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Abstract 61 

Background: Deep learning-based artificial intelligence techniques have been developed for 62 

automatic segmentation of diffusion-weighted magnetic resonance imaging (DWI) lesions, 63 

but currently mostly using single-site training data with modest sample sizes. 64 

Objective: To explore the effects of 1) various sample sizes of multi-site vs. single-site 65 

training data, 2) domain adaptation, the utilization of target domain data to overcome the 66 

domain shift problem, where a model that performs well in the source domain proceeds to 67 

perform poorly in the target domain, and 3) data sources and features on the performance and 68 

generalizability of deep learning algorithms for the segmentation of infarct on DW images.  69 

Methods: In this nationwide multicenter study, 10,820 DWI datasets from 10 hospitals 70 

(Internal dataset) were used for the training-and-validation (Training-and-validation dataset 71 

with six progressively larger subsamples: n=217, 433, 866, 1,732, 4,330, and 8,661 sets, 72 

yielding six algorithms) and internal test (Internal test dataset: 2,159 sets without overlapping 73 

sample) of 3D U-net algorithms for automatic DWI lesion segmentation.  In addition, 476 74 

DW images from one of the 10 hospitals (Single-site dataset) were used for training-and-75 

validation (n=382) and internal test (n=94) of another algorithm. Then, 2,777 DW images 76 

from a different hospital (External dataset) and two ancillary test datasets (I, n=50 from three 77 

different hospitals; II, n=250 from Ischemic Stroke Lesion Segmentation Challenge 2022) 78 

were used for external validation of the seven algorithms, testing each algorithm performance 79 

vs. manual segmentation gold standard using DICE scores as a figure of merit. Additional 80 

tests of the six algorithms were performed after stratification by infarct volume, infarct 81 

location, and stroke onset-to-imaging time. Domain Adaptation was performed to fine-tune 82 

the algorithms with subsamples (50, 100, 200, 500, and 1000) of the 2,777 External dataset, 83 

and its effect was tested using a) 1,777 DW images (from the External dataset, without 84 

overlapping sample) and b) 2,159 DW images from the Internal test dataset. 85 

Results: Mean age of the 8,661 patients in the Training-and-validation dataset was 67.9 years 86 

(standard deviation 12.9), and 58.9% (n = 4,431) were male. As the subsample size of the 87 

multi-site dataset was increased from 217 to 1,732, algorithm performance increased sharply, 88 

with DSC scores rising from 0.58 to 0.65.  When the sample size was further increased to 89 

4,330 and 8,661, DSC increased only slightly (to 0.68 and 0.70, respectively). Similar results 90 

were seen in external tests. Although a deep learning algorithm that was developed using the 91 
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Single-site dataset achieved DSC of 0.70 (standard deviation 0.23) in internal test, it showed 92 

substantially lower performance in the three external tests, with DSC values of 0.50, 0.51, 93 

and 0.33, respectively (all p < 0.001). Stratification of the Internal test dataset and the 94 

External dataset into small (< 1.7 ml; n = 994 and 1,046, respectively), medium (1.7-14.0 ml; 95 

n = 587 and 904, respectively), and large (> 14.0; n = 446 and 825, respectively) infarct size 96 

groups, showed the best performance (DSCs up to ~0.8) in the large infarct group, lower (up 97 

to ~0.7) in the medium infarct group, and the lowest (up to ~0.6) in the small infarct group. 98 

Deep learning algorithms performed relatively poorly on brainstem infarcts or hyperacute (< 99 

3h) infarcts. Domain adaptation, the use of a small subsample of external data to re-train the 100 

algorithm, was successful at improving algorithm performance. The algorithm trained with 101 

the 217 DW images from the Internal dataset and fine-tuned with an additional 50 DW 102 

images from the External dataset, had equivalent performance to the algorithm trained using a 103 

four-fold higher number (n=866) of DW images using the Internal dataset only (without 104 

domain adaptation). 105 

Conclusion: This study using the largest DWI data to date demonstrates that: a) multi-site 106 

data with ~1,000 DW images are required for developing a reliable infarct segmentation 107 

algorithm, b) domain adaptation could contribute to generalizability of the algorithm, and c) 108 

further investigation is required to improve the performance for segmentation of small or 109 

brainstem infarcts or hyperacute infarcts. 110 

  111 
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Introduction 112 

Diffusion weighted imaging (DWI) has been a critical imaging technique for the diagnosis 113 

and treatment of acute ischemic stroke because it is highly sensitive in detecting acute 114 

cerebral infarcts.1 DWI lesion volume2 and pattern3 can predict post-stroke functional 115 

outcomes and future cerebrovascular events. Moreover, DWI can guide acute recanalization 116 

therapy4, 5 by triaging patients based on their infarct volumes.  117 

There is a real clinical need for automated segmentation of DW images. Since human 118 

segmentation of the infarct core demands time-consuming clinical expertise, multiple deep 119 

learning-based artificial intelligence techniques have been developed for automatic 120 

segmentation of DWI lesions.6-9 However, such techniques are critically dependent on the 121 

quantity and quality of the training-and-validation data (training data) used to build the 122 

algorithms, and most studies to date have utilized single-site training data with only modest 123 

sample sizes (Supplementary Table 1). Only a few studies have externally tested their deep 124 

learning algorithms, reporting -as expected that dice similarity coefficients (DSCs) were 125 

much higher for internal data than for external data.10, 11 126 

Large-scale, multi-site training data are needed to avoid the two well-known machine 127 

learning failures: a) the failure of generalization problem that prevents a deep learning model 128 

from learning patterns that generalize to unseen data, and b) the domain shift problem where 129 

a model that performs well in the source domain proceeds to perform poorly in the target 130 

domain.12 However, collecting extensive imaging data from multiple centers is challenging. 131 

Labeling and annotating data are very labor-intensive processes that require thorough 132 

knowledge of neuroimaging. Specifically, regarding deep learning algorithms for DWI lesion 133 

segmentation, the training data sample size that minimizes the generalization problem and 134 

domain shift problem is not known yet. 135 

To overcome the domain shift problem, domain adaptation, which fine-tunes the pre-trained 136 

model using source domain data by adjusting its parameters using additional training data 137 

from the target domain, has been successfully applied in various fields.13 However, studies 138 

exploring the effect of domain adaptation on the performance of deep learning algorithms for 139 

DWI infarct segmentation have not been reported yet. Clearly, the sample sizes of both initial 140 

training data and of the effects of target domain data both would be important variables to 141 

consider in such a study. 142 
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In this nationwide multi-center study (Figure 1), 10,820 patients’ DW images (collected 143 

consecutively from 10 university hospitals) were used to develop deep learning-based infarct 144 

segmentation algorithms. These algorithms were tested using three external datasets (n = 145 

2,777, 50, and 250). We examined effects of 1) various sample sizes of multi-site vs. single-146 

site training data, 2) domain adaptation, and 3) data sources and features on algorithm 147 

performance. 148 

 149 

 150 

Methods 151 

Training cohort  152 

Multi-site data This study included brain DW images from the Korean nationwide image-153 

based stroke database project.14-16 From May 2011 to February 2014, we consecutively 154 

enrolled 12,013 patients with ischemic stroke or transient ischemic attack who were admitted 155 

to 10 stroke centers within 7 days of symptom onset. We excluded the following patients: 156 

contraindication to MRI (n = 258), poor quality or unavailability of DW images (n = 904), 157 

and MRI registration error (n = 31), leaving 10,820 patients for ‘Internal dataset’ (Figure 1). 158 

This Internal dataset was further split 80/20 into a ‘Training-and-validation dataset’ (n=8,661) 159 

and ‘Internal test dataset’ (n = 2,159).  160 

Single-site data To investigate segmentation performance of a deep learning model that was 161 

trained using data from a single site, we chose one of the 10 hospitals to prepare ‘Single-site 162 

dataset’ (Figure 1) with 476 DW images, which is comparable to the amounts of training data 163 

in previous studies.17, 18 164 

 165 

External test cohorts 166 

Three datasets (Figure 1) were used for external validation of deep learning algorithms. First, 167 

a consecutive series of 2,777 DW images (‘External dataset’) were collected from patients 168 

who were admitted with acute ischemic stroke or transient ischemic from a university 169 

hospital during the same period as the training cohort. Second, ‘Ancillary test dataset I’ was 170 

prepared using DW images of 50 patients with ischemic stroke due to atrial fibrillation from 171 
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three different university hospitals between 2011 and 2014.19 Third, ‘Ancillary test dataset II’ 172 

(n = 250) were Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2022 data.20 173 

Institutional Review Boards of all participating centers approved this study. All patients or 174 

their legally authorized representatives provided written informed consent for study 175 

participation. 176 

 177 

DW Images and ischemic lesion segmentation  178 

Brain MR images for training, validation, and internal test were obtained using 1.5 Tesla (n = 179 

6,360) or 3.0 Tesla (n = 2,882) MRI systems. DWI protocols were: b-values of 0 and 1,000 180 

s/mm2, TR of 2,400–9,000ms, TE of 50–99ms, voxel size of 1 × 1 × 3–5mm3, interslice gap 181 

of 0–2mm, and thickness of 3–7mm. For the External dataset, the majority of DW images 182 

were obtained using a 1.5 Tesla MRI system (n = 2,724, 98.5%). Ischemic lesions on DW 183 

images in the Training-and-validation dataset, Internal test dataset, and External dataset were 184 

segmented by experienced researchers using an in-house software Image_QNA under the 185 

close guidance by an experienced vascular neurologist, as previously described.14, 15 During 186 

the semi-automatic segmentation, inter-rater reliability was monitored as previously 187 

described.21 For the Ancillary test dataset I, an experienced neurologist manually outlined 188 

ischemic lesions. In the Ancillary test dataset II, a hybrid human-algorithm annotation 189 

scheme was applied for lesion segmentation.20 190 

 191 

Image preprocessing 192 

To train the infarct segmentation model, brain DW images were preprocessed by (1) skull 193 

stripping using Gaussian blur and Otsu's threshold,22 (2) N4 correction using the SimpleITK 194 

library, and (3) image signal image normalization as described below. 195 

Skull stripping. Brain parenchyma has relatively high signal intensities in the DWI compared 196 

with skull, cerebrospinal fluid, and noisy areas. To focus on the brain parenchyma, Otsu 197 

thresholding was used to generate a parenchymal brain mask from the Gaussian blur-198 

processed image. The brain mask was then superimposed on the original image to remove 199 

non-parenchymal structures outside the mask. 200 
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N4 correction. Signal intensity values of MR images are frequently non-uniform because of a 201 

bias field effect. DW images from various participating centers had different levels / 202 

distributions of signal non-uniformity. To reduce the inter-site difference, bias field correction 203 

was performed before model training, which was done using Python version of the N4 204 

correction algorithm in the SimpleITK library. However, because the algorithm was 205 

computationally expensive, the maximum number of corrections was set to be 10 to limit the 206 

execution time for each case. 207 

Image normalization. DWI signal distribution varies depending on imaging conditions such 208 

as MRI equipment vendor, magnetic field strength, echo time, and repetition time. When the 209 

noise area is removed, the peak point of the signal intensity histogram is primarily occupied 210 

by gray and white matter, with lesion and artifact areas exhibiting a higher signal, resulting in 211 

a bimodal distribution. As a normalization process to make signal intensities of each skull-212 

stripped DW images distribute within a constant range, all the voxels in each slice was 213 

multiplied by a specific coefficient: a number found to shift the peak value in the signal 214 

intensity histogram to 150, when the peak value was divided by the number. In order to 215 

suppress abnormally high signals, which are typically noticed as artifacts in DWI,23 the 216 

multiplied values were clipped not to exceed 255. 217 

 218 

Model Development 219 

We employed modified version of 3D U-Net24 for model training. While the model retained 220 

its U-shaped architecture, the number of CNN layers and the filters for these layers were 221 

modified. In addition, each convolution unit (Conv3D-BatchNormalization-ReLU) was 222 

replaced with pre-activation unit (BatchNormalization-ReLU-Conv3D), which was first 223 

utilized to increase ResNet performance25 and was expected to be able to boost the 224 

performance of our models.  225 

To develop multi-site deep learning models and compare segmentation performances as 226 

training data increased, the Training-and-validation dataset was subsampled by a factor of 227 

2.5/5/10/20/50/100% (217, 433, 866, 1,732, 4,330, and 8,661 DW images, respectively; 228 

Supplementary Fig 1), with an 8:2 training-to-validation set ratio. To develop a single-site 229 

deep learning model, a total of 476 patients’ DW images were divided into 382 (for training 230 

and validation) and 94 (for internal testing). During deep learning, random augmentation was 231 
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performed in real-time to increase the diversity of training datasets and to prevent overfitting: 232 

a slice-wise affine transformation, MRI (bias field) artifact simulation, an axis flip, and a 233 

gamma/contrast change. The implementation code was developed using TorchIO, a medical 234 

imaging library written in Python.26 Further information is available in Supplementary 235 

Material. 236 

In addition to the aforementioned 3D U-Net, we employed vision transformer (Swin 237 

UNETR),27 another well-known medical image segmentation network, for deep learning 238 

(Supplementary Material). 239 

 240 

Model Evaluation 241 

After training models, segmentation performance was evaluated using the Internal test dataset, 242 

External dataset, and Ancillary test datasets I and II. As a primary evaluation metric, Dice 243 

similarity coefficient (DSC) was calculated as follows: 244 

��� ����� 	�
���
��� ������������ �
2|� � �|

|�| � |�|
 

A: manual segmentation (gold standard), B: image segmentation by a deep learning algorithm 245 

Additionally, voxel-wise sensitivity and precision were calculated by quantifying the number 246 

of missed lesion voxels or incorrectly predicted positive voxels, as follows: 247 

���	������� �
��

�����
, �
���	��� �

��

�����
  248 

TP: true positive; FN: false negative; FP: false positive 249 

 250 

We also assessed the performance of infarct segmentation depending on the differences in:  251 

1- infarct volume, which was categorized as small (< 1.7 mL), medium (1.7 mL – 14 252 

mL), and large (> 14 mL)11  253 

2- imaging acquisition time after symptom onset defined as last-known-well (< 3 hours, 254 

3-24 hours, and > 24 hours) 255 

3- infarct location (cortex, corona radiata, basal ganglia and internal capsule, thalamus, 256 

midbrain, pons, medulla, cerebellum, and multiple) 257 

4- MRI vendor 258 
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5- the presence vs. absence of chronic infarct, which was defined as a) 3–15 mm 259 

ischemic lesions outside the basal ganglia, brainstem, thalamus, internal capsule, or 260 

cerebral white matter or b) ischemic lesions larger than 15 mm in any areas on fluid-261 

attenuated inversion recovery images28 262 

6- and the volume of underlying white matter hyperintensity (WMH), which was 263 

quantified as previously described21 and classified into deciles 264 

 265 

Domain adaptation 266 

To investigate whether domain adaptation using target domain data as additional training data 267 

after initial deep learning affects segmentation performance of a fine-tuned algorithm, we 268 

randomly divided the External dataset to 1,000 images (Additional training-and-validation 269 

dataset for domain adaptation) and 1,777 images (Test dataset for domain adaptation) (Figure 270 

1 and Supplementary Fig 2). The Additional training-and-validation dataset for domain 271 

adaptation and the Test dataset for domain adaptation were split so that there was no 272 

overlapping sample between them. The sample size for the fine tuning (i.e., additional 273 

training and validation) of the initially trained model was increased from 50 to 100, 200, 500, 274 

and 1,000 to assess the effect of domain adaptation-related data sample size on segmentation 275 

performance. The subsampled data were split at a ratio of 8:2 for training and validation. We 276 

calculated the mean and standard deviation of the DSC for both the Internal test dataset and 277 

the Test dataset for domain adaptation. Moreover, to evaluate whether the sample size of 278 

initial training dataset affects the model's performance after domain adaptation, initial deep 279 

learning was performed with 2.5 / 5 / 10 / 20 / 50 / 100% of the Training-and-validation 280 

dataset and then fine-tuned with the Additional training-and-validation dataset for domain 281 

adaptation (sample size of 50, 100, or 200). 282 

 283 

Statistical analysis 284 

To compare baseline characteristics of the Training-and-validation dataset, Internal test 285 

dataset, and External dataset, we used ANOVA, the Kruskal-Wallis test, and the chi-square 286 

test as appropriate for continuous variables and categorical variables, respectively. We used 287 

Bland-Altman plots and a linear regression analysis to compare ground truth infarct volume 288 

and segmented infarct volume by the model. To test whether DSC increased as the training 289 
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sample size increased and to compare infarct volumes segmented by deep learning and 290 

manual segmentation, we used a linear regression analysis. Performance difference between 291 

models was tested using paired t-test. P-values less than 0.05 was considered statistically 292 

significant. 293 

 294 

 295 

Results 296 

Baseline characteristics of study population 297 

Mean age of patients was 67.9 (standard deviation 12.9) years in the Training-and-validation 298 

dataset (n = 8,661). Males accounted for 58.9% (n = 4,431) (Table 1). Median NIHSS score 299 

was 4 (interquartile range 2–9) and median infarct volume was 1.95 mL. Mean age of 300 

patients was 68.2 ± 12.7 years in the Internal test dataset and 68.2 ± 12.4 years in the External 301 

dataset. Males accounted for 60.4% and 58.0% in the Internal test dataset and the External 302 

dataset, respectively. Compared with the Training-and-validation dataset and the Internal test 303 

dataset, External dataset was characterized by more cardioembolic strokes, shorter time 304 

intervals from last-known-well to imaging acquisition, and larger infarct volumes. Moreover, 305 

MR vendors, magnetic strengths, and imaging parameters were different among the Training-306 

and-validation dataset, Internal test dataset, and External dataset (Table 1 and Supplementary 307 

Table 2). Estimated background noise and estimated signal-to-noise ratios in the Internal 308 

dataset varied widely among the 10 participating hospitals (Supplementary Fig 3). 309 

 310 

Performance of a deep learning algorithm trained using data of a single-center 311 

To develop a single-center deep learning model, we used 382 DW images from a single 312 

hospital for model training and validation. Mean age was 68.8 ± 13.2 years in the Single site 313 

training-and-validation dataset. Males accounted for 60.8%. Median infarct volume was 1.70 314 

(0.53–11.25) mL (Supplementary Table 3). For the Single site internal test dataset, the 3D U-315 

net model achieved DSC of 0.70 ± 0.23 with a per-pixel sensitivity of 0.69 and a precision of 316 

0.78 (Supplementary Table 4). However, the single-center model showed substantially lower 317 

performance for the tests using the External dataset and the Ancillary test datasets I and II, 318 

with DSC values of 0.50, 0.51, and 0.33, respectively (all p < 0.001). 319 
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 320 

Effect of training data sample size on the performance of deep learning algorithm to 321 

segment acute infarcts on DW images  322 

As the sample size of the Training-and-validation dataset increased from 217 to 433 and 866, 323 

DSC of the 3D U-net algorithm increased sharply from 0.58 to 0.61 and 0.65 for the Internal 324 

test dataset (Figure 2A). When the sample size was further increased to 1,732, DSC seemed 325 

to increase less steeply, nearly reaching a plateau (0.67). When the sample size was further 326 

increased to 4,330 and 8,661, DSC only slightly increased to 0.68 and 0.70, respectively. 327 

Similar results were seen in the tests using the External dataset (see also Supplementary Fig 4 328 

for the Ancillary test datasets I and II). When the sample size was 433 or greater, DSC values 329 

in External dataset were significantly higher than those in Internal test dataset. In both 330 

Internal test dataset and External dataset, infarct volumes that were segmented and quantified 331 

by the 3D-Unet algorithm (trained with 8,661 DWI data) showed strong correlations with 332 

ground truth infarct volumes (both r2 = 0.96, p < 0.001; Supplementary Fig 5), although the 333 

deep learning algorithm tended to underestimate infarct volumes. Voxel-wise detection 334 

sensitivity showed a pattern that was comparable to that shown for DSCs except for fewer 335 

differences between Internal test dataset and External dataset (Figure 2B). Contrary to the 336 

exponential increase in DSC and sensitivity, precision values in both Internal test dataset and 337 

External dataset changed only slightly when training data sample size increased (Figure 2C).  338 

 339 

Effect of training data sample size on performance of deep learning algorithm to 340 

segment acute infarcts on DW images according to infarct volume, infarct location, 341 

presence of chronic ischemic lesions, onset-to-imaging time, and MRI vendors 342 

When the Internal test dataset and the External dataset were divided into small (< 1.7 ml, n = 343 

994 and 1,046), medium (1.7 – 14.0 ml, n = 587 and 904), and large (> 14.0, n = 446 and 825) 344 

infarct groups, DSCs for the internal and external testing were the highest (up to ~0.8) in the 345 

large infarct group, lower (up to ~0.7) in the medium infarct group, and the lowest (up to ~0.6) 346 

in the small infarct group (Figure 2D-F). This finding is consistent with generally higher 347 

performances of our deep learning models in the tests using the External dataset as opposed 348 

to the Internal test dataset, given that the mean infarct volume in the former was about two 349 

times bigger than in the latter.  350 
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With regards to lesion locations (Figure 3), DSCs were generally higher for supratentorial 351 

lesions (~0.65 or higher) than for infratentorial lesions (~0.6 or lower), except for cerebellar 352 

lesions (in the tests using the Internal test dataset and the External dataset) and thalamus (in 353 

the test using the External dataset) with DSCs being about 0.7.  354 

When data were divided based on the presence of chronic ischemic lesions and WMH 355 

volumes, similar model performances were observed across groups (Supplementary Fig 6 and 356 

7).  357 

When data were divided based on the time from last-known-well to imaging, DSCs were the 358 

highest (up to ~0.75) in the > 24-hour group, slightly lower (up to ~0.7) in the 3–24-hour 359 

group, and the lowest (up to ~0.55 and ~0.65) in the < 3-hour group (Figure 2G-I). With 360 

respect to MRI vendors, the deep learning model showed better performances for Phillips or 361 

GE images than for Siemens images in both tests using the Internal test dataset and the 362 

External dataset (Supplementary Table 5).  363 

In tests of the 3D-Unet model trained with 8,661 DW images, DSCs for the Internal test 364 

dataset varied, ranging from 0.45 to 0.78, depending on the participating center and training 365 

data sample size, especially the latter (Supplementary Table 6). When we employed the Swin 366 

UNETR for training with the same data, the performance of the deep learning model was 367 

generally lower than that using the 3D-Unet (Supplementary Table 7). 368 

 369 

Improvement of the external test performance of deep learning algorithms via domain 370 

adaptation 371 

Domain adaptation using subsamples of the External dataset (target domain) enhanced the 372 

model performance in terms of DSC, voxel-wise sensitivity, and precision of lesion 373 

segmentation in testing with Test dataset for domain adaptation (Table 2 and Figure 3). When 374 

the sample size of the Training-and-validation dataset (source domain) was 217, retraining 375 

with 50 cases that were randomly selected from the Additional training-and-validation dataset 376 

for domain adaptation significantly increased DSC from 0.56 to 0.67 (p < 0.001; Figure 3) in 377 

testing with the Test dataset for domain adaptation. When the domain adaptation was 378 

performed with 200 cases, DSC was higher (0.71) than that for the 50 cases (p < 0.001). A 379 

similar pattern of domain adaptation-mediated performance improvement of the deep 380 

learning algorithm was observed when the sample size of the Additional training-and-381 
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validation dataset was 433. However, when the sample size was higher than 433 (i.e., 866 or 382 

higher), there was only slight improvement of infarct segmentation after domain adaptation. 383 

Thus, in terms of the effectiveness of deep learning algorithms, the training data sample size 384 

of 866 without domain adaptation was practically similar to that of 50 with subsequent 385 

domain adaptation. It is notable that domain adaptation with subsamples of target domain 386 

worsened the model performance in internal testing (i.e., testing with the source domain data). 387 

This deterioration could be partly restored by increasing the sample size of the source domain 388 

data for initial deep learning to as high as 8,661. 389 

 390 

 391 

Discussion 392 

In the study using the largest DWI data to date, we demonstrated that the performance of 3D 393 

U-Net model for the automatic segmentation of acute infarcts improved steeply with training 394 

data volume as sample size was increased from 217 to 866 but reached a plateau as the 395 

training data was further increased to 1,732. When single-center training data was used, the 396 

performance of the deep learning algorithm degraded dramatically in external testing. 397 

Furthermore, we found that domain adaptation utilizing small amount of data from the target 398 

domain improved segmentation accuracy significantly, making the sample size of 866 399 

without domain adaptation equivalent to that of 217 with domain adaptation. 400 

The performance of the deep learning-based DWI lesion segmentation algorithm that was 401 

trained on the single-center dataset (n = 382) was much inferior in all three external tests than 402 

in the internal test (DSCs of 0.50, 0.51, and 0.33 vs. 0.70, respectively). To develop a more 403 

robust algorithm that generalizes well and performs better on an unseen data, there is a need 404 

for multi-site training data, which better reflects the heterogeneity of the ischemic stroke 405 

phenotype as well as the diversity of MR equipment and protocols in real-world clinical use. 406 

However, it is challenging to obtain, label, and annotate a high volume of multi-center data. 407 

Our findings suggests that multi-site data with a sample size of about 866 ~ 1732 might be 408 

cost-effective in developing a reasonable deep learning algorithm for DWI lesion 409 

segmentation.  410 

To enhance the deep learning model's capacity to generalize to new cases, data augmentation 411 
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can be used to artificially increase the amount and diversity of training data by generating 412 

modified copies of a dataset using existing data. However, this method carries the biases of 413 

the existing data, such as noise and resolution-related ones, without increasing the variety of 414 

infarct locations and patterns.29  415 

Utilizing a small data from the target domain could be used to resolve the domain shift issue, 416 

where the model performs poorly on the target data acquired from a different source or 417 

domain (and unseen during training) due to differences in the data distributions.12, 30, 31 Our 418 

study showed that on the External dataset, the algorithm that was trained with 217 DW 419 

images and was followed by domain adaptation with 50 additional DW images from target 420 

domain performed comparably to the model trained with 866 DW images without subsequent 421 

domain adaptation. As a trade-off due to diversion of the deep learning model on the target 422 

domain, domain adaptation may result in worse performance in the source domain. However, 423 

resilience was observed with little impact on the model’s performance in the source domain 424 

when employing a large multi-site data for training. The post-domain-adaptation (n = 200) 425 

DSC drop for the source domain internal test data was 0.10 and 0.03, respectively, in the 426 

models that were pretrained with 866 DW images and 8,661 DW images. 427 

Dice coefficients for DWI lesion segmentation were low when infarcts were small or MRI 428 

was performed early (within 3 hours of symptom onset). Given that the External dataset (for 429 

external testing) had approximately 2-fold bigger infarct volumes than the Internal test 430 

dataset, this finding is in line with higher DSCs for the former (vs. the latter) dataset. In 431 

addition, training on multi-site data may have led to the robustness to external testing. Deep 432 

learning algorithms performed poorly on brainstem infarcts, probably due to small number of 433 

cases even in the large training data (n=8,661) and a relatively complex anatomical structures 434 

and variations of the posterior fossa near the brainstem.32 A strategy for enhancing the 435 

segmentation performance for brainstem infarcts should be developed in future research. 436 

This study has strengths, such as the large sample size of multi-site training data and 437 

extensive external test. There are also limitations. First, using apparent diffusion coefficient 438 

images for training may have enhanced the segmentation performance. Second, the 439 

performance of the algorithm may have been improved by using clinical data for training, as 440 

physicians do in clinical practice. Third, caution should be taken when extrapolating our 441 

findings from Korean stroke patients to other ethnic groups, although previous research found 442 

no ethnic differences in the pattern of ischemic infarct on DW images.33  443 
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In conclusion, our study demonstrates that domain adaptation or big (n=~1000) multi-site 444 

DWI data are required for a reliable infarct segmentation algorithm with generalizability. In 445 

addition, future research should focus on improving the relatively low segmentation 446 

performance for small or brainstem infarcts or hyperacute infarcts, which has not been 447 

previously described. 448 

  449 
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Tables and Figure legends for 

Deep learning algorithms for automatic segmentation of acute cerebral infarcts on diffusion-

weighted images: Effects of training data sample size, transfer learning, and data features 

(Noh et al.) 
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Table 1. Baseline demographic and imaging characteristics of subjects, whose diffusion 

weighted magnetic resonances images were used for the Training-and-validation dataset, 

Internal test dataset, or External dataset 

Variable 

Training-and-

validation dataset 

(n = 8,661) 

Internal test dataset 

(n = 2,159) 

External dataset 

(n = 2,777) 
P-value 

Age (year)a 67.9 ± 12.9 68.2 ± 12.7 68.2 ± 12.4 .55 

Malea 4,431 (58.9%) 1,144 (60.4%) 1,571 (58.0%) .26 

BMIb 23.5 ± 3.4 23.4 ± 3.2 23.5 ± 3.4 .23 

Admission NIHSS a, median 

(IQR) 
4 (2 – 9) 4 (2 – 9) 4 (2 – 10) .79 

Subtypec    <.001 

  LAA 2,775 (37.2%) 688 (36.5%) 1,080 (40.0%)  

  SVO 1,421 (19.0%) 377 (20.0%) 227 (8.4%)  

  CE 1,606 (21.5%) 394 (20.9%) 663 (24.6%)  

  Undetermined 1,507 (20.2%) 381 (20.2%) 685 (25.4%)  

  Other determined 160 (2.1%) 46 (2.4%) 42 (1.6%)  

Previous strokea 1,720 (22.9%) 440 (23.2%) 409 (15.1%) <.001 

Hypertensiona 5,302 (70.5%) 1,353 (71.4%) 1,668 (61.5%) <.001 

Diabetes mellitusa 2,622 (34.9%) 624 (32.9%) 765 (28.2%) <.001 

Hyperlipidemiaa 2,853 (37.9%) 720 (38.0%) 386 (14.2%) <.001 

Smokinga 3,061 (40.7%) 758 (40.0%) 1,037 (38.3%) .09 

Atrial fibrillationa 1,561 (20.7%) 378 (20.0%) 657 (24.2%) <.001 

Time from LKW to 

imagingd, median (IQR, 

hour) 

20.48 (5.3 – 49.6) 19.41 (5.0 – 48.0) 11.41 (4.0 – 35.9) <.001 

Infarct volume, median 

(IQR, mL) 
1.95 (0.47 – 11.05) 1.89 (0.51 – 10.9) 4.19 (0.76 – 19.35) <.001 e 

MRI vendor    <.001 

 Phillips 3,435 (40.7%) 868 (40.2%) 3 (0.1%)  

 GE 1,709 (20.2%) 438 (20.3%) 2,706 (97.4%)  

 Siemens 3,292 (39.0%) 851 (39.4%) 60 (2.2%)  

 Other 7 (0.1%) 2 (0.1%) 8 (0.3%)  

     

Magnetic field strengthf    <.001 

 1.5T 5,129 (69.3%) 1,231 (66.9%) 2,724 (98.5%)  

 3.0T 2,273(30.7%) 609 (33.1%) 41 (1.5%)  

Pixel spacing (mm)g    <.001 
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< 0.8 1,311 (15.1%) 335 (15.6%) 11 (0.4%)  

0.8 ~ 0.849 1,373 (15.9%) 359 (16.6%) 11 (0.4%)  

0.85 ~ 0.899 2,181 (25.2%) 544 (25.2%) 10 (0.4%)  

0.9 ~ 0.949 1,073 (12.4%) 257 (11.9%) 12 (0.4%)  

0.95 ~ 0.999 515 (5.9%) 137 (6.3%) 55 (2.0%)  

≥ 1.0 2,208 (25.5%) 527 (24.4%) 2,676 (96.4%)  

Slice thickness (mm)h    <.001 

3.0 ~ 3.9 2,335 (31.5%) 573 (31.1%) 1 (0.0%)  

4.0 ~ 4.9 625 (8.5%) 156 (8.5%) 2,699 (97.3%)  

5.0 ~ 5.9 4,417 (59.6%) 1,109 (60.2%) 66 (2.4%)  

≥ 6.0 32 (0.4%) 4 (0.2%) 8 (0.3%)  

BMI, body mass index; NIHSS, National Institutes of Health Stroke Scale; IQR, interquartile range; 

LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; LKW, Last-

known-well. Data are presented as mean ± standard deviation, number (percentage), or median 

(interquartile range). See Figure 1 for a better understanding of datasets.  

aData of age, sex, BMI, admission NIHSS, previous stroke, hypertension, diabetes, hyperlipidemia, 

smoking, and atrial fibrillation were missing for 1,138, 266, and 67 patients in Training-and-

validation dataset, Internal test dataset, and External dataset, respectively. 

bData of BMI were missing for 1,218, 285, and 485 patients of Training-and-validation dataset, 

Internal test dataset, and External dataset, respectively. 

cData of stroke subtype were missing for 1,192, 274, and 90 patients of Training-and-validation 

dataset, Internal test dataset, and External dataset, respectively. 

dData of LKW to imaging time were missing for 4,373, 1,078, and 1,849 patients in Training-and-

validation dataset, Internal test dataset, and External dataset, respectively. 

eKruskal-Wallis test was used. 

fData of magnetic field strength were missing for 1,259, 319, and 12 patients in Training-and-

validation dataset, Internal test dataset, and External dataset, respectively. 

gData of pixel spacing were missing for 2 patients in External dataset. 

hData of slice thickness were missing for 1,252, 317, and 3 patients in Training-and-validation dataset, 

Internal test dataset, and External dataset, respectively.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.02.23292150doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.02.23292150
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Lesion segmentation performance after domain adaptation using the Training-and-validation dataset for domain adaptation 

  After domain adaptation 

Metric 
Before domain 

adaptation 
50 cases 100 cases 200 cases 500 cases 1000 cases 

Dice similarity coefficient       

Internal test dataset (n = 2,159) 0.70 (0.25) 0.66 (0.26)  0.67 (0.24) 0.67 (0.24) 0.68 (0.24) 0.67 (0.24) 

P-valuea Reference  < .001 < .001 < .001 .007 < .001 

Test dataset for domain adaptation (n = 1,777) 0.73 (0.21) 0.74 (0.21) 0.75 (0.19) 0.75 (0.19) 0.75 (0.19) 0.76 (0.19) 

P-valuea Reference .15 .002 .002 .002 .002 

Sensitivityb       

Internal test dataset (n = 2,159) 0.69 (0.27) 0.69 (0.30) 0.73 (0.26) 0.71 (0.26) 0.72 (0.25) 0.72 (0.26) 

P-valuea Reference >.99 < .001 .001 < .001 < .001 

Test dataset for domain adaptation (n = 1,777) 0.69 (0.23) 0.73 (0.24) 0.74 (0.21) 0.73 (0.21) 0.75 (0.21) 0.75 (0.21) 

P-valuea Reference < .001 < .001 < .001 < .001 < .001 

Precisionb       

Internal test dataset (n = 2,159) 0.78 (0.21) 0.72 (0.22) 0.68 (0.24) 0.69 (0.25) 0.70 (0.24) 0.69 (0.25) 

P-valuea Reference < .001 < .001 < .001 < .001 < .001 

Test dataset for domain adaptation (n = 1,777) 0.86 (0.16) 0.82 (0.16) 0.80 (0.20) 0.82 (0.19) 0.82 (0.19) 0.82 (0.19) 

P-valuea Reference < .001 < .001 < .001 < .001 < .001 

Data are presented as mean (standard deviation). See Figure 1 for a better understanding of datasets. 

aP-value for difference compared to the value of before domain adaptation.  

bSensitivity and precision were computed voxel-wise.  
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Figure 1. Study flow chart  
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Figure 2. Lesion segmentation performance of deep learning algorithm as training data 

increase with stratification by infarct volumes and onset-to-imaging time.  

(A) Dice similarity coefficient (DSC) in all patients. (B) Pixel-level sensitivity in all patients. 

(C) Pixel-level precision in all patients. (D-F) DSC stratified by infarct volume (< 1.7, 1.7 – 

14, and ≥ 14 mL). (G-H) DSC stratified by time from last-known-well to image time. Dot and 

bar indicate mean and standard error, respectively. Data of time from onset to imaging were 

missing for 565 and 1,849 patients in Internal test dataset and External dataset, respectively. 

Gray dot lines indicate data points of 217, 433, 866, 1,732, 4,330, and 8,661. Sensitivity and 

precision were calculated voxel-wise. Compared with DSC in the model trained with 217 

patients, all DSCs in the model trained with 433, 866, 1,732, 4,330, and 8,661 were 

significantly higher. See Figure 1 for a better understanding of datasets. LKW = last-known-

well.  
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Figure 3. Lesion segmentation performance in the Internal test dataset and the External 

dataset with stratification by lesion location 

(A) Cortex. (B) Corona radiata. (C) Basal ganglia & internal capsule. (D) Thalamus. (E) 

Midbrain. (F) Pons. (G) Medulla. (H) Cerebellum. (I) Multiple. Dot and bar indicate mean 

and standard error, respectively. Gray dot lines indicate data points of 217, 433, 866, 1,732, 

4,330, and 8,661. Sensitivity and precision were calculated voxel-wise. Note that Y-axis 

ranges varied in each figure. Compared with supratentorial lesions (A-C), infratentorial lesion 

except for cerebellum had lower dice similarity coefficient (DSC). See Figure 1 for a better 

understanding of datasets. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.02.23292150doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.02.23292150
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Lesion segmentation performance before and after domain adaptation using 

the Training-and-validation dataset for domain adaptation. 

(A) Dice similarity coefficient (DSC) in Internal test dataset. (B) DSC in Test dataset for 

domain adaptation. Data are presented as mean and stranded error. Gray dot lines indicate 

data points of 217, 433, 866, 1,732, 4,330, and 8,661. See Figure 1 for a better understanding 

of datasets. 
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