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Abstract 

Objective: Given that epileptic spasms are often subtle, and that identification of hypsarrhythmia is 

limited by inadequate inter-rater reliability, there is a significant need for novel tools to aid the clinical 

identification of Infantile Epileptic Spasms Syndrome (IESS). Deep learning is an emerging technology 

which may enable efficient classification of disease states and may facilitate discovery of novel 

biomarkers. In this study, we set out to evaluate whether children with epileptic spasms can be 

distinguished from normal controls with use of an EEG-based deep learning model.  

Methods: A deep learning model was trained and validated (5-fold cross validation) using 400 EEG 

samples (2 awake and 2 sleep samples from 50 children with epileptic spasms and 50 normal controls). 

Salient frequency bands and specific morphologic EEG features were identified with occlusion sensitivity 

analysis and targeted input perturbation, respectively.  

Results: The model accurately distinguishes children with epileptic spasms from normal controls, solely 

on the basis of relatively short EEG samples. Using sleep data, accuracy = 0.95, recall = 0.96, precision 

(sensitivity) = 0.94, specificity = 0.94, and F1 score = 0.95. With awake data, accuracy = 0.91, recall = 

0.84, precision = 0.98, specificity = 0.98, and F1 score = 0.90. The salient frequency bands for 

classification are 9.7 – 22.0 Hz and 1.0 – 6.8 Hz in sleep and awake EEG, respectively. With visual analysis 

of extracted salient features, we suspect that the model is identifying cases on the basis of paroxysmal 

fast activity in sleep and spike-wave activity in wakefulness.  

Conclusion: This deep learning model represents a first step in the development of efficient algorithms 

that may aid in identification of epileptic spasms and IESS. More importantly, this approach may 

facilitate novel EEG-based biomarkers of epileptic spasms.  
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Introduction 

Infantile epileptic spasms syndrome (IESS) is a severe form of epileptic encephalopathy and the most 

common epilepsy syndrome in the first year of life.1 IESS begins in the first two years of life, and most 

often manifests with (1) epileptic spasms (ES; brief seizures often occurring in clusters), (2) 

hypsarrhythmia (a chaotic EEG pattern characterized by disorganized high-amplitude slowing and 

abundant epileptiform discharges), and (3) neurodevelopmental stagnation or regression.2,3 Although a 

majority of patients with IESS fulfill these criteria, there are many cases in which ES are exceptionally 

subtle, hypsarrhythmia is “mild”, or developmental impairment is initially absent or unrecognized. In 

addition, there are many cases in which ES occurs in older children, typically without hypsarrhythmia, 

and intermixed with other forms of epilepsy.4 The differential diagnosis chiefly consists of 

gastroesophageal reflux, benign sleep myoclonus, a spectrum of normal infant behaviors, and other 

forms of epilepsy. Given this milieu, recognition of ES and IESS is clinically challenging and requires 

extended video-EEG to electrographically evaluate both ictal events (which often only occur upon first 

morning awakening) and interictal hypsarrhythmia (which may be intermittent). However, even this 

gold-standard evaluation is problematic, in that the identification and characterization of 

hypsarrhythmia exhibits imperfect inter-rater reliability.5 Presumably as a result of inadequate 

syndrome awareness and barriers to diagnostic procedures (i.e. extended video-EEG), delay of diagnosis 

and treatment is common6 and contributes to avoidable adverse neurodevelopmental outcomes.7,8  

Given these challenges, there is substantial need for novel diagnostic tools which may facilitate accurate 

and rapid diagnosis, or even allow detection of emerging IESS before clinical onset. Machine learning, 

especially deep learning, is a powerful data analysis technique that has been successfully used in the 

analysis of EEG. Deep learning algorithms have been developed to recognize and differentiate subtle 

morphological EEG features, and may even outperform human experts.9 In this study, we set out to 
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determine whether a deep learning approach using only brief samples of interictal EEG could be used to 

accurately discriminate children with ES from normal controls.  

Methods 

Standard protocol approvals 

This study was approved by the institutional review board at the University of California, Los Angeles. 

Given the retrospective design and deidentification of EEG data, the requirement for informed consent 

was waived. 

Study design and subjects  

This is a retrospective cohort study, utilizing the same subjects and EEG samples that were used in our 

prior studies evaluating candidate biomarkers. Our methods for subject selection are described in detail 

therein.10,11 Briefly, our cohort consisted of 50 patients with epileptic spasms (cases) and 50 normal 

controls. All cases underwent overnight video-EEG which demonstrated epileptic spasms. The normal 

controls all underwent overnight video-EEG for evaluation of suspected seizures, but all normal controls 

were found to have events that were not seizures (e.g., gastoesophageal reflux, normal movements, 

etc.) and were deemed neurologically normal on a clinical basis.  

Data acquisition 

Our methods for EEG data collection have been described previously.10,11 In brief, all clinical data were 

obtained from the electronic medical record. For each study, four EEG clips were abstracted (two in 

wakefulness and two in sleep, approximately 10 each). As such, a total of 400 EEG samples were used in 

the analyses described here. Importantly, the specific epochs selected for clipping were dictated by a 

randomization algorithm such that the abstractor selected EEG data beginning at a specific randomly 

selected time.  
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EEG preprocessing and feature extraction  

The overall methodologic framework is illustrated in Figure 1. EEG data from electrodes labeled Fp1, 

Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, FZ, CZ, and PZ were used. After applying a 

bandpass [1 Hz, 50 Hz] filter, EEG samples were segmented into windows of 15-seconds width. We 

applied the Fast Fourier Transform (FFT) to each channel to create a 2D channel-frequency image for 

each window. The input of the deep learning model is the 2D channel-frequency image of size 19 X 

15000 (channels x frequency bins), with normalization to a standard gray scale image with pixel values 

ranging from 0 to 1. 

Deep learning model architecture 

To develop our model, we utilized the convolutional neural network (CNN), a state-of-the-art deep 

learning architecture that has demonstrated superior performance in the analysis of imaging12 and EEG 

data.9 To mitigate common gradient vanishing and facilitate superior model convergence, we used a 34-

layer CNN with residual connections block. The output of the model is the probability of each EEG 

recording having been derived from a case.   

Model training and evaluation 

Because ground truth labels (case/control) are missing for each 15s window of the EEG segment despite 

the availability of subject information, we adopted the weakly supervised learning approach, i.e. all 

windowed samples from case patients were labeled as case and control as control. We utilized a 5-fold 

cross-validation in which subjects were divided into five mutually exclusive groups, with 20 subjects (10 

cases and 10 controls) in each group. For each fold, 80 subjects were used for model training and 20 

subjects were used as a test set. Among the 80 training subjects, 10 patients (5 cases and 5 controls) 

were used for validation purposes to assess training performance in each training iteration. Overall, this 

training/evaluation approach supports the practical application of the model to novel subjects. Since the 
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model is required to predict whether each 15-second EEG window is derived from a case or control, we 

used binary cross-entropy as the loss function, L=−[y⋅log(x)+(1−y)⋅log(1−x), where x is the probability of 

the windowed sample from the network, and the y is the label indicating case (positive, y = 1), or control 

(negative, y = 0). Given that EEG samples were of varying lengths, we adopted a novel stratified training 

approach which is widely used in the processing time-series data in the multimedia community.13 In 

each training iteration, for each patient, we randomly selected starting time stamps and constructed FFT 

maps from 15 second windows, such that information contributed from each patient was equal in each 

training iteration, with positive and negative samples balanced during the training phase. We conducted 

400 training iterations in each fold. To improve generalization, we selected the model corresponding to 

the global minima in the validation set over training iterations, i.e., the highest balanced accuracy score. 

As it is impractical to exhaustively evaluate model prediction on the FFT maps starting at every data 

point in the recording, we used a non-overlapping construction, such that FFT maps were generated 

from consecutive non-overlapping 15-second windows. To evaluate model performance we calculated 

accuracy, specificity, sensitivity, and F1 score. Finally, in order to classify a subject as case or control, we 

used the number of median-filtered successive case predictions in the non-overlapping construction, 

based on model confidence scores (predicted probability of each non-overlapping window). As such, a 

subject was predicted to be a case if any subset of windowed samples generated a prediction of case 

status. To protect external validity (i.e., generalization of the model to novel cohorts), we again 

employed a 5-fold cross-validation approach in the downstream analyses. Due to the sequential nature 

of the model inference (based on successive case predictions on the non-overlapping construction), we 

defined the earliest detection latency as the time from the beginning of each recording to the time 

when the model had sufficient information to classify the entire sample as having been derived from a 

case patient. 
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Occlusion sensitivity analysis and salient band discovery 

We next employed occlusion sensitivity analysis, a contemporary technique used in the interpretation of 

black-box classifiers such as CNN, in the attempt to identify the frequency band(s) in which critical EEG 

features may reside. Specifically, for each input column (frequency band) of an input image x, we 

evaluated the model with that frequency band missing and observed how the output (prediction) 

changed. In particular, a column (frequency band) is deemed important when the change of the model 

confidence ||f(x) - f(x_without_i)|| is large. The occlusion analyses were carried out on sleep and awake 

EEG models separately, using data samples from the non-overlapping construction. An occluded 

rectangular region (occlusion map) was defined as 19 channels x 5 Hz with a stride size of 1/15 Hz. We 

then generated a patient-wise occlusion template using the median value across each pixel in all 

patient-specific occlusion maps, and finally generated an overall sleep occlusion template across 

subjects by using the median value of each pixel across all patient-specific occlusion templates (n = 50). 

We repeated the same procedure for awake EEG to generate an overall awake occlusion template. The 

salient frequency band which contributes the most to the case prediction of the model was then 

identified using adaptive thresholding (Otsu’s method) in the overall occlusion template map. 

Targeted input perturbation 

As illustrated in Figure 2, after salient frequency band identification by occlusion sensitivity analysis, the 

model was reassessed with targeted input perturbation, similar to methods previously employed by our 

group.9,14 As above, this procedure was conducted separately for awake and sleep data. For each 15 

second window derived from Case EEG, a band-reject filter was applied to remove data within the 

salient frequency band, and these data were then replaced with average control data (average 

normalized waveform over the non-overlapping construction of all control patients) within the same 

frequency band. The effect of this perturbation across all case subjects was visually evaluated with 
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histogram analysis of case/control predictions. Statistical assessment was accomplished with a one-

tailed t-test performed on the change of output probability scores from the deep neural network. 

Statistical Methods 

All statistical calculations were accomplished with Python (v3.7.3; Python Software Foundation, USA).  

PyTorch (version 1.6.0; Facebook's AI Research lab) was used to develop the deep neural network. 

Continuous variables are described by median (interquartile range) or mean (standard deviation). 

Comparisons between groups were performed using chi-square, t-test, or Wilxocon rank-sum as 

appropriate. Significant results were considered with p < 0.05 unless stated otherwise. 

RESULTS 

Model performance 

The trained model performed satisfactorily with 5-fold cross validation. Using sleep and awake EEG data, 

respectively, accuracy in classifying cases and controls was 0.95 (SD 0.049) and 0.91 (0.041), recall was 

0.96 (0.054) and 0.84 (0.11), precision (sensitivity) was 0.94 (0.052) and 0.98 (0.040), and F1 score was 

0.95 (0.049) and 0.90 (0.052). In the final model, we enacted a threshold classifier such that a full-length 

EEG sample was predicted to have been derived from a case (patient) if any 6 consecutive 15 second 

windows were classified as “case”. With EEG preprocessing, the minimum sample required for case 

versus control prediction (i.e., detection latency) is 120 seconds. In patient-wise 5-fold cross-validation, 

the median detection latency was 120 seconds (95% CI 120 – 135).  

Interpretability analysis 

In the occlusion sensitivity analysis, with the adaptive thresholding procedure, we found that model 

prediction was most affected by occlusion of data within the 9.7 – 22.0 Hz frequency band in sleep EEG, 

and the 1.0 – 8.6 Hz frequency band in awake EEG. After targeted input perturbation, in which these 

salient frequency bands were replaced with average control data, we found that patients who had been 
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correctly classified as cases were now consistently re-classified as control subjects. The results of the 

targeted input perturbation are summarized in Figure 3. 

Discussion 

In this study, we have demonstrated that a deep learning model can be successfully trained to 

accurately and efficiently distinguish children with epileptic spasms from normal controls, using 

relatively brief samples of interictal EEG. However, although our model is highly accurate, it is not 

altogether clear which attribute(s) the model is using to classify subjects. Our occlusion sensitivity and 

targeted input perturbation analyses suggest that the canonical beta frequency band is most critical for 

classification of sleep data, and that delta and low theta activity (1 to 6 Hz) is most important for 

evaluation of awake data. To a large extent, based on our visual review of extracted salient features, we 

suspect that the model is identifying cases on the basis of paroxysmal fast activity15 in sleep, and slowing 

or spike-slow-wave complexes in wakefulness.  

There are several specific situations in which this model and approach may be useful. First, in clinical 

settings in which there is access to routine—but not extended video-EEG—this algorithm may enhance 

the diagnostic value of a brief routine EEG which does not capture ictal events. Second, to the extent 

that this model ‘detects’ IESS, this approach could be applied to augment EEG based surveillance for 

impending epileptic spasms relapse after initially successful treatment, or to screen populations at risk 

of developing IESS (e.g., Tuberous Sclerosis Complex or hypoxic ischemic encephalopathy).  

There are several significant limitations to this study. Foremost, this is a retrospective analysis and a 

prospective external validation study is needed. In addition, although the sample size (n = 100) is 

relatively large for a study of children with epileptic spasms, it is rather small from the perspective of 

machine learning and deep learning. A much larger sample may slightly improve classification 
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accuracy—given that there is limited room for improvement—and may significantly improve 

identification of salient frequency bands and facilitate discovery of novel EEG features. A disappointing 

aspect of this initial analysis was the lack of discovery of a novel EEG biomarker.  

In summary, this is a successful first attempt to train an EEG- based deep learning model to distinguish 

children with epileptic spasms from normal controls. Further study is needed to validate our findings, 

and confront more challenging clinical questions such distinguishing children with epileptic spasms from 

children with other seizure types, or using EEG to predict emergence of IESS, response to treatment, 

relapse, and potential evolution to Lennox-Gastaut Syndrome.  
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Figure 1. Methodologic Framework  
The workflow consists of three parts. In part (i), each EEG recording is segmented into consecutive 15-
second windows, which window then converted into a normalized FFT map. In part (ii), the FFT maps 
are used in 5-fold model training. In part (iii), the model inference procedure is illustrated, whereby 
non-overlapping 15-second segments are systematically sampled from each test recording and 
entered into the trained neural network. Subsequently, the results for each 15-second segment are 
consolidated to generate a classification outcome for the patient. 
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Figure 2. Targeted input perturbation workflow  
The comprehensive workflow for implementing targeted input perturbation involves several steps. 
Initially, a specific 15-second segment of an EEG recording in waveform is chosen as the subject for 
perturbation. Frequencies other than the "biomarker" frequencies, which were determined from a 
previous occlusion sensitivity analysis, are retained by employing a band-reject filter. Following this, 
the so-called average control waveform is calculated by computing the numerical average waveform 
from all 15-second segment waveforms in control patients' recordings. This average control waveform 
is then subjected to a band-pass filter to emulate normal control behavior within the biomarker band. 
The processed case waveform and average control waveform are subsequently combined to 
determine whether the case biomarker, as characterized by the processed case waveform, can 
transform the case waveform into a control. Finally, this synthesized waveform is input into the 
inference pipeline, and the resulting prediction from the deep neural network (DNN) is analyzed. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 1, 2023. ; https://doi.org/10.1101/2023.06.30.23292096doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.30.23292096


Page 15 of 15 
 

 
Figure 3. Targeted Input Perturbation 
The top (a – c) and bottom (d – f) rows refer to sleep and awake datasets, respectively. Panels (a) and 
(d) illustrate sampled FFT maps from correctly classified cases. Panels (b) and (e) illustrate FFT maps 
after perturbation. Panels (c) and (f) illustrate the absolute shift in case prediction with perturbation.  
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