) sin

2
r

n

dg k k
k

r r
n +

=

π= ∑ , 1 1:nr r+ = , where 1 2( , , , )rdg nr r ... r=  is a ranking vector for 

a gene-drug pair, and n is the number of extracted features (in this case, four-dimensional features). 

The threshold of scDGS ≥ 120 with permutation P value ≤ 0.05 is employed to repurpose 

cell-type-specific gene-drug pairs associated with the trait of interest. 

 

Cell-to-cell interaction analysis 

To uncover potential cell-to-cell interactions of intestinal tuft positive cells and brain endothelial 

positive cells with other cells, we leveraged the CellChat (version 1.6.0) [123] R package to infer the 
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predicted cellular communications based on two intestinal and brain organoids scRNA-seq datasets 

[65, 78]. The method of CellChat could examine the significant level of ligand-receptor interactions 

among different types of cells depended on the expression of soluble agonist, soluble antagonist, and 

stimulatory and inhibitory membrane-bound co-receptors. By summing the probabilities of these 

ligand-receptor pairs among a given pathway, CellChat could compute the communication 

probability for the pathway. The incoming (i.e., treating cells as target) and outgoing (i.e., treating 

cells as resource) interaction strength for each cell type was calculated by counting the number of 

significant ligand-receptor pairs.  

 

Statistical analysis 

The Wilcoxon sum-rank test is utilized to calculate the significant level between positive cells and 

negative cells of lung MSCs, intestinal tuft cells, and brain endothelial cells. The hypergeometric test 

is used in KEGG-pathway-based and GO-term-based enrichment analyses to identify notable 

pathways and biological processes [116]. The Pearson correlation method is applied to compute the 

correlation coefficients of scPagwas TRSs [27] with scDRS TRSs [56], genetic risk scores, 

pseudotimes, and fibroblast cell scores, respectively. The paired Student’s T test is used to assess the 

difference in the number of ligand/receptor interactions with other cells between positive cells and 

negative cells in intestinal tuft and brain endothelial cells. The RISmed (version 2.3.0) [39] is used to 

perform a PubMed search for resorting to reported evidence supporting the association between 

COVID-19 and a given cell type or drug (see Supplementary Methods). 
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Figure Legends 

Figure 1. The workflow of integrative genomics analyses for COVID-19-relevant drug 

repositioning. A. Integration analysis of single-cell transcriptomic profiles in the scHOB database 

with GWAS summary statistics on three COVID-19 phenotypes. There were approximate 1.2 million 

cells from 10 kinds of human organoids (i.e., brain, eye, heart, lung, liver & bile duct, pancreas, 

kidney, intestine, and skin), and three GWAS datasets with more than two million samples 

downloaded from the COVID-19 Host Genetics Initiative. B. An increase in genetics-risk pathways 

and comorbidities for COVID-19 severities. C. Prioritization of druggable genes and interacting 

drugs for treating COVID-19 using the scDrugHunter method. Three COVID-19-relevant risk cell 

types (i.e, lung mesenchymal stem cell (MSCs), intestinal tuft cells, and brain endothelial cells) were 

leveraged as representative examples for searching druggable genes and interacting drugs, and 

comparison analysis were performed to find cell-type-common and cell-type-specific druggable 

genes for severe COVID-19. 

 

Figure 2. Significant associations between human organoids cell types and COVID-19 severities. 

A. Summary of 39 significant cell types in eight kinds of human organoids for three COVID-19 

phenotypes. Bar plot represents the significant percent of each cell type in corresponding organoid 

with different scRNA-seq datasets. B. Correlation results of the number of significant cell types in 

eight human organoids between very severe COVID-19 (x axis) and hospitalized COVID-19 (y axis). 

C. Correlation results of the number of significant cell types in eight human organoids between very 

severe COVID-19 (x axis) and susceptible COVID-19 (y axis). The Pearson correlation analysis was 

used to calculate the correlation coefficients (rho). See also Supplementary Table S3. 

 

Figure 3. Risk genes and pathways associated with COVID-19 severities. A. Circus plot showing 

the results of the S-MultiXcan-based integrative analysis. The inner ring represents the 22 autosomal 

chromosomes (Chr1-22). In the out ring, a circular symbol demonstrates a specific gene with 
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different color to mark the statistical significance of the gene for very severe COVID-19 (red marks 

FDR < 1E-05, orange marks 5.24E-10 ≤ P < 0.001, light blue marks 0.001 ≤ P ≤ 0.05, and dark blue 

marks P > 0.05). B. Venn diagram showing the overlapped risk genes across three COVID-19 

phenotypes. C. Protein-protein interaction (PPI) network of 67 common risk genes based on the 

STRING database (v11.5, https://string-db.org/). D. Bar plot showing the counts of significant 

pathways enriched by using S-MultiXcan-identified risk genes in three COVID-19 phenotypes. E. 

Venn plot indicating the overlapped significant pathways across three COVID-19 phenotypes. F. 

Radar plot showing the significant level of 23 common pathways across three COVID-19 

phenotypes. The P value of each pathway was negatively log-transformed (-Log2(P)) for 

visualization. See also Supplementary Tables S4-S6. 

 

Figure 4. LDSC analysis identifies the genetic correlations between three COVID-19 

phenotypes and complex diseases. Heatmap plot showing the results of genetic correlations 

between 66 diseases or traits from six main disease categories (i.e., Neuropsychiatric disorders, 

neurodegenerative disorders, cognitive-related behaviors, cardiovascular diseases, autoimmune 

diseases, metabolic diseases, and respiratory diseases) and three COVID-19 outcomes (i.e., very 

severe COVID-19, hospitalized COVID-19, and susceptible COVID-19 using the LDSC method. 

The asterisk represents the significance of genetic correlation between COVID-19 and complex 

disease. See also Supplementary Table S12. 

 

Figure 5. Identification of lung MSCs associated with COVID-19 severities. A. UAMP 

projections of human lung organoids cells colored by three annotated cell types. B. UMAP 

embedding of all cells among three cell types in lung organoids colored by the TRSs for the 

phenotype of very severe COVID-19. C. Dotplot showing the significant associations of three cell 

types in lung organoids for very severe COVID-19. y axis indicates the log-transformed P value 

(-Log10(P)), and x axis indicates the cell-type-level inference using the scPagwas method. D. Bar 

plot showing the proportion of positive cells in three lung organoid cell types. E. UMAP projections 

of lung MSCs colored by five cell clusters. F. UMAP plot showing the distribution of lung MSC 

positive cells and negative cells. The C’ value significantly lower than 1 indicates a high level of 
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disease-association heterogeneity across the set of cells (C’ value = 0.924, heterogeneity FDR = 

3.332×10-4). G. CytoTRACE differentiation continuum across the lung MSCs. The color legend 

indicates the degree of differentiation that is gradually increased from more differentiation (blue) to 

less differentiation (red). H. Unsupervised trajectory inference of lung MSCs functional state 

transitions. Color legend indicates the pseudotimes of individual cells calculated by using the 

Monocle2 method. I-J) Visualization of the distribution of five cell clusters (I) and MSC positive 

cells (J) in the inferred trajectory. K. Volcano plot showing significantly up-regulated genes between 

MSC positive cells and negative cells. A two-side Wilcoxon test was used for assessing the 

significance. L. Notably enriched pathways by 1,142 up-regulated genes in MSC positive cells. 

Color legend represents the log-transformed FDR value (-Log10(FDR)). M. Chord diagram of 

scDrugHunter-identified top 10 druggable genes and relevant interacting drugs for very severe 

COVID-19 in lung MSCs. The width of each line is determined by the number of drugs (n =1~5) 

known to interact with each gene. Genes are ordered by the degree of scDGS at the top of the 

diagram. See also Supplementary Tables S13-S14. 

 

Figure 6. Discerning intestinal tuft cells relevant to COVID-19 severities. A. UAMP projections 

of human intestine organoids cells colored by five predefined cell types. B. UMAP embedding of all 

cells among five cell types in intestine organoids colored by the TRSs for the phenotype of very 

severe COVID-19. C. Violin plot showing the TRSs in five cell types among intestine organoids. D. 

Forest plot showing the associations of intestinal cell types with very severe COVID-19. Effect 

parameter indicates the strength of association, and range specifies the empirical bounds of the 95% 

confidence interval. The P value of each cell type is shown in the right panel. E. UMAP showing 

three cell clusters of intestinal tuft cells. F. UMAP visualization of intestinal tuft cells colored by 

TRSs. G. Violin plot showing the TRSs in three cell clusters among intestinal tuft cells. H. UMAP 

visualization of intestinal tuft cells colored by tuft positive and negative cells. The C’ value 

significantly lower than 1 indicates a high level of disease-association heterogeneity across the set of 

cells (C’ value = 0.812, heterogeneity FDR = 3.33×10-4). I. Bar plot showing the proportion of 

positive cells in three cell clusters of intestinal tuft cells. J. Boxplot showing a notable increase in 

cellular interactions of tuft positive cells with other cells among intestinal organoids compared to tuft 
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negative cells. K. Volcano plot showing significantly up-regulated genes between tuft positive cells 

and negative cells. A two-side Wilcoxon test was used for assessing the significance. L. Notably 

enriched pathways by 758 up-regulated genes in tuft positive cells. x axis indicates the 

log-transformed FDR value (-Log10(FDR)). M. Dotplot showing the results of 

scDrugHunter-identified 17 druggable genes and interacting drugs with high scDGS > 120 in 

intestinal tuft cells. See also Supplementary Tables S15-S16. 

 

Figure 7. Distinguishing brain endothelial cells contribute risk to COVID-19 severities. A. 

UAMP projections of all cells colored by eight predefined cell types in human brain organoids. B. 

UMAP embedding of all cells in brain organoids colored by the TRSs for the phenotype of very 

severe COVID-19. C. Violin plot showing the TRSs in eight cell types among intestine organoids. 

The significant level (P values) of associations of brain cell types with very severe COVID-19 is 

shown in top-panel of the violin plot. D. UMAP visualization of five cell clusters in brain endothelial 

cells. E. UMAP plot highlighting the brain endothelial positive cells. The C’ value significantly 

lower than 1 indicates a high level of disease-association heterogeneity across the set of cells (C’ 

value = 0.841, heterogeneity FDR = 3.33×10-4). F. Bar plot showing the proportion of positive cells 

in five cell clusters of brain endothelial cells. G. Volcano plot showing significantly up-regulated 

genes between endothelial positive cells and negative cells. A two-side Wilcoxon test was used. H. 

Notably enriched pathways by 341 up-regulated genes in endothelial positive cells. y axis indicates 

the log-transformed FDR value (-Log10(FDR)), and x axis indicates the enrichment ratio of each 

pathway. I. Scatter plot exhibiting the dominant senders (sources) and receivers (targets) in a 2D 

space. y axis represents incoming interaction strength, and x axis represents outgoing interaction 

strength. The size of each node indicates the count of cellular interactions. J. A notable increase in 

cellular interactions of endothelial positive cells with other cells among brain organoids compared to 

endothelial negative cells. K. Dotplot exhibiting the results of scDrugHunter-identified 18 druggable 

genes and interacting drugs with high scDGS > 120 in brain endothelial cells. See also 

Supplementary Tables S17-S19. 
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