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Abstract 

INTRODUCTION: Growing evidence indicates fine particulate matter (PM2.5) as risk 

factor for Alzheimer’s’ disease (AD), but the underlying mechanisms have been 

insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in 

brain tissue as potential mediator of this association. 

METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal 

cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, 

ABC score) for 159 donors, and estimated donors’ residential traffic-related PM2.5 

exposure 1, 3 and 5 years prior to death. We used a combination of the Meet-in-the-

Middle approach, high-dimensional mediation analysis, and causal mediation analysis 

to identify potential mediating CpGs.  

RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 

and cg10495669. Twenty-six CpG sites were identified as mediators of the association 

between PM2.5 exposure and neuropathology markers, several located in genes related 

to neuroinflammation.  
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DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation 

mediates the association between traffic-related PM2.5 and AD. 
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1 Background  

Exposure to traffic-related air pollution (TRAP) is a significant contributor to public 

health burden with various detrimental health effects.1 Fine particulate matter (PM2.5), 

which has been regulated by the National Ambient Air Quality Standards (NAAQS) as a 

criteria air pollutant since 1997 in the United States (U.S.),2 is an important component 

of TRAP mainly resulting from tailpipe exhaust, brake wear, tire wear, and resuspended 

dust.3 PM2.5 from traffic emissions has higher toxicity compared to other natural sources 

in terms of oxidative potential, cell viability, genotoxicity, oxidative stress, and 

inflammatory response.4 The literature to date demonstrates that exposure to PM2.5 is 

associated with a series of neurological disorders, including dementia and Alzheimer’s 

disease (AD).5,6  

AD is the most common cause of dementia and its hallmark pathologies include 

accumulation of beta-amyloid (Aβ plaques) outside neurons and aggregation of 

hyperphosphorylated tau protein (neurofibrillary tangle, NFT) inside neurons in the 

brain.7 In the U.S., 9.30 and 75.68 million people are estimated to develop clinical AD or 

preclinical AD by 2060,8 and the total direct medical costs of AD is estimated to reach 

$259 billion by 2040.9 Due to the growing public concern with these substantial 

increases in the prevalence of AD, investigations on interventions to prevent 

progression and onset of AD have targeted the potentially modifiable risk factors of AD, 

including PM2.5.
10  

PM2.5 exposure might directly infiltrate the brain11 and accelerate AD pathogenesis 

and development via neuroinflammation, oxidative stress, and Aβ accumulation.12 

Increasing evidence from human and animal studies proposes that perturbations in 
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DNA methylation (DNAm), which regulates the expression of genes, are associated with 

indicators of AD as well as PM2.5 exposure. However, the tissue specificity of DNAm has 

limited the ability of previous studies to formally investigate mediation. While there is no 

conclusive evidence of an association between AD and DNAm in blood,13 DNAm 

alterations in a number of genes were observed to be associated with AD pathology and 

neuroinflammation in brain tissues, such as amyloid precursor protein (APP),14 

microtubule-associated protein tau (MAPT),14 apolipoprotein (APOE) promoter region,15 

homeobox A3 (HOXA3),16 interleukin-1 beta (IL-1β),17 and interleukin-6 (IL-6).17  

The association of PM2.5 with DNAm in blood has been extensively studied.18 DNAm 

in interleukin-10 (IL-10), IL-6, tumor necrosis factor (TNF), toll like receptor 2 (TLR2) 

genes, which play key roles in neuroinflammation,19 was reported to be significantly 

altered in response to short-term exposure to PM2.5 and its species.20 However, to the 

best of our knowledge, no human studies have been published on the association 

between PM2.5 exposure and DNAm in human brain, which is the most relevant tissue 

when studying AD. The only evidence to date comes from in-vivo and in-vitro studies. 

Tachibana et al. demonstrated with a mouse model that prenatal exposure to diesel 

exhaust altered DNAm in brain tissues collected from 1- and 21-day-old offspring, and 

the differentially methylated CpG sites were enriched in the gene ontology (GO) terms 

related to neuronal development.21 Wei et al. exposed human neuroblastoma cells to 

near-road PM2.5 and found that DNAm was hypermethylated in the promoter regions of 

genes encoding synaptic neuronal adhesion molecules that mediate essential signaling 

at synapse.22  
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The mediating role of DNAm for the association between PM2.5 and AD pathology 

has not been well studied, given the limited evidence of an association between PM2.5 

exposure and DNAm in the brain. The current study investigated the relationship among 

PM2.5, DNAm and AD neuropathology in the post-mortem human brain among brain 

donors of the Emory Goizueta AD Research Center (ADRC) brain bank. We recently 

showed a significant association between traffic-related PM2.5 exposure and increased 

AD neuropathology in this dataset.23 To elucidate the biological mechanisms for this 

association, we here investigated whether differential DNAm in the prefrontal cortex 

tissues mediates the association between long-term exposure to traffic-related PM2.5 

and the levels of AD-related neuropathological markers. This hypothesis was tested 

using a combination of the Meet-in-the-Middle (MITM) approach and high-dimensional 

mediation analysis.  
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2 Methods 

2.1 Study design 

The current cross-sectional analysis included study participants recruited by the Emory 

Goizueta ADRC. The ADRC was founded in 2005 and has maintained a brain bank to 

facilitate AD research. The study participants were research participants evaluated 

annually, and others were patients treated by Emory Department of Neurology 

physicians and diagnosed clinically with AD (biomarker defined) or probable AD. The 

prefrontal cortex tissues were obtained from the participants who had consented to 

donate biospecimens to the ADRC brain bank. There were 1011 donors enrolled by the 

third quarter of 2020. After applying the following inclusion criteria, 264 donors remained 

eligible for the current study: 1) the availability of residential addresses within Georgia 

(GA) state; 2) age at death equal to or over 55 years (death earlier than 55 possibly due 

to competing risks); 3) deceased after 1999 (due to the availability of air quality data); 4) 

no missing values in neuropathology outcomes and key covariates including age at 

death, race, sex, educational attainment, and APOE genotype. Among these donors, 

genome-wide DNAm was measured in 161 available samples from the donors 

deceased after 2007, and after quality control, 159 were included in the current 

analysis. Written informed consent was provided for all donors, and samples were 

obtained following research protocols approved by the Emory University Institutional 

Review Board. 

 

2.2 Neuropathology assessment 
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The ADRC performed thorough neuropathologic evaluations on the brains of all donors 

using established comprehensive research evaluations and diagnostic criteria.24 These 

neuropathological assessments include a variety of stains and immunohistochemical 

preparations, as well as semi-quantitative scoring of multiple neuropathologic changes 

by experienced neuropathologists using published criteria.25 In this project, AD-related 

neuropathological changes were evaluated using Braak stage, Consortium to Establish 

a Registry for AD (CERAD) score, and a combination of Amyloid, Braak stage, and 

CERAD (ABC) score which were developed based on the Aβ plaques and NFTs.26 

Braak stage is a staging scheme describing NFTs with six stages (Stage I-VI) with a 

higher stage indicating a wider distribution of NFTs in brain. CERAD score describes 

the prevalence of Aβ plaques with four levels from no neuritic plaques to frequent. ABC 

score combines the former two (along with the Thal score for Aβ plaque distribution 

across various brain regions)27 and is transformed into one of four levels: not, low, 

intermediate, or high level of AD neuropathologic changes.      

 

2.3 Air pollution assessment 

Annual concentrations of traffic-related PM2.5 were estimated for the 20-county area of 

Metropolitan Atlanta, GA for 2002-2019. The spatial resolution of the PM2.5 data were 

250×250m (for 2002-2011) and 200×200m (for 2012-2019). The grid cells of the 

corresponding side length were evenly distributed throughout the study area. The 

process for estimating 2002-2011 PM2.5 concentrations was previously published.28,29 

Briefly, a calibrated Research LINE-source dispersion (R-LINE) model for near surface 

releases was applied for calculating annual averages of traffic-related PM2.5. The model 
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yielded a normalized root mean square error of 24% and a normalized mean bias of 

0.3% by comparing with the estimates of the receptor-based source apportionment 

Chemical Mass Balance Method with Gas Constraints.28 For estimating 2012 to 2019 

PM2.5 concentrations, we trained a land-use random forest model based on the 2015 

annual concentrations of traffic-related PM2.5 obtained from Atlanta Regional 

Commission,30 road inventory and traffic monitoring data shared by the Georgia 

Department of Transportation, land cover data accessed via the National Land Cover 

Database, and ambient PM2.5 data obtained from Atmospheric Composition Analysis.31 

The random forest model was trained with the R package randomForest32, and two 

user-defined parameters (i.e., the number of trees and the number of variables 

randomly tried at each split) were determined by a balance of the efficiency and the out-

of-bag R2 value. The final model reached an out-of-bag R2 of 0.8 and a root-mean-

square deviation of 0.2 µg/m3. This model was used to predict annual traffic-related 

PM2.5 for 2012-2019 with a spatial resolution of 200m. More details can be found 

elsewhere.23 Finally, we spatially matched geocoded residential addresses to the 

centroid of closest grids and calculated the individual long-term exposures as the 

average of specific exposure windows (1 year, 3 years, and 5 years prior to death).  

 

2.4 Genome-wide DNA methylation 

DNA was isolated from fresh frozen prefrontal cortex in 161 samples using the QIAGEN 

GenePure kit. DNAm was assessed with the Illumina Infinium MethylationEPIC 

BeadChips in batches of 167 prefrontal cortex samples including 6 replicates. The raw 

intensity files were transformed into a dataset that included beta values for each the 
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CpG sites, and these beta values were computed as the ratio of the methylated signal 

to the sum of the methylated and unmethylated signals, which ranged from 0 to 1 on a 

continuous scale. Pre-processing and statistics were done using R (v4.2.0). We 

followed a validated quality control and normalization pipeline as previously published.33 

The detailed data processing and sample quality control can be found in the 

Supplementary Methods. One hundred and fifty-nine samples passed the quality check, 

and after excluding SNP probes, XY probes and other low-quality probes, 789,286 CpG 

sites remained. The final DNAm beta values were further normalized to reduce the 

probe type differences and corrected by ComBat to remove the batch effect before the 

downstream analysis.34 We estimated the cell-type proportions (neuronal vs. non-

neuronal cells) for each sample using the most recent prefrontal cortex database and 

the R package minfi.35,36 

 

2.5 Covariate assessment 

The confounding structure was determined according to literature review and our 

previous studies, which was illustrated by directed acyclic graphs (DAGs) in the 

Supplement (Figure S1). Individual-level demographic characteristics [sex, race (Black 

vs. White), educational attainment (high school or less, college degree, and graduate 

degree), age at death, APOE ε4 genotype] were obtained from the medical records. 

APOE ε4 genotype was continuous with a 3-point scale (0 = no ε allele, 1 = one ε4 

allele, and 2 = two ε4 alleles). Area Deprivation Index (ADI) for each donor was 

estimated at the residential address as a proxy for neighborhood socioeconomic status, 

based on a publicly available database at the level of the Census Block Group for 
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2015.37 Post-mortem interval (hours) of sample collection was provided by our lab 

collaborators.  

 

2.6 Statistical analysis 

Previously, we found higher residential PM2.5 exposure was associated with increased 

AD neuropathology in the Emory Goizueta ADRC brain bank.23 To identify DNAm 

patterns in brain tissue that potentially mediate the association between PM2.5 exposure 

and increased neuropathology markers, we 1) conducted an epigenome-wide 

association study (EWAS) for the long-term PM2.5 exposures 1 year, 3 years, and 5 

years prior to death and then investigated whether any differentially methylated CpG 

sites that were significantly associated with PM2.5 exposure in the EWAS were also 

associated with increased neuropathology markers; and 2) conducted a combination of 

Meet-in-the-Middle (MITM) approach and high-dimensional mediation analysis (HDMA) 

to identify any mediating CpGs that did not reach genome-wide significance in the 

EWAS of PM2.5. The MITM approach and HDMA work complementarily to maximize the 

detention of potential mediators. 

Firstly, we conducted an EWAS to assess associations of long-term PM2.5 exposures 

1 year, 3 years, and 5 years prior to death and methylation levels of CpG sites. 

Specifically, we used robust multiple linear regression models as implemented in the R 

package MASS to identify differentially CpG sites associated with PM2.5 exposures.38 To 

account for measured confounding factors, we included sex, race, educational 

attainment, age at death, PMI, ADI, and proportion of neuronal cells in the model. 

Potential batch effect and other unwanted variation were further corrected using the R 
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packages sva39 (estimating surrogate variables included in the EWAS model as 

covariates) and Bacon.40 The sva was used to obtain surrogate variables to be included 

in the models. To account for multiple testing, the Bonferroni threshold was used for 

statistical significance (0.05 / 789,286 = 6.33×10-8), while no cut-off was applied on the 

magnitude of DNA methylation difference.41  

Any CpG sites that were significantly associated with PM2.5 exposure were then 

investigated for their associations with neuropathology markers. These associations 

were extracted from an EWAS of each neuropathology marker (CERAD, Braak stage, 

ABC score) with methylation levels of all CpG sites, using robust multiple linear 

regression models with the neuropathology markers converted to continuous outcomes 

and DNAm beta values of CpG sites as exposures, adjusting for sex, race, educational 

attainment, age at death, PMI, APOE genotype, and proportion of neuronal cells. We 

used Bacon40 to control for unmeasured confounding and bias due to the minor 

inflation/deflation indicated by raw p-values. 

For the MITM, we compared the 1,000 most significant CpGs from the two sets of 

EWAS on all CpG sites for PM2.5 exposures and neuropathology markers to identify the 

differentially methylated CpG sties that were associated with both exposures and 

outcomes. In other words, the raw p-values of all 789,286 CpG sites were sorted 

increasingly, which were derived from the two set of EWAS models conducted on PM2.5 

exposure and neuropathology markers, respectively. We selected the CpG sites among 

the lowest 1000 for both PM2.5 exposure and neuropathology markers. The MITM 

approach is widely used in high-dimensional setting to identify intermediate 

biomarkers.42 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2023. ; https://doi.org/10.1101/2023.06.30.23292085doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.30.23292085
http://creativecommons.org/licenses/by/4.0/


13 

 

Then, we conducted a HDMA using the R packages HIMA and DACT to identify any 

potential mediating CpG sites between PM2.5 exposure and neuropathology from all 

789,286 CpG sites. HIMA is an R package for estimating and testing high-dimensional 

mediation effects for omics data, which adopts the multiple mediator model’s framework 

with reducing the dimensionality of omics data via sure independence screening and 

minimax concave penalty.43 The divide-aggregate composite null test (DACT) is a more 

recent method for HDMA, which utilizes the Efron empirical null framework to calculate 

a weighted sum of p-values obtained from exposure-mediator (EWAS of PM2.5 exposure 

as described above) and mediator-outcome (EWAS of neuropathology markers as 

described above) models for testing the significance of all mediators44. We corrected for 

multiple testing in HIMA and DACT using the Bonferroni method. Lastly, for the 

mediating CpG sites identified by either HIMA or DACT, we used the R package 

mediation to conduct a causal mediation analysis obtain their indirect effects.45-47 The 

mediation is a frequently used tool which implements the mediation methods and 

suggestions proposed by Imai et al.48,49 The average causal mediation effect (i.e., 

indirect effect) and total effect estimated by mediation were summarized for the CpG 

sites with positive indirect effects that were in line with the hypothesized adverse effect 

of traffic-related PM2.5 on neuropathology markers. In contrast to the MITM approach 

described earlier, HDMA examine multiple mediators together in a framework of 

mediation analysis, which allowed us to ascertain the extent to which the particular 

indirect effects were associated with the mediators. 

To aid the interpretation of model results, we conducted a gene ontology analysis 

using the R package missMethyl based on the top 1000 CpG sites with lowest raw p-
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values50. The gene ontology analysis was conducted for the EWAS results of PM2.5 

exposure as well as for the EWAS results of the three neuropathology markers. All CpG 

sites were annotated using an online annotation data for the 

‘IlluminaHumanMethylationEPIC’.51 Additional functional insight on single CpG sites was 

obtained by searching the corresponding CpG site in publicly available databases, 

including EWAS catalog52.  

All analyses were completed in R (v4.2.0).   
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3 Results 

3.1 Study population characteristics 

A total of 159 donors were included in the current analysis, and their demographic 

characteristics and neuropathologic markers are described in Table 1. The average age 

of death was 76.6 years (SD=9.98) and 56% of the study population were male. The 

study population was predominantly white (89.3%) and well-educated with 123 (78.7%) 

completing college or more and living in less deprived neighborhoods (ADI: mean = 

36.3, SD = 24.2). The majority of study sample (95.6%) were diagnosed with AD or 

other forms of dementia, and the prevalence of the APOE ε4 allele (56% with at least 

one APOE ε4 allele) in this population was much higher than that in the general 

population in the U.S.53  

 As illustrated by the 1-year traffic-related PM2.5 exposure (Figure 1A), donors living 

in urban areas had a higher level of PM2.5 exposure compared to those living in 

suburban areas.  The median of 1-year exposure was 1.21 µg/m3 [interquartile range 

(IQR)=0.78]. As PM2.5 concentrations have decreased over the last decades, 3-year and 

5-year exposures were slightly higher (3-year exposure: median=1.32 µg/m3 

[IQR=0.74], 5-year exposure: median=1.39 µg/m3 [IQR: 0.81]) (Figure 1B).  

  

3.2 Association between PM2.5 exposure and DNAm in the brain 

After correcting for multiple tests and adjusting for bias and measured and unmeasured 

confounding, two CpG sites (cg25433380 and cg10495669) were consistently 

associated with PM2.5 across different exposure windows (Figure 2, Table 2; summary 

statistics for all 789,286 CpG sites are provided as Tables S4-6 in spreadsheets). For 
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example, a 1 µg/m3 increase in 1-year PM2.5 exposure was associated with 0.0065 

increase in the DNAm beta value of cg25433380 (p = 1.58×10-8). cg25433380 and 

cg10495669 are on chromosome 9 and 20, respectively, and cg10495669 is assigned 

to the gene encoding RanBP-type and C3HC4-type zinc finger-containing protein 1 

(RBCK1). The two CpG sites were not significantly associated with any neuropathology 

markers (Table 2). 

 

3.3 Meet-in-the-Middle approach and high-dimensional mediation analysis 

For the MITM approach, we explored the overlapping CpG sites among the top 1000 

CpG sites for the EWAS of PM2.5 and the EWAS of neuropathology markers (results 

presented in Tables S7-S9 in spreadsheets) and identified four overlapping CpG sites 

(Table S1). Specifically, DNAm in cg01835635 (apolipoprotein A4 gene, APOA4) was 

associated with CERAD score as well as PM2.5 exposure for the 1-year and 3-year 

exposure windows. DNAm in cg09830308 (mixed lineage kinase domain like 

pseudokinase gene, MLKL) was associated with Braak stage as well as PM2.5 

exposures for the 1-year, 3-year, and 5-year windows; cg16342341 (sorbin and SH3 

domain-containing protein 2 gene, SORBS2) was associated with CERAD score as well 

as 1-year PM2.5 exposure; and cg27459981 (MLKL gene) was associated with Braak 

stage and ABC score as well as PM2.5 exposures for the 3-year and 5-year windows.  

The HDMA via HIMA did not identify any CpG sites as significant mediators. In the 

HDMA using a combination of DACT and causal mediation analysis, we identified 

twenty-two CpG sites to mediate the positive association between PM2.5 exposure and 

ABC score (Table 3), while none were observed for Braak stage and CERAD score. 
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One CpG site (cg16342341, SORBS2 gene) was associated with all three exposure 

windows (1, 3 and 5-years prior to death), and eight with two exposure windows. Of 

note, cg16342341 (SORBS2) was also identified in the MITM approach described 

above. The total effect estimated for all mediation analyses was positive but insignificant 

in this subsample of the cohort (see Christensen et al. 2023 for the significant total 

effect in the full cohort).23 The summary statistics for all CpG sites detected by DACT 

are summarized in the Supplement (Table S2). 

 

3.4 Secondary analyses 

A gene ontology analysis was conducted for the top 1000 CpG sites associated PM2.5 

and for the top 1000 CpG sites associated with the neuropathology markers. None of 

the KEGG pathways reached significance after correcting for multiple tests. Therefore, 

we summarized the top 10 KEGG pathways for each of the PM2.5 exposures or 

neuropathology markers in the Supplement (Table S3). One pathway, which is the 

longevity regulating pathway, was associated with both 3-year exposure to PM2.5 and 

CERAD score. Eight genes (HSPA1A, HSPA1L, IRS1, KRAS, NRAS, RPTOR, IRS2, 

ATG5) in this pathway were enriched by differentially methylated CpG sites that were 

associated with 3-year PM2.5 exposure, and ten genes (ADCY3, ADCY5, NFKB1, 

PRKAG2, RPTOR, TSC2, EHMT1, ULK1, AKT1S1, ATG5) with CERAD score. Of note, 

AKT1S1 was also among the genes that were identified in the HDMA (DACT and causal 

mediation analysis). 

 

4 Discussion 
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In the current study of 159 donors from the Emory Goizueta ADRC brain bank, we 

identified differential DNAm in prefrontal cortex tissues at two CpG sites to be 

significantly associated with long-term PM2.5 exposure. The two CpG sites (cg25433380 

and cg10495669) that were associated with PM2.5 exposure were consistently 

associated with long-term exposures to traffic-related PM2.5 1 year, 3 years, and 5 years 

prior to death, after controlling for measured and unmeasured confounding. While 

cg25433380 and cg10495669 were not associated with increases in neuropathology 

markers, we identified 4 CpG sites that overlapped between the top 1000 CpG sites 

associated with PM2.5 and neuropathology markers (MITM approach) and 22 CpG sites 

that mediated the adverse effect of PM2.5 exposures on AD-related neuropathology 

markers using HDMA. The longevity regulating pathway was enriched by differentially 

methylated CpG sites associated with PM2.5 (3-year exposure window) and CERAD 

score.  

This is the first study showing an association between PM2.5 exposure and 

differential DNAm in the brain (cg25433380 and cg10495669). Scarce evidence related 

to air pollution has been reported on cg25433380. Higher DNA methylation levels of 

cg10495669 in nasal cells have been associated with 1-year ambient PM2.5 exposure 

among 503 children in Massachusetts.54  RBCK1, the gene which cg10495669 is 

assigned to, is involved in carcinogenesis and inflammation pathways. Yu et al. 

suggested that RBCK1 promoted the ubiquitination and degradation of p53.55 The 

impairment of p53 expression and activity might participate in neurodegeneration, as 

p53 can bind to genes that regulate expression of synaptic proteins, neurite outgrowth, 

and axonal regeneration, which indicated a neuroprotective role against AD 
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development.56  In addition, RBCK1 can regulate the proinflammatory-cytokines-

induced nuclear factor kappa B (NF-kB) activation which serves as a pivotal mediator of 

inflammatory responses.57 NF-kB activation is a common feature of many 

neurodegenerative diseases,58 and the increased expression and/or activation of NF-kB 

has been largely observed in post-mortem studies of AD patients.59 However, the two 

CpG sites were not found to be associated with any neuropathology markers in the 

current analysis. More research is warranted on these CpG sites to investigate their 

potential role in AD development with a larger sample size and participants of more 

diverse disease stages from preclinical to severe dementia.  

We identified four CpG sites (cg01835635, cg09830308, cg16342341, and 

cg27459981) that overlapped between the top 1000 CpG sites associated with both 

PM2.5 and neuropathology markers via MITM approach. Three of them (cg16342341, 

cg09830308 and cg27459981) or their related genes have been previously associated 

with AD or PM2.5 exposure. Cg09830308 and cg27459981, assigned to MLKL, were 

both associated with Braak stage and PM2.5 exposure 3 and 5 years prior to death. 

MLKL plays a critical role in TNF-induced cell death (i.e., necroptosis). Caccamo et al. 

found that necroptosis was activated in postmortem brains of AD patients and positively 

correlated with Braak stage, and MLKL expression was significantly higher compared to 

control cases’ brain tissues.60 Similarly, Jayaraman et al. reported that necroptosis 

signaling was highly activated in the hippocampus of AD patients, as illustrated by the 

increased mRNA expression of genes, including MLKL.61 Furthermore, Wang et al. 

demonstrated that the knockdown of MLKL significantly increased the ratio of Aβ42 to 

Aβ40, a potential diagnostic marker of AD, in an AD model HEK293 cell line.62 
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Collectively, PM2.5 exposure might induce the TNF-mediated neuroinflammation, 

resulting in necroptosis, and thus contribute to AD pathogenesis.  

Cg16342341, assigned to SORBS2, was also identified as a potential mediator in 

the HDMA, where it mediated the association of all PM2.5 exposure windows with ABC 

score. As SORBS2 is well known for its role in AD and neuroinflammation63,64 and was 

associated with PM2.5 exposure in rats65, our findings contribute to the evidence of 

SORBS2 playing a role in PM2.5-induced neuropathologic changes of AD. SORBS2 

represses IL-6 and TNF-α expression in the mouse embryonic fibroblasts,66 and Chen 

et al. demonstrated that its level was lower in the brains of AD model mice compared to 

wild type mice,63 implying a role of SORBS2 in regulating neuroinflammation. In a 

human study, genetic variation in SORBS2 was associated with age at onset of AD.64 

While evidence on the association between PM2.5 exposure and SORBS2 is more 

scarce, Chao et al. reported that prenatal exposure to PM2.5 induced upregulation of 

microRNAs targeting SORBS2 gene in fetal rat cortex tissues.65 

We also identified 21 other CpGs as potential mediators of the association between 

long-term exposure to traffic-related PM2.5 and ABC score using HDMA, and two of 

these CpGs (cg07963191 and cg27297993) have been previously reported in 

association with AD. Cg07963191 was assigned to the dual 3',5'-cyclic-AMP and -GMP 

phosphodiesterase 11A gene (PDE11A) that participates in neuroplasticity and 

neuroprotection.67 Cg27297993 was assigned to the gamma-aminobutyric acid B 

receptor 1  gene (GABBR1). GABBR1 is the main inhibitory neurotransmitter, which 

was reported to be downregulated in the brains of AD patients.68 Iwakiri et al. observed 

a negative correlation between GABBR1 and NFT formation in the hippocampus of 
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seniors, suggesting an increased or stable expression of GABBR1 may contribute to 

neuronal resistance to AD development.69  

To derive more functional insights, we conducted gene ontology analysis based on 

KEGG pathway database for the top 1000 CpGs associated with PM2.5 exposure or 

neuropathology markers.50 Proline-rich AKT1 substrate 1 (AKT1S1) was one of the 

genes enriched in the longevity regulating pathway, an overlapping pathway between 

PM2.5 exposure and CERAD score. Of note, differential DNA methylation in 

cg00633834, which is assigned to AKT1S1, was also identified in HDMA. AKT1S1 can 

activate mammalian target of rapamycin (mTOR)–mediated signaling pathways when 

phosphorylated,70 and mTOR signaling was observed to have higher activity in AD 

brains, suggesting a role of AKT1S1 in the accumulation of Aβ and tau proteins.71  

The current analysis employed the MITM approach and HDMA simultaneously to 

maximize the potential of identifying the differentially methylated CpG sites lying on a 

pathway from PM2.5 to AD-related neuropathology. The application of the MITM 

approach was based on the investigation of epigenomics vs. PM2.5 exposures and AD-

related neuropathology vs. epigenomics, which lent credibility to the association 

between PM2.5 exposure and AD-related neuropathology by breaking it down and 

linking it up with DNAm.72 Furthermore, while conventional methods of multiple testing 

correction (e.g., Bonferroni method) may overlook potential relevant CpG sites, 

especially given a small sample size, the MITM approach serves as a supplement by 

taking into account the biological relevance regardless of their statistical significance.72 

However, the MITM approach assumes that all intermediate variables are independent, 

which is not always the case in real-world scenarios. The HDMA focuses more on 
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quantifying the indirect effect of the mediator and considers the potential correlation 

among mediators.43 Admittedly, we did not observe many consistencies, except for 

cg16342341 (SORBS2), between the two approaches.  

Our study has several strengths. We established for the first time a potential 

mediation effect of DNAm for the association between PM2.5 and neuropathological 

changes of AD. The neuropathological changes of AD were quantified via multiple 

markers, including Braak stage, CERAD score, and ABC score, which covers the 

essential components (i.e., NFTs and Aβ plaques) for the neuropathological diagnosis 

of AD. Further, the neuropathology markers were assessed by experienced 

neuropathologists at Emory Goizueta ADRC following a standardized protocol, which 

minimized the misclassification bias of outcomes. Finally, the high-resolution PM2.5 

exposure assessment model enabled the characterization of spatial variation in 

individual exposure and reduced the potential measurement error.73  

Our study has several limitations. First, the temporal sequence between DNAm 

changes and AD neuropathology could not be clearly defined because both were 

assessed post-mortem. Second, traffic-related PM2.5 exposure was estimated based on 

the residential address of donors at death. Moving shortly prior to death could have 

introduced measurement errors in exposure assessment. The selection of exposure 

windows was arbitrary, as the disease process of AD may start many years before 

death and vary by patients. Third, the results were from a single brain bank and 

participants with a high APOE ε4 carrier rate, so the generalizability should be tested in 

other brain banks or autopsy cohorts. Fourth, even though most of the study population 

was White, and we controlled for race, the ancestry effect on DNA methylation might 
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persist as residual confounding. Fifth, the current analysis only focused on the effects of 

PM2.5, while other air pollutants such as nitrogen oxides or ozone might also play a role 

for AD.74,75 Finally, while the sample size of 159 brain samples was relatively large 

considering the challenges in collecting such samples, the high dimensionality of the 

genome-wide DNAm data raises concerns about the reliability of our findings.  

Our findings provide important information on the biological mechanisms underlying 

the PM2.5 toxicity on AD pathogenesis. Future studies evaluating the mediating role of 

DNAm on AD-related outcomes should consider: 1) performing the analysis among 

early-stage AD patients or patients with mild cognition impairment to further illustrate the 

role of PM2.5 in AD etiology; 2) performing genome-wide DNAm together with 

transcriptomics, proteomics, and/or metabolomics to capture a holistic picture of the 

underlying mechanism.  
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Tables 

Table 1. Selected population characteristics among the donors included in the current 

analysis. 

 
N=159 

Age at death, mean (SD) 76.6 (9.98) 

Sex, No. (%) 
 

Female 70 (44.0) 

Male 89 (56.0) 

Race, No. (%) 
 

Black 17 (10.7) 

White 142 (89.3) 

Educational attainment, No. (%) 
 

High school or less 36 (22.6) 

College degree 76 (47.8) 

Graduate degree or more 47 (29.6) 

Area Deprivation Index, mean (SD) 36.3 (24.2) 

Diagnosis of dementia  

AD 86 (54.1) 

Other dementia 66 (41.5) 

No dementia 7 (4.4) 

APOE genotype 
 

No ε4 allele 70 (44.0) 

Single ε4 allele 68 (42.8) 

Two ε4 allele 21 (13.2) 

Postmortem interval (hours), mean (SD) 11.7 (9.68) 

Proportion of neuronal cells (%), mean (SD) 31.9 (8.21) 

Braak stage, No. (%)  

Stage 1 16 (10.1) 

Stage 2 11 (6.9) 

Stage 3 20 (12.6) 

Stage 4 17 (10.7) 
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N=159 

Stage 5 22 (13.8) 

Stage 6 73 (45.9) 

CERAD score  

No 35 (22.0) 

Sparse 4 (2.5) 

Moderate 10 (6.3) 

Frequent 110 (69.2) 

ABC score  

Not 15 (9.4) 

Low 29 (18.2) 

Intermediate 22 (13.8) 

High 93 (58.5) 

Abbreviations: SD, standard deviation; AD, Alzheimer’s disease; APOE, apolipoprotein 
E; CERAD, Consortium to Establish a Registry for AD; ABC, a combination of Amyloid, 
Braak stage, and CERAD (ABC) score. 
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Table 2. CpGs associated with traffic-related PM2.5 exposure prior to death and their 

association with neuropathology markers. 

CpG chr Position Gene  Coefficients a p-values b 

A. CpGs with PM2.5 exposures     

cg25433380 9 388,531 Intergenic 1-year exposure 0.0065 1.58×10-8 

    3-year exposure 0.0066 5.82×10-9 

    5-year exposure 0.0063 1.12×10-9 

cg10495669 20 137,531,767 RBCK1 1-year exposure 0.0127 1.69×10-8 

    3-year exposure 0.0128 1.78×10-8 

    5-year exposure 0.0114 5.96×10-8 
       
B. CpGs with neuropathology markers     

cg25433380 9 388,531 Intergenic Braak stage 0.08 0.729 

    CERAD 0.05 0.629 

    ABC 0.04 0.825 

cg10495669 20 137,531,767 RBCK1 Braak stage 0.02 0.929 

    CERAD 0.12 0.397 

    ABC 0.09 0.593 

Abbreviations: PM2.5, fine particulate matter; chr, chromosome; RBCK1, RanBP-type 

and C3HC4-type zinc finger-containing protein 1.  

a The coefficients for PM2.5 exposures represent the change in the beta values of CpG 

sites associated with one-unit increase in the exposures; the coefficients for 

neuropathology markers represent the change in the neuropathology markers 

associated with one-interquartile-range increase in the beta values of CpG sites. 

b The Bonferroni threshold: 0.05/789,286 ≈ 6.33×10-8. 
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Table 3. Indirect effect estimated by causal mediation analysis via the R package 

mediation of CpG sites selected by high-dimensional mediation analysis for the 

associations between PM2.5 exposure and ABC score a.   

CpG chr Gene Exposure 

b 
DACT 

p-values c ACME d Total effect e 

cg23932332 1 DUSP10 
3-year 4.3x10-8 0.056 (0.005, 0.150) 0.086 (-0.110,0.280) 

5-year 2.9x10-8 0.060 (0.002, 0.170) 0.104 (-0.081,0.310) 

cg08512806 1 TARBP1 
3-year 5.3x10-8 0.058 (0.008, 0.130) 0.084 (-0.107,0.300) 

5-year 3.8x10-8 0.063 (0.009, 0.130) 0.102 (-0.080,0.310) 

cg10705045 2 RNF144A 5-year 2.6x10-8 0.063 (0.001, 0.140) 0.109 (-0.079,0.310) 

cg17275287 2 Intergenic 
3-year 3.4x10-9 0.085 (0.019, 0.170) 0.079 (-0.118,0.300) 

5-year 2.0x10-9 0.089 (0.020, 0.180) 0.097 (-0.093,0.300) 

cg07258300 2 CYP27C1 3-year 5.4x10-8 0.080 (0.020, 0.150) 0.083 (-0.107,0.300) 

cg05532414 2 Intergenic 3-year 6.2x10-8 0.071 (0.004, 0.170) 0.090 (-0.084,0.320) 

cg07963191 2 PDE11A 3-year 3.1x10-8 0.061 (0.005, 0.140) 0.080 (-0.103,0.300) 

cg26109897 4 TBC1D14 3-year 2.1x10-8 0.085 (0.010, 0.190) 0.090 (-0.098,0.310) 

cg26877022 4 POLR2B 
3-year 4.5x10-9 0.080 (0.015, 0.180) 0.089 (-0.092,0.310) 

5-year 1.2x10-8 0.077 (0.011, 0.180) 0.107 (-0.079,0.310) 

cg16342341 4 SORBS2 

1-year 1.3x10-9 0.097 (0.021, 0.180) 0.034 (-0.168,0.230) 

3-year 5.4x10-9 0.076 (0.017, 0.160) 0.080 (-0.106,0.280) 

5-year 1.6x10-9 0.078 (0.017, 0.150) 0.098 (-0.093,0.320) 

cg17444747 5 COL23A1 5-year 3.2x10-8 0.074 (0.015, 0.150) 0.098 (-0.085,0.290) 

cg27297993 6 GABBR1 
3-year 8.3x10-9 0.064 (0.009, 0.140) 0.084 (-0.091,0.300) 

5-year 9.2x10-9 0.066 (0.003, 0.140) 0.103 (-0.076,0.300) 

cg00829961 8 Intergenic 
3-year 1.3x10-8 0.075 (0.009, 0.170) 0.092 (-0.092,0.310) 

5-year 3.2x10-8 0.075 (0.012, 0.170) 0.110 (-0.078,0.330) 

cg02987635 10 C10orf11 3-year 4.1x10-8 0.063 (0.004, 0.150) 0.079 (-0.099,0.300) 

cg06805557 11 APBB1 5-year 4.1x10-8 0.062 (0.007, 0.130) 0.101 (-0.104,0.300) 

cg19969778 11 SIAE; 
SPA17 

3-year 8.9x10-9 0.065 (0.008, 0.130) 0.080 (-0.108,0.310) 

5-year 1.8x10-8 0.063 (0.010, 0.130) 0.098 (-0.092,0.310) 

cg20713102 15 ZSCAN2 5-year 5.0x10-8 0.074 (0.014, 0.160) 0.106 (-0.083,0.310) 

cg09088153 15 Intergenic 3-year 4.6x10-8 0.072 (0.013, 0.150) 0.089 (-0.094,0.320) 

cg27181554 16 SEPX1 
1-year 1.7x10-8 0.084 (0.021, 0.180) 0.039 (-0.162,0.270) 

3-year 2.7x10-8 0.069 (0.015, 0.150) 0.085 (-0.108,0.280) 

cg20389589 16 FAM57B 3-year 2.9x10-8 0.069 (0.003, 0.160) 0.084 (-0.120,0.290) 

cg06832209 16 ADGRG3 3-year 4.2x10-8 0.078 (0.015, 0.160) 0.089 (-0.101,0.280) 

cg00633834 19 AKT1S1; 
TBC1D17 5-year 3.7x10-8 0.081 (0.017, 0.160) 0.095 (-0.090,0.290) 

Abbreviations: PM2.5, fine particulate matter; chr, chromosome; ACME, average causal 

mediated effect (i.e., indirect effect). 
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a All CpG sites that were selected by DACT and had a positive ACME were associated 

with ABC score. No positive associations were found for Braak stage and CERAD 

score. 

b Only the exposure windows were shown for which significant indirect effects were 

found.  

c The p-values of mediation effect testing conducted by DACT. 

d The ACME was associated with one-interquartile-range increase in beta values of 

CpG sites. 

e Effect estimates, associated with 1-unit increase, of PM2.5 exposures on 
neuropathology markers. 
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Figures 

 

Figure 1. Statistics and distribution of PM2.5 exposures in Metropolitan Atlanta (study 

area), Georgia, United States. (A) Map of Metropolitan Atlanta with individual 1-year 

averaged annual PM2.5 exposure. The dots denote the donors’ residential address and 

are colored according to their PM2.5 exposures as showed in the legend. Red means a 

higher exposure level. (B) Statistics of individual averaged annual PM2.5 exposures for 1 

year, 3 years, and 5 years. 
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Figure 2. Manhattan and QQ plots for the epigenome-wide association of PM2.5 

exposures (A. 1-year / B. 3-year / C. 5-year average exposure prior to death) and DNA 

methylation in postmortem frontal cortex tissue. λ denotes the inflation factor. Adjusted 

for covariates: age at death, sex, race, educational attainment, post-mortem interval, 

area deprivation index, and cell type composition. Unmeasured confounding and bias 

were adjusted with surrogate variable analysis and R package Bacon. Bonferroni 

threshold: 0.05/789,286.  
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