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Abstract:11

Background. The development of atopic dermatitis (AD) drugs is confronted by many disease phenotypes12

and trial design options, which are hard to explore experimentally.13

Objective. Optimize AD trial design using simulations.14

Methods. We constructed a quantitative systems pharmacology (QSP) model of AD and standard of care15

(SoC) treatments and generated a phenotypically diverse virtual population whose parameter distribution is16

a) derived from known relationships between AD biomarkers and disease severity and b) calibrated using17

disease severity evolution under SoC regimens.18

Results. We applied this workflow to the immunomodulator OM-85, currently being investigated for its19

potential use in AD, and calibrated investigational treatment model with the efficacy profile of an existing trial20

(thereby enriching it with plausible marker levels and dynamics). We assessed the sensitivity of trial outcomes21

to trial protocol and found that for this particular example, a) the choice of endpoint is more important than22

the choice of dosing-regimen and b) patient selection by model-based responder enrichment could increase23

the expected effect size. A global sensitivity analysis reveals that only a limited subset of baseline biomarkers24

is needed to predict the drug response of the full virtual population25

Conclusion. This AD QSP workflow built around knowledge of marker-severity relationships as well as SoC26

efficacy can be tailored to specific development cases so as to optimize several trial protocol parameters and27

biomarker-stratificaiton and therefore holds promise to become a powerful model-informed drug development28

tool.29
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Key Messages:30

• Disease and treatment models can quantify pre-existing knowledge about complex immune diseases31

such as atopic dermatitis and drug’s efficacy data under one common umbrella.32

• Embedding QSP models into trial simulation setup can give insight into clinical trial optimization.33

• Complex QSP models can help with patient selection and biomarker identification.34

Capsule Summary: This study shows the relevance of QSP model and computer simulations in assisting35

clinical development in the field of atopic dermatitis by assessing the impact of trial protocol on treatment36

effect and guiding biomarker programs.37

Keywords: Atopic dermatitis, Trial design, Trial optimization, Mathematical modeling, Biomarkers, Best38

responder, In silico approaches, Immunomodulation, Bacterial lysates39

Abbreviations:40

AD Atopic dermatitis41

SoC Standard of care42

TCS Topical corticosteroids43

ODE Ordinary differential equation44

QSP Quantitative systems pharmacology45

PBPK Physiologically based pharmacokinetic46

PD Pharmacodynamics47

AB Absolute benefit48

SCORAD Scoring atopic dermatitis49

EASI Eczema area and severity index50
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1 Introduction51

Atopic dermatitis (AD) is a chronic inflammatory condition of the skin characterized by recurrent52

eczematous lesions and intense itch which can profoundly impair quality of life1–6. The patho-53

physiology of AD is complex and involves local and systemic immune dysregulation, genetic54

susceptibility, environmental factors and microbiome effects7;8. AD is not a homogeneous disease55

encompasses a variety of endotypes and phenotypes in the different age, ethnic, etc. groups (see the56

work cited in Facheris et al. 9). The road to novel therapeutics10 is tortuous, due a combination of57

two factors:58

a) a partial understanding of the molecular and cellular mechanisms driving disease severity and59

treatment effect in individual patients11;12, making it difficult to translate preclinical results60

into the clinic and even more so to estimate the quantitative effect in a given population.61

b) the complex clinical management of AD13;14 which opens many up many potential choices in62

trial design such as rules for rescue treatment or definition of induction or washout periods15.63

Despite advancement in our understanding of epidemiology, biomarkers, endotypes, prevention,64

and comorbidities16 as well as in vitro, in vivo and in silico approaches developed for the investigation65

of human AD pathogenesis17, the precise relationships between intrinsic immunological features,66

extrinsic factors, disease severity and heterogeneous treatment effect remains to be established.67

In silico approaches based on mechanistic models can be powerful tools to explore trial design68

options18;19 in a context, such as AD, where high heterogeneity makes that, in addition to questions69

on protocol and dosing-regimen, the strategies involving patient selection, involving for example70

local or systemic biomarkers, are of utmost importance20. There are several existing mathematical71

models for AD17, notably highlighting the importance of temporality in skin barrier function,72

immune responses, and impact of environmental stressors21 as well as the identification of effective73

biologic drugs combination for single-drug non-responders22. These studies have demonstrated that74

a systems modeling approach can help resolving mechanistic questions in AD drug development.75

Still, the question of how to quantitatively translate these insights into model-informed clinical76
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trial design remains open. Within model-informed drug development, QSP models are being77

increasingly considered, both for internal and regulatory decision making23. QSP - including within78

a trial simulation paradigm - has produced numerous published examples and regulatory grade79

evidence across disease areas where protocols and in particular the dosing-regimen aspects have80

been informed23;24, but the use of QSP for informing predictive biomarker programs have been81

mostly limited to generating plausible dynamics of important biomarkers in different tissues and did82

not yield quantitative and actionable information on clinical applications such as e.g. a biomarker83

identification trial. This gap motivated us to combine a QSP modeling approach for an investigational84

treatment in AD with a trial simulation strategy aiming at both, quantifying the relationship between85

trial design options and the expected efficacy profiles while taking into account the patients’ immune86

profiles and thereby addressing biomarker related trial design choices.87

In this work, we consider the investigational treatment OM-85 as a use-case. The oral im-88

munomodulator OM-85 is a bacterial lysate which modulates the immune system notably by89

restoring the Th1/Th2 balance25 and is thus being investigated for various atopic conditions26.90

OM-85 is approved in several countries for the prevention of respiratory tract infections27 and has91

shown some promising results in pediatric AD as add-on treatment28. It is now being tested for early92

moderate AD in an ongoing trial (NCT05222516) where the immune heterogeneity of the included93

population can represent a challenge. We developed a novel mechanistic model of skin immune94

dysregulation in AD including the mechanisms of action of emollients and topical corticosteroids95

(TCS), combined with a previously developed model of the administration, pharmacokinetics, and96

mechanism of action of OM-85 (originally applied in combination with a multiscale respiratory tract97

infection disease model29). We calibrated this QSP model with quantitative relationships in skin98

biomarkers30–35, clinical data for standard of care (SoC)22;36–39 and OM-85 treatment efficacy28.99

As a plausible application example, we used this QSP model to run trial simulations for virtual AD100

populations in order to obtain both patient- and trial protocol-specific predictions of drug efficacy101

profiles. We found that trial efficacy is expected to be insensitive to the exact dosing regimen but102

can display sensitivity with respect to choice of severity endpoint (relative vs absolute), which thus103
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appears to be an option for further trial optimization. We then show how a dimensionality reduction104

approach can be used to inform a biomarker-based stratification strategy: global sensitivity analysis105

identifies a reduced number of baseline biomarkers in the virtual population, that reproduce the106

reference data well, and thus can be used to select patients based on their predicted treatment effect.107

We finally show that in the chosen use case, both protocol design and patient selection with results108

of the model do show optimization potential and therefore may ultimately support decisions about109

clinical (predictive) biomarker programs.110
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2 Methods111

2.1 QSP workflow: combining systems immunology and trial simulations112

Our QSP workflow (modeling and simulation approach) is based on a knowledge and mechanism-113

driven mathematical model focusing on the immunology of AD, built on the back of a system of114

ordinary differential equations (ODEs) and used in a setup to simulate clinical trials (also referred115

to as a quantitative disease-drug-trial model40 or in silico clinical trials). A virtual population116

approach captures between-patient variability, where model parameters are described by statistical117

(co)distributions rather than scalar values.118

2.2 QSP model description119

The QSP model (Fig. 1) can be broken down into three components: a) the disease model describing120

the skin barrier integrity and the immune system and linking baseline biomarkers levels to AD sever-121

ity scores, b) the SoC treatment models accounting for the administration and mechanisms of action122

of emollients and TCS, and c) the investigational treatment model describing the administration,123

pharmacokinetics, and mechanism of action of OM-85. The disease model focuses on selected124

quantitative aspects of skin immune dysregulation in patients with AD while not taking into account125

pathogenesis or natural evolution of AD. This allowed us to consider that, without treatment, the126

disease state of a given patient with a given AD severity can be characterized by stationary dynamics127

of the biological entities. Under treatment however, the stationary immune dynamics of the disease128

model (i.e. at baseline) are perturbed and the AD severity evolves. The calibration of the QSP129

model was performed following the core approach for complex disease-treatment-trial models with130

heterogeneous data as described in Palgen et al. 41 .131

2.2.1 Atopic dermatitis disease model132

The disease model covers the main mechanisms at the cellular scale involved in the modulation of the133

skin barrier integrity and immune dysregulation in response to environmental stressors. In particular,134
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it captures the mechanisms driving the dynamics of the major biomarkers of AD lesional skin135

including filaggrin, S. aureus in the skin microbiome, and major soluble immune biomarkers (mainly136

cytokines and chemokines characterizing the type-1, 2, 17, 22, and regulatory responses). While137

for typical pharmacometrics analyses, the principle of parsimony guides the selection of the model138

structure42, our mechanistic model is complex and combines a heterogenous set of information from139

different sources. Its architecture consists of a system of ODEs representing the dynamics of 21140

variables and involves 139 parameters (Fig. 1, Supplementary Information S1.1).141

Figure 1. QSP model schematic. Exhaustive representation of the interplay between the skin
barrier and the skin immune system as formalized in the AD disease model, mechanisms of actions
of SoC treatments (TCS and emollients) and the investigational treatment OM-85.

The main mechanisms included in the disease model can be summarized as follows. The skin142

barrier integrity is modulated by filaggrin levels43, harmful S. aureus colonization6;44, and skin143

immune dysregulation6;44–49. In return, conjointly with immune dysregulation, skin barrier integrity144

modulates the level of pathogen infiltration50–52 and determines the production of alarmins (TSLP,145

IL-25, IL-33). Alarmins activate the innate immune response, notably Langerhans cells (LC) and146
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inflammatory epidermal dendritic cells (IDEC),47;52–54 both in antigen-independent and -dependent147

pathways (via alarmins or specific IgE, respectively)55;56. Both LC and IDEC synthesize innate148

pro-inflammatory factors (IL-1β , IL-6, TNF-α , IL-8)53;56 as well as type-17/22 immunity proteins149

(IL-17, IL-22, and S100A)43–45;48;57. Activated LCs – in context of AD53 – induce the polarization150

of the adaptive response towards type-2 (represented by IL-4, IL-13 and IgE) through the production151

of type-2 chemokines (CCL-17, CCL-27 and CCL-22), while IDEC polarize it towards type-1152

(represented by IL-12 and IFN-γ) through the production of type-1 chemokines (CXCL-10)56. The153

interconnected feedback loops of the type-1 vs type-2 response converge to an overall type-2 skewing154

in AD, which in return is mixed with growing type-1 response with increasing AD severity53;56;57. In155

AD context, regulatory cytokines (IL-10 and TGF-β ) are produced by regulatory T cells (Treg) and156

dendritic cells (naive LC and activated IDEC with high level of FcεRI on their cell surface)47;53;56;58
157

and limit the innate inflammation as well as type-1 and type-2 responses44;58;59. AD severity158

(evaluated with SCORAD60 and EASI61) is phenomenologically linked to the level of skin barrier159

integrity and pathogen infiltration22.160

We make the fundamental assumption that, without treatment, the disease model represents161

the skin immune system at equilibrium (Supplementary Information S1.2.1). By computing and162

applying the mathematical conditions for equilibrium, we are able to derive a large number of163

parameters (reducing the set of free parameters from 113 to 23, Supplementary Information S1.2.1,164

Supplementary Information Table S7). We can therefore inform the steady-state values of the165

thirteen biomarkers included in the model as a function of AD severity for individual patients based166

on a collection of datasets from the literature (Supplementary Information S1.2.2, Supplementary167

Information Table 4). Note that the entire dynamic system is still underinformed meaning that there168

are still parameters for which several values satisfy the conditions for equilibrium. For this reason169

it is important to also constrain the dynamical behavior upon perturbation of the equilibrium, i.e.170

under treatment (where target engagement and pathway modulation will drive this system out of171

equilibrium) as described in what follows.172
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2.2.2 Standard of care treatment model173

The SoC treatment comprises a combination of emollients and different TCS (Fig. 1). The appli-174

cation of emollient ameliorates the skin barrier integrity3;62;63 while TCS inhibit type-1, type-2175

and pro-inflammatory responses and amplify the regulatory response by modulating respective176

cytokines64–68. We disregarded topical drug pharmacokinetics by considering a standardized177

bioavailable concentration throughout a day of treatment regardless of duration of application,178

dosage and intra-daily frequency. We also neglected the potential systemic effects given the very low179

systemic absorption of modern TCS69;70. We calibrated the SoC treatments against an aggregated180

dataset of 5 studies accounting for various combinations and potencies (Supplementary Informa-181

tion S1.2.3, Supplementary Information Table S6). The set of calibrated parameters include those182

driving SoC mechanisms of action but also those controlling AD pathophysiology left undetermined183

after applying equilibrium constraints (Supplementary Information Table S7). Finally, we used184

the placebo arm (only emollients + TCS) reported in our reference dataset for the investigational185

treatment (Bodemer et al. 28) to assess the robustness of model prediction for SoC treatments.186

2.2.3 Investigational treatment (OM-85) model187

For OM-85 administration and effect, we re-used the model reported in Arsène et al. 29 where, as188

described in the context of respiratory tract infections prophylaxis, the oral administration of OM-85189

triggers the activation and proliferation in the intestinal Peyers Patches of reprogrammed type-1 in-190

nate memory like cells71–73, regulatory T-cells74–76 and polyclonal IgA producing plasmablasts77;78,191

which further disseminate via the systemic circulation into the inflamed lung tissues, due to the192

presence of chemokines and homing receptors. In the context of AD, the fundamental hypothesis is193

that that similar cells infiltrate the inflamed skin tissues (the gut-skin axis as a central mechanistic194

hypothesis), which is backed up notably by many reports of co-expression of gut, skin and lung195

tissue homing markers52;58;79;80 and is consistent with the reported effect of OM-85 in AD28. To196

take this hypothesis into account, the model reported in Arsène et al. 29 is supplemented with a layer197

describing skin-homing of activated immune effectors (Fig. 1, Supplementary Information Figure198
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S1).199

2.3 Analyses200

2.3.1 Treatment effect201

The treatment effect can be quantified in silico by the individual absolute benefit (AB, see Boissel202

et al. 81) which is defined as the difference of SCORAD at 6 months for a specific virtual patient203

with placebo vs when treated (in our idealized clinical setting each virtual patient can be its own204

control).205

2.3.2 Average treatment effect206

The average treatment effect is the group equivalent of treatment effect, defined as the difference of207

the mean severity score at 6 months in the placebo vs treatment arm (AB, see e.g. Bodemer et al. 28).208

We obtain confidence intervals around predicted values by using a bootstrapped approach (using 100209

samples, each with 85 virtual patients for the placebo and for the treatment arms). For the sensitivity210

assessment of the trial results with respect to the choice of main endpoint, we used four alternative211

definitions for the average treatment effect, either based on SCORAD, EASI, relative SCORAD212

or relative EASI. For relative SCORAD or EASI, the difference in severity scores at 6 months is213

normalized by the mean severity score at 6 months in the placebo arm.214

2.3.3 Power and sample size215

We compute empirical statistical power through bootstrapping82 using Students t-test (alpha risk216

= 0.05) for various sample sizes. This allows us to estimate the required sample size to reach a217

statistical power of 0.80(Supplementary Information S.1.4).218

2.3.4 Recruitment effort219

We define recruitment effort as the total number of patients to be screened given selection criterion:220

we compute it by dividing the estimated sample size for the corresponding selection criteria by the221
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percentage of virtual patients matching the selection criteria in the reference virtual population, for222

which the distribution of patient characteristics is assumed to be realistic.223
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3 Results224

3.1 Reproduction of a placebo-controlled clinical trial225

In order to quantitatively align our QSP model with a specific clinical development case, we adapted a226

simulation and analysis protocol to represent an existing trial (Bodemer et al. 28 [NCT05222516]) and227

used the reported efficacy profiles to calibrate the remaining undetermined parameters (controlling228

the effect of OM-85). This simulation protocol corresponds to a placebo-controlled parallel two-arm229

AD trial for a virtual population of pediatric subjects treated with OM-85 for 9 months and assessing230

AD severity (SCORAD) during the study (Table 1). In order to match the longitudinal efficacy data231

for OM-85, we calibrated the three parameters controlling the effects of immune effectors activated232

by OM-85 against the average evolution of disease severity in the treatment arm (all the other model233

parameters being already calibrated: see SoC treatment and Arsène et al. 29). As illustrated in Fig. 2,234

average value and variability of disease severity evolution in absolute and in relative values, and235

value at 6 months (Fig. 2 A-B, C-D, E-F respectively) are well reproduced, for both placebo and236

treatment arms.237

Age ln(Age)∼ N (0.3,1.8) & 0.6 ≤ Age ≤ 8
Virtual Gender ∼ B(0.5)
population SCORAD ln(SCORAD)∼ N (3.7,0.27) & 15 ≤ SCORAD ≤ 95

Biomakers function?(SCORAD) + N (mean?, sd?)
Week 0 – 1 Week 1 – 2 Week 2 – 3 Week 4 – 36

Administration Emollients Every 1 day
regimen TCS Every 1 day Every 2 days Every 3 days Every 3 days (?)

OM-85 Every 1 day

Arms Placebo Emollients + TCS
Treatment Emollients + TCS + OM-85

Baseline (day 0) Follow-up: month 1, 3, 6, 9
Measurements Data28 SCORAD, flares

Model SCORAD, EASI, biomarkers SCORAD, EASI

Table 1. Simulation protocol for in silico clinical trials mimicking the randomized reference
clinical trial in Bodemer et al. 28 [NCT05222516]. Virtual population (2000 patients / arm),
administration regimen, arms, and measurements. ? Calibrated.
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Figure 2. Reproduction of a randomized placebo-controlled clinical trial. A – B: Evolution of
AD severity (SCORAD, median: line, quartiles: box) of treatment vs placebo arms from the real
trial (Bodemer et al. 28) (A) and virtual population (B) at observation time points. C – D. Evolution
of percentage improvement of AD severity (SCORAD, median: line, quartiles: box) of treatment vs
placebo arms from the real trial (Bodemer et al. 28) (C) and virtual population (D) at observation
time points. E – F: Individual (points) and average (circles) treatment effect represented by the
SCORAD at 6 months compared with baseline SCORAD from the real trial (Bodemer et al. 28) (E)
and randomly sampled virtual patients matching the baseline SCORAD for placebo and treatment
arms (F).
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In particular, SCORAD at 6 months for data vs model are Q1: 7.7 vs 10.2 median: 19.4 vs 21238

Q3: 25.5 vs 31. The average calibration error in median SCORAD for the placebo arm is 4.1 (range:239

1.7 7.1), and 3.2 (range: 0.6 5.8) for the treatment arm. These results show that a predicted impact240

of protocol changes to SCORAD higher than 5 points can be considered to exceed the efficacy241

prediction error of our QSP model.242

3.2 Assessment of trial results sensitivity to the trial protocol243

Trial protocols are complex and contain a high number of degrees of freedom. As such, their impact244

on efficacy are typically difficult to assess empirically. To address this difficulty, we intend to show245

that in silico trials based on our QSP model can allow clinicians to systematically test variations246

in trial protocol and conclude on possible trial outcomes. We therefore explored potential design247

alternatives for the trial reproduced in Section 3.1 (see also Table 1) in order to identify the trial248

protocol parameters to which the average treatment effect is most sensitive. We report the average249

treatment effect and sample size estimated for given power in Fig. 3. Overall, the average treatment250

effect shows a clear sensitivity to variations in dosing regimen of OM-85 administration (Fig. 3A-D)251

or in the choice of the endpoint (Fig. 3E-H) whereas the impact of SoC treatments parameters252

(duration of the TCS induction phase, TCS potency, and TCS administration frequency) appear to253

be negligible (Supplementary Information S2.1).254
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Figure 3. Sensitivity of trial results to trial protocol. Impact of (A – B) OM-85 administration
frequency, from 5 to 30 days / month with a 5-day incremental step; (C – D) OM-85 treatment
duration, from 1 to 12 months with a 1-month incremental step; (E – H) Endpoint: EASI, SCORAD,
relative (i.e. normalized by the baseline severity) EASI (rEASI) and SCORAD (rSCORAD). The
red dot represents the clinical trial settings of the study of Bodemer et al. 28 .

The average treatment effect increases with the frequency of OM-85 administration with the best255

performance (Fig. 3 A: average treatment effect: 5, B. sample size: 83) being reached with a daily256

OM-85 administration as in Bodemer et al. 28 . Compared with 5 days of OM-85 administration per257
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month, the average treatment effect is 2 fold higher and the sample size 17 fold smaller. The efficacy258

also increases with the treatment duration until 6 months of treatment before reaching a plateau259

(Fig. 3 C: plateau average treatment effect 5.4, D: plateau average sample size 77). Compared with a260

single month of treatment, the average treatment effect is 10 fold higher and the sample size 6 fold261

smaller. Finally, our results indicate that the best endpoint is the relative EASI (Fig. 3E-G) for which262

the power (Fig. 3H) and sample size (Fig. 3I) are minimal: 34 patients are required compared with263

83 when using absolute SCORAD. Note that average treatment effect appears to be more sensitive264

to the choice of an absolute vs relative endpoint than to the choice of scoring system (SCORAD or265

EASI, Fig. 3E).266

3.3 QSP model-assisted early biomarker identification267

In this section, we showcase how our QSP model can support a biomarker program early in clinical268

development with the aim of tailoring the target population by inclusion/exclusion criteria. This269

strategy is relatively common in AD: for example, focusing on higher disease severity strata can270

reduce population heterogeneity and potentially increase measured clinical benefit (explained e.g.271

by a larger need for treatment) but at the expense of targeting a more narrow subpopulation of272

AD patients1. Selection by phenotype and/or biomarkers may also help with treatment effect273

stratification and development of companion diagnostics already had success in other disease areas,274

e.g. in targeted cancer therapy83. However in the context of AD, the identification of predictive275

biomarkers seems to be difficult and to date, stratification by phenotypes (or associated markers)276

was not yet successful in stratifying treatment effect84 and only a handful of treatment-specific277

molecular biomarkers have been suggested so far with targeted therapies (see85. In part, this is due278

to the fact that identification of biomarkers predictive of the treatment effect requires the existence279

of rich datasets which include treatment effect and a panel of marker candidates. In the absence of280

such data, QSP models, acknowledged by regulatory bodies86 (especially in pediatric populations),281

have been suggested as promising tools to guide biomarker identification because they can leverage282

knowledge about the involved pathophysiological mechanisms thereby encoding information on283
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how disease pathways respond to biomarker change.284

3.3.1 Enriched synthetic trial data generation285

We make use of the following two capabilities of the disease model: a) the uncorrelated random286

variations in the 13 immune biomarker dimensions (Supplementary Information Table S4) in the287

virtual population which are in line with known marker variability and correspond to a broad diversity288

of AD phenotypes b) the alignment of the in silico clinical trial with historical trial data (Section 3.1).289

This allowed us to predict hypothetical, but biologically plausible, individual treatment effect for290

each virtual patient after OM-85 treatment including detailed immune cellular and soluble marker291

dynamics. This procedure augmented the existing demographics and disease severity data into a292

synthetic but highly immunologically enriched individual patient data set (Fig. 2). In the following293

sections, we then used this synthetic data to investigate various possible biomarker strategies for294

treatment effect stratification. Theoretically, there exists a range of options: from the use of disease295

severity strata to the use of thresholds on baseline markers levels (e.g. informed by a classifier296

based on linear or logistic regression and receiver operating curve validation) or of entire panels of297

quantitative marker levels (e.g. using treatment effect predicted from a model). This last strategy is298

known from other disease areas: for example, many metabolic disease trials employed stratification299

by insuline resistance as defined by HOMA-IR which uses fasting insulin and glucose levels and300

which was originally formulated as a rather complex non-linear ODE model87.301

3.3.2 Disease severity shows only limited potential for treatment effect stratification302

In line with the common practice of selecting AD trial populations by severity, we investigated303

if baseline severity was a good predictor for the OM-85 effect in the reproduced and enriched304

reference trial data. As a first simple test, we performed a linear regression of the OM-85 effect305

with respect to virtual patient’s baseline disease severity, which resulted in a poor fit (R2 = 0.29).306

In order to exclude that the too simplistic picture of a linear regression confounds a severity307

stratification effect, we also employed our QSP model, but using a simplified virtual population308
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where only individual baseline disease severity is varied (Supplementary Information S2.2). To309

better explain this approach, an analogy to mixed effect modeling88 is useful: in the reference310

virtual population, severity would be a random effect while all biomarkers would be mixed (with311

a severity-dependent mean and a random component). In the simplified severity-only population,312

all biomarkers’ fixed effects are kept but the random components are discarded. This approach313

performs poorly in comparison to the treatment effect values from our synthetic reference data (R2
314

= 0.35,Supplementary Information Figure S8.A), similarly to the linear regression. In line with that315

result, selecting a more severe patient subpopulation in our synthetic reference data is associated with316

slightly increased mean average treatment effect (Supplementary Information Figure S8.C1) as well317

as a predicted smaller sample size (Supplementary Information Figure S8.C2), but the restriction318

of the eligible patient fraction grows exponentially with the selection criteria (Supplementary319

Information Figure S8.C3). Selecting patients by baseline disease severity is therefore not the most320

promising avenue to responder enrichment in this example. This interpretation, however, has to be321

considered with caution since even though restricting the target population might be acceptable in322

some cases, clinical management aspects may become limiting for patient selection and more severe323

AD may have distinct pathophysiological mechanisms.324

3.3.3 Workflow for using our QSP model for low-dimensionality biomarker strategy325

Consequently, in view of the unsatisfactory results of stratification by disease severity we therefore326

proceeded to take into account the coupled and non-linear nature of biomarker dynamics imple-327

mented into our QSP model. While in principle one could use the QSP model to predict treatment328

effect (and other output variables) using all biomarkers as inputs, this strategy may not be realistic in329

practice. Indeed, the need of comprehensive data to provide a value for all inputs is in contrast with330

the ethical burden of taking patient samples as well as economical considerations (e.g. extensive331

proteomic analyses89). Furthermore, the decision of committing to such a large data acquisition332

plan is difficult to take without some confidence in the fact that these data could efficiently stratify333

the patient population. Specific parts of our treatment-agnostic model may be less important for the334
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effect of a specific treatment (such as OM-85, which acts via increase of the regulatory response,335

notably). Therefore, we sought a more parsimonous approach.336

A preliminary investigation using typical model reduction technique fitting a series of generalized337

linear models (R2= 0.2, Supplementary Information S2.3 and Supplementary Information Figure338

S9.A) did not show promising trade-off between simplification potential and accuracy when simplify-339

ing the QSP model structure. We therefore aspired to develop a workflow where not the QSP model,340

but the overall in silico trial approach is simplified. For this, we reduced the virtual population by341

replacing some biomarker values by reference values (which depends on disease severity) with the342

idea of not drastically altering treatment effect, the primary outcome. Again, with a mixed effect343

modeling paradigm in mind, this amounts to removing as many random effects as possible without344

degrading the model’s goodness of fit. Such dimensional reduction approach has several advantages:345

a) it increases the chances for validation with experimental data and b) it enables the integration with346

a biomarker identification program in a realistic clinical setting with a limited number of biomarkers347

per test. This strategy is similar to feature selection techniques that have been suggested earlier to348

interface machine learning with QSP90.349

Using the example of OM-85 versus placebo as add-on therapy on top of TCS and emollients,350

we therefore analyzed the contribution of the set of inputs in treatment effect variability. The result351

of this is the ranked list of markers that need to be supplied to the model (either from clinical data or352

the virtual population as a plausible theoretical counterpart of such data) in order to predict treatment353

effect. In practice, we performed an ANOVA-based global sensitivity analysis91;92 of treatment354

effect to baseline biomarkers using a virtual population of 2000 patients characterized by a unique355

baseline SCORAD (Supplementary Information Figure S11), which allowed to quantify the main356

effect of each biomarker and the effects of up to between four biomarker interactions. Ordering357

the biomarkers by their total effect (biomarker alone and sum of the interactions with any other358

biomarker) shows that each of the top four - alarmins, IL-22 cytokines, regulatory cytokines, and359

type-2 cytokines - explains more than 20% of the variance (and 83% in total) (Fig. 4B). Based on360

their main effect only (and not higher order interactions), they also exhibit the highest influence361

19/43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.01.23292105doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.01.23292105
http://creativecommons.org/licenses/by-nc-nd/4.0/


(8 to 15% each, 46% in total Supplementary Information Figure S12.A). We thus selected these362

lead biomarkers to predict treatment effect in the reduced input dimensionality approach. We then363

evaluated how this input dimensionality reduction approach performs, by confronting treatment364

effect values predicted with the reduced-variability vs the reference virtual population (Fig. 4A).365

While this approach leads to slight overestimation of treatment effect (Fig. 4C), the accuracy of the366

predictions is satisfactory (Fig. 4D, RMSE = 2.6, R2 = 0.63). Indeed, the prediction error (limited367

vs. full approach) is lower than 5 (SCORAD) for 94% of the virtual patients and the average error368

is 1.1 (min: 0.0002, Q1: 0.45, Q3: 2.23, max: 24.5). This prediction error is notably lower than369

measurement errors typically reported (normally distributed with a SD of 593).370
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Figure 4. Low-dimensionality biomarker strategy. A. Global sensitivity analysis quantifying
the (total: main + interactions) influence of baseline biomarkers on the treatment effect variance;
selected key biomarkers have a sensitivity index above the red dashed line (20 %). B. Treatment
effect distribution from the fully vs partially informed virtual population. C. Performance of the
dimensionality reduction approach: comparison of treatment effect predicted by the fully vs partially
informed virtual population.

We finally assessed the potential of using the biomarkers identified with the input dimensionality371

reduction approach for trial protocol optimization. In particular, we tested the effect of selecting372

virtual patients with required increasingly high treatment effect (predicted upon baseline marker373

selection); and we constructed subpopulations (including all patients – without selection – to the374

top 5% responders in incremental steps of 5%). For assessing this strategys performance, we report375

three indicators in Fig. 5: average treatment effect, sample size and statistical power. Selecting the376

top 50% responders results in 50% improvement of the average treatment effect (Fig. 5A), 50%377
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reduction of the average sample size (Fig. 5B), and 31% improvement of the average chance of378

success of the trial (Fig. 5C). The maximal improvement for the average treatment effect (with379

respect to reference trial, enrolling only the top 5% predicted responders) is roughly 150% (Fig. 5A),380

the maximal reduction of the average sample size is 75% (Fig. 5B), and the maximal improvement of381

the average chance of success 33% (Fig. 5C). We also evaluated the impact of patient selection on the382

recruitment effort, defined as the total number of patients to be screened (Fig. 5D). The recruitment383

effort can be seen as a metric of the optimal selection criteria, as in the clinics, part of the cost would384

scale with the number of patients to screen. Our results suggest the optimal selection criterion lies385

between 25% and 60% of best responders, where the recruitment effort is the lowest, with a 19%386

average decrease compared to no selection. The recruitment effort exponentially increases with387

the selection stringency when selecting the top patients up to the top 60%, representing up to 300388

patients to be screened for the top 5% selection criterion, i.e. 275% more than without selection.389
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Figure 5. Clinical trial optimization based on predicted responders selection. A. Average
treatment effect improvement (in %) vs increasingly strict selection criteria (top % responders):
median (line), interquartile range (box), whisker (dashed line). B. Sample size distribution (obtained
by bootstrapping over 100 samples) vs increasingly strict selection criteria: mean (line) and standard
deviation (colored area). C. Statistical power (i.e. proportion of successful trials) distribution
(obtained by bootstrapping over 100 samples) vs increasingly strict selection criteria : mean (line)
and standard deviation (colored area). D. Recruitment effort (total number of patients to be screened
during the recruitment process) distribution) vs increasingly strict selection criteria: mean (line) and
standard deviation (colored area). Note that the y-axes have been reduced to highlight the optimum
area, on average, 305 patients are to be screened for the selection of the top 5% best responders.
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4 Discussion390

4.1 Opportunities and challenges of combining complex QSP models and391

trial simulation392

PBPK and PD models, QSP models, exposure response modeling and trial simulations are often393

regarded as distinct modeling paradigms under the umbrella of model-informed drug development94.394

There exist to date only few integrated modeling frameworks which couple QSP models and trial395

simulations18;95–97, most probably because they are complex to set up, multiscale by design, require396

a multi-stakeholder engagement and considerable effort for verification and validation98;99. One of397

the main hurdles for complex models (e.g. in QSP) is the high-dimensional parameter space which398

needs to be informed or calibrated. High complexity can be a necessary feature100 of the model and399

can also increase its robustness: different biological contexts can be covered and thus heterogeneous400

data from multiple sources can be used for calibration. On the other hand, high-dimensional models401

are prone to identifiability issues and parameter estimation suffers from non-convex and multi-modal402

objective functions with gradients that are computationally expensive to evaluate101. To add to this403

complexity, there is no consensus on the best method, and performance of such methods are model-404

specific101. We have therefore chosen an approach that minimized the number of parameters to405

calibrate. We have coupled our disease model, our SoC treatments models, and the treatment model406

of the immunomodulator OM-8529 into a QSP model. Central to to the disease model setup has been407

the choice of an equilibrium assumption (i.e. defining the system in terms of stationary dynamics),408

which allowed for calculating rather than calibrating a large fraction of the free parameters. In this409

way, from the set of 139 parameters present in the final QSP model, 70 could be constrained by the410

equilibrium approach; with 46 others being fixed with information from the literature, effectively411

leaving only 23 unknown parameters for calibration (i.e. with SoC data). The drawback of this412

method is that the pathogenesis, natural evolution and resolution of the disease are not described413

and that the used datasets (here skin proteomics in pediatric patients) convey context specificity (e.g.414

the model would need to be re-informed for adults and serum biomarkers).415
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While such a QSP model can resolve several questions around patient profiles and dosing-416

regimen, simulation studies of entire clinical trials needs a dedicated workflow. We therefore set up417

a virtual population of AD patients to reproduce the between-patient variability of our reference418

clinical trial28. We used arm designs (intervention, dosing-regimen), eligibility criteria and trial419

duration to perform trial simulations to predict drug efficacy according to a variety of trial protocols,420

therefore covering a wide spectrum of potential variables for trial design. Classically, in trial421

simulation used for statistical design, efficacy is considered as a constant by aggregating efficacy422

across all considered historical trials. However, when data exhibit heterogeneous treatment effects,423

uncertainty needs to be acknowledged and variability assessed by meta-regression and model-based424

meta-analysis. In fact, our QSP workflow can be considered as a corner case of model-based425

meta-analysis where several inputs from patient characteristics and posology are translated through426

mechanistic relationships into modulation of the efficacy. By using Monte-Carlo trial simulations427

(sometimes termed microsimulations) for several protocols and by assessing resulting simulation428

data for sample and effect size, we found a reduced sensitivity of efficacy optimization to dosing429

regimen (meaning that the dosing scheme from the reference trial is probably already optimal)430

compared to the choice of a relative severity endpoint over an absolute one which seems to harbor431

more potential for trial design optimization. In addition, this framework can be readily used for432

follow-up investigations like recruitment or cost-effectiveness considerations. One of the drawbacks433

of such trial simulation method (as compared to Monte Carlo simulation with a constant drug effect)434

is the high computational cost (per virtual patient) and the large storage and memory requirements435

when simulating many virtual patients.436

4.2 Towards the holy grail of model-informed predictive biomarker explo-437

ration438

Adjusting the dose and the treatment to each patient’s individual characteristics are the guiding439

principles of personalized medicine. Yet, today the gold standard for the approval of new drugs440

by regulatory agencies are placebo-controlled randomized clinical trials that report efficacy of441
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entire populations of patients (see our discussion in Courcelles et al. 102 from a health technology442

assessment perspective). A way to better individualize drug development could be to use patient443

stratification and subgroup analysis, optimally performed on the basis of easily measurable biomark-444

ers as objective (and ideally validated) predictors of treatment effect (predictive biomarkers). In fact,445

trials using biomarkers have an almost doubled overall probability of success compared to trials446

without biomarkers, notably in Phase I and II according to an analysis of Wong et al. 103 , but the use447

of biomarkers outside of oncology is not very frequent103. To be implemented early-on, exploration448

of potential biomarkers has to be started prior to Phase I trials so that validation and qualification449

of biomarkers can be tackled during clinical development104. While in targeted oncology, markers450

(i.e. mutations) indicating the diseases vulnerability to treatment modulation are straightforward in451

their interpretation, inflammatory diseases often involve an intricate network of immune signaling452

and cellular pathways so that the search for biomarkers signatures is like a needle in the haystack85.453

In AD, progress has been made to identify biomarkers of severity such as systemic levels of the454

chemokine C-C motif ligand 17/thymus, an activation-regulated chemokine and chemoattractant455

of Th2 cells, which shows robust correlation with AD clinical severity, at both baseline and during456

therapy and thus could be used an objective surrogate for treatment effect105, but if such biomarker457

can also predict treatment effect for a specific investigational drug of interest is still an open question.458

The motivation behind this study was to use our QSP workflow to map the body of evidence of the459

relationships between biomarker levels and disease severity, in line with the immune dysregulation460

system involved in AD, onto a reference trial so that synthetic trial data is enriched with such461

biologically plausible information. As a proof of concept and to increase the practical applicability462

of our workflow, we tested several approaches to identify biomarkers predictive of treatment effect.463

We identified that neither a linearized surrogate model approach nor subgroup analysis by severity464

only lead to sufficient stratification potential, which a) plausibly underlines the difficulty to find465

predictive biomarkers in the context of AD (clinical data are in fact often analyzed using these466

statistical techniques), and b) emphasizes the need for methods which take into account non-linear467

effects for this purpose. Only an input dimensionality reduction approach, based on global sensitivity468
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analysis proved accurate enough for identification of the skin biomarkers most predictive of OM-85469

treatment effect. We did not intend to oversimplify the structural model (e.g. by lumping techniques)470

in view of the anticipated unbiased exploratory nature of the model. As linearization of the model was471

unsuccessful, the only viable option for simplification was to reduce the number of predictive input472

baseline biomarkers characterizing each virtual patient by replacing variability by fixed reference473

values. Quantification of how the input dimensionality reduction approach performs for predicting474

individual treatment effect makes us confident that embedding it within the in silico clinical trial475

framework can yield a treatment-specific tool that captures the state-of-the-art knowledge about how476

skin biomarkers are involved in the mechanism of action. As a perspective, this could a) inform the477

inclusion into the sample collection and analysis plan of e.g. Phase II trials, b) be prospectively478

validated through comparison with the generated clinical data and c) once qualified could support the479

clinical evidence by enrichment in sparsely sampled regions of biomarker space. For the use-case of480

OM-85, we found a subset of four skin biomarkers (alarmins, IL-22, type-2 and regulatory cytokines)481

predictive of treatment effect and we simulated that patient selection based on this subset may lead482

to larger effect size. In line with our results and among the skin biomarkers the model identified483

to be predictive of OM-85 effect, IL-22 and IL-13 expression levels in the skin tissues have been484

previously identified to strongly and significantly correlate with clinical therapeutic effect in AD105.485

Development of such computational approaches goes well in hand with promoting clinical trials486

designed to validate or reject the predictions made by the model and which could then either be487

used to improve subsequent (e.g. Phase IIb and III) clinical trial designs or in a learn and confirm488

paradigm to refine our model105.489
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