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Abstract 

Identifying clusters of co-occurring diseases can aid understanding of shared aetiology, 

management of co-morbidities, and the discovery of new disease associations. Here, we use 

data from a population of over ten million people with multimorbidity registered to primary 

care in England to identify disease clusters through a two-stage process. First, we extract 

data-driven representations of 212 diseases from patient records employing i) co-occurrence-

based methods and ii) sequence-based natural language processing methods. Second, we 

apply multiscale graph-based clustering to identify clusters based on disease similarity at 

multiple resolutions, which outperforms k-means and hierarchical clustering in explaining 

known disease associations. We find that diseases display an almost-hierarchical structure 

across resolutions from closely to more loosely similar co-occurrence patterns and identify 

interpretable clusters corresponding to both established and novel patterns. Our method 

provides a tool for clustering diseases at different levels of resolution from co-occurrence 

patterns in high-dimensional electronic healthcare record data.  
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Introduction 

Multimorbidity, defined as the co-occurrence of two or more long-term conditions (LTCs) in 

one person, poses a significant challenge to health systems worldwide.1,2 Having 

multimorbidity is associated with poorer quality of life,3 increased mortality,4 greater use of 

healthcare services and higher healthcare costs.5,6 As a binary label, multimorbidity is a crude 

marker of medical complexity but there is growing evidence that distinct profiles or clusters 

of LTCs may be associated with differences in outcomes.7–9 Although some clusters of co-

occurring conditions are clinically well-established, for example, a cluster of conditions 

representing metabolic syndrome,10,11 the evolution of analysis methods for ‘big data’ opens 

up the use of routinely collected electronic healthcare records (EHRs) for identifying clusters 

of less commonly occurring conditions. The anticipated benefits of the identification of 

disease clusters are summarised by Whitty and Watt (2020), as an opportunity “to uncover 

new mechanisms for disease; to develop treatments; and to reconfigure services to better 

meet patients’ needs.”12 

 

Over the last decade, many studies have been conducted to identify clusters of LTCs which 

co-occur together.13,14 Among previous studies, ‘mental health’ and ‘cardio-metabolic 

conditions’ have consistently emerged as the two most replicable clusters.13,14 However, 

current approaches to detect disease clusters suffer from limitations both in the use of data 

sources and in the approach to capture the multi-level complexity of disease associations. 

Firstly, most studies used a relatively small number of LTCs (median=16 and range=10-99 

for the 51 studies reviewed by Busija et al (2019)) with coarse disease definitions (e.g., 

‘Diabetes’). Secondly, most studies obtain only one clustering (with usually fewer than ten 

clusters), which may limit identification of associations between less common conditions.13 

As is the case in unsupervised methods, it is unlikely that there is one single ‘true’ 

configuration of clusters, but rather that a sequence of clusterings, from fine resolutions with 

many clusters to coarse resolutions with few clusters, may reveal more nuanced associations, 

and serve different purposes. Indeed, multiscale graph-based clustering methods, such as 

Markov Multiscale Community Detection (MMCD), enable the identification of clusters at 

different resolutions directly from the structure of the data, without the need to pre-specify 

the number of clusters or impose a hierarchical structure.15–17 

 

Recently, natural language processing (NLP) methods have emerged as a promising approach 

for handling the high-dimensional data found in EHRs.18–20 When trained on word sequences 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 30, 2023. ; https://doi.org/10.1101/2023.06.30.23292080doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.30.23292080
http://creativecommons.org/licenses/by/4.0/


in natural language, these predictive models learn a vector representation for each word in a 

common space, referred to as a ‘word embedding’, which captures semantic and syntactic 

characteristics of each word using the context in which it is used in text. In an analogous 

fashion, such models can be applied to the coded data in EHRs, where medical codes are 

‘words’ and EHRs are analogues to ‘documents’, to generate ‘disease embeddings’ that 

capture information from their occurrence and the sequences observed in real data.18–22 The 

disease embeddings can then be used to calculate the similarity between diseases for use in 

clustering. However, it remains unclear whether NLP methods incorporating additional 

information from sequences of diseases over time produce substantively different clusters to 

those obtained solely from co-occurrence-based methods, such as Multiple Correspondence 

Analysis (MCA), a dimensionality reduction method which has been used in several previous 

studies of multimorbidity clustering.23–25 

 

In this study, we aim to identify clusters of diseases from observational data in an 

unsupervised manner, combining two recent approaches. Firstly, we generate disease 

representations applying two methods: one based only on co-occurrence (MCA), which is 

compared to newer NLP embedding methods that make use of code sequences. Secondly, we 

employ the multiscale graph-based clustering method of MMCD to identify disease clusters 

at different levels of resolution, based on the similarity of the obtained disease embeddings 

and compare against the k-means and hierarchical clustering algorithms commonly used in 

disease clustering.13 We apply these methods to a large and representative primary care EHR 

dataset of over 10 million patients in England and evaluate the resulting disease clusters to 

demonstrate that they provide clinically interpretable insights into disease associations. 

 

Results 

 

Description of the data 

Of 15,256,726 patients aged 18 years or older registered in the Clinical Practice Research 

Datalink (CPRD) in England from 1st January 2015 to 1st January 2020, there were 

10,579,232 (69.3%) with at least two of a pre-defined set of 212 LTCs (see Methods) and 

were thus included in the study. Characteristics of the eligible cohort are displayed in 

Supplementary Table 1. The median age was 52 (IQR: 36 – 68) years. There were more 

females than males (53.4% vs 46.6%) with a small number (263) recorded in CPRD as 

‘indeterminate’ gender. The majority (73.0%) of people were recorded as being of White 
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ethnicity, with 13.9% having no recorded data on ethnicity. There was a roughly even split 

between deciles of socioeconomic deprivation (measured by the Index of Multiple 

Deprivation), but with relatively fewer in the least deprived decile (9.1%). For each patient, 

we constructed two sequences for comparison: the first (“multiple”) used all diagnostic 

codes, and the second (“unique”) included a code only at its first occurrence. Using the 

unique code sequences, the median number of codes per patient was 5 (IQR: 3 – 9); using 

multiple code sequences, the median was 13 (IQR: 6 – 33) (Supplementary Table 1 and 

Supplementary Fig 1). Raised total cholesterol had the highest code occurrence of unique 

code sequences (5,408,007) and hypertension had the highest code occurrence including 

multiple code sequences (29,299,147) (Supplementary Table 2). 

 

Disease embeddings 

We generated two different disease embeddings (see Methods and model pipeline Fig 1 for 

details of our analysis pipeline). First, we used MCA, a dimensionality reduction technique 

similar to PCA but specific for binary or categorical data, which extracts components based 

on occurrence patterns. As shown by the scree plot (Supplementary Fig 2), the first two 

dimensions explained a large amount of the variance: 58.3% for the first, and 5.5% for the 

second. As expected, the first dimension largely reflected increasing age and number of 

conditions (see Supplementary Fig 3). To evaluate our embeddings, three co-authors with 

clinical expertise developed a set of 253 clinically well-established disease pairs (further 

details in Methods). Using this set of disease pairs, we retained 30 dimensions from MCA as 

the number that optimised known disease pairs being assigned in the top ten nearest 

neighbours to each disease based on the cosine similarity calculated from the MCA 

embeddings (see Methods and Fig 2). 

 

We next generated embeddings using three NLP models: two Word2Vec models using 

continuous-bag-of-words (CBOW) and skip-gram (SG), and Global Vectors (GloVe). Models 

were trained on each of the unique and multiple code sequences from all 10.5 million 

patients. We tested a range of hyperparameter values, and the optimal hyperparameters were 

chosen for each of the three NLP models using the same evaluation strategy as for MCA (see 

Supplementary Tables 3-6). When evaluated against the curated set of 253 known disease 

pairs, GloVe and SG had similar performance to MCA-30 for unique code sequences, with 

lower performance for CBOW (Fig 2). The NLP models had comparatively better 

performance when run on multiple code sequences, indicating that additional information is 
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provided by the sequence of reappearing codes. In a sensitivity analysis, model performance 

was similar when comparing against the nearest two, five or twenty neighbours 

(Supplementary Fig 4). Overall, SG with multiple codes (SG-M) showed the best 

performance across all models. We thus selected SG-M with an embedding dimension of 30 

as the best-performing NLP embedding and compared it to the best co-occurrence embedding 

(MCA-30) for clustering. 
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Figure 1: Pipeline for generating disease clusters from Clinical Practice Research Datalink (CPRD) data 

  

CPRD data

Patient records
Data 

processing

MCA

NLP 
models

Unique disease 
code sequences

Multiple disease 
code sequences

Markov 
Multiscale 

Community 
Detection

Assignment 
of diseases 
to clusters

Disease 
sequence 

embedding 
vector 

Cosine 
similarity 

graph

Disease embeddings

Unsupervised clustering

Disease co-
occurrence 
embedding 

vector

Graph 
sparsening

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 30, 2023. ; https://doi.org/10.1101/2023.06.30.23292080doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.30.23292080
http://creativecommons.org/licenses/by/4.0/


Figure 2: Percentage of disease associations from a curated set of 253 known disease 

pairs that are assigned to the ten nearest neighbours based on cosine similarity for each 

disease embedding 

 
 

Clustering of disease embeddings 

We applied a multiscale clustering algorithm (MMCD) to the similarity between both disease 

embeddings (MCA-30 and SG-M), following the procedure detailed in Methods and Fig 1. 

Briefly, we first determined the cosine similarity of each disease to each other disease from 

the disease embeddings. We then used the continuous k-nearest neighbours (CkNN) 

algorithm to sparsen the similarity matrix. To the resulting similarity graph, we applied the 

MMCD algorithm to identify a multi-scale sequence of clusterings of increasing coarseness 

and selected optimal partitions at different levels of resolution. Using the MCA-30 

embeddings, MMCD identified optimal clusterings at three resolutions representing 23, nine, 

and six clusters (Fig 3). Using the SG-M embeddings, optimal clusterings were identified at 

25, fifteen, seven, and five clusters and we selected the first three of these for further 

evaluation (Fig 4). In both cases, Sankey diagrams demonstrated that most conditions in a 

cluster remained in the same cluster across levels of resolution (Figs 5 and 6). This indicates 

a quasi-hierarchical pattern of similarity between diseases, with smaller groups of diseases 

showing greater similarity and, in turn, getting integrated into broader disease groups with a 

looser observational similarity. 
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Figure 3: Selection of optimal clusterings from Markov Multiscale Community Detection using MCA-30 embeddings 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Footnote: The optimal clusterings at 23, nine and six clusters are found as intrinsically robust for the optimisation of a scale-dependent objective function and are also robust across scales as 

signified by minima in the Block NVI (see Methods). The disease similarity graphs obtained with CkNN for the optimal clusterings are shown where the nodes correspond to diseases and 

edges to strong similarities. The nodes (diseases) are coloured according to their assigned disease cluster. MCA-30 = Multiple Correspondence Analysis retaining 30 dimensions.   

N = 23 N = 6 N = 9 
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Figure 4: Selection of optimal partitions from Markov Multiscale Community Detection using SG-M embeddings  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Footnote: The optimal clusterings contain 25, fifteen seven and five disease clusters and we focus on the displayed clusterings with 25, fifteen and seven disease clusters. These clusterings are 

found as intrinsically robust for the optimisation of a scale-dependent objective function and are also robust across scales as signified by minima in the Block NVI (see Methods). The disease 

similarity graphs obtained with CkNN for the optimal clusterings are shown where the nodes correspond to diseases and edges to strong similarities. The nodes (diseases) are coloured 

according to their assigned disease cluster. SG-M = Skip-Gram using Multiple code sequences.

N = 25 N = 7 N = 15 
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Figure 5: Sankey diagram of clusters at resolutions of 23, 9 and 6 clusters, using MCA-30 embeddings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Footnote: clusters within a single partition are represented by nodes of the same colour. Lines connecting nodes of different 

colours are weighted according to the number of conditions in each cluster and represent the number of conditions that are in the 

corresponding cluster at a coarser resolution. CKD = Chronic Kidney Disease; HF = Heart Failure; LD = Learning Disabilities; 

MH = Mental Health; MSK = Musculoskeletal; MCA-30 = Multiple Correspondence Analysis retaining 30 dimensions
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Figure 6: Sankey diagram of clusters at resolutions of 25, 15 and 7 clusters, using SG-M embeddings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Footnote: clusters within a single partition are represented by nodes of the same colour. Lines connecting nodes of different 

colours are weighted according to the number of conditions in each cluster and represent the number of conditions that are in the 

corresponding cluster at a coarser resolution. GI = Gastrointestinal; HF = Heart Failure; LD = Learning Disabilities; MH = Mental 

Health; MSK = Musculoskeletal; SG-M = Skip-Gram using Multiple code sequences. 
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Comparison to other clustering methods 

To evaluate our clustering method, we compared the clusters derived from MMCD to two 

clustering algorithms widely used in studies of disease clustering: k-means and Ward’s 

hierarchical clustering.13 In each case, we selected the same corresponding number of clusters 

to those from MMCD. For both embedding methods, k-means and hierarchical clustering 

produced unbalanced partitions, with a few over-dominant clusters and some additional very 

small clusters containing few diseases. Using our curated set of 253 clinically established 

disease associations, we found that known disease pairs were substantially more likely to be 

assigned to the same cluster using MMCD (Fig 7). Furthermore, although randomly sampling 

any two diseases from one patient, a patient was more likely to have both conditions assigned 

to the same disease cluster using hierarchical and k-means clustering, due to the large size of 

the dominant clusters, they were less likely to share conditions with other people in the same 

cluster (Supplementary Fig 5) across the range of partitions.  

 

Comparison of clusters to ICD-10 chapters 

We also compared the MMCD disease clusters to the assignment of the diseases in the 

corresponding sixteen chapters of the ICD-10 medical taxonomy (see Methods for details) by 

computing the normalised variation of information (NVI), where NVI=0 indicates perfect 

agreement and NVI=1 corresponds to maximum disagreement. With the MCA-30 

embeddings, the similarity to the ICD-10 chapters ranged from NVI=0.60 for 23 clusters to 

NVI=0.75 for six clusters (Supplementary Table 7A). With the SG-M embeddings, the NVI 

was slightly lower than that for MCA-30, ranging from 0.55 for 25 clusters to 0.68 for seven 

clusters (Supplementary Table 7B). These results indicate a substantial mismatch in the 

groupings of diseases within the MMCD clusters compared to the ICD-10 chapters, reflecting 

the difference between data-driven co-occurrence patterns and a clinical taxonomy.  
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Figure 7: Odds ratios for assigning a known disease pair to the same cluster compared 

to the expected distribution of 253 known disease pairs, for MCA-30 embeddings (panel 

A) and SG-M embeddings (panel B)  
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Descriptive evaluation of clusters 

Given its higher performance, we considered only the MMCD clusterings for further 

descriptive evaluation. To aid visualisation and interpretation, clusters were assigned a 

descriptive label aiming to represent most of the diseases in the cluster. Figs 5 and 6 show 

Sankey diagrams capturing the quasi-hierarchical organisation of the MMCD clusters 

obtained for both MCA-30 and SG-M embeddings, whereas Figs 8 and 9 provide a more 

detailed visualisation of the contents of the disease clusters.  

 

1. Clusters from MCA-30 embeddings 

At the 23-cluster resolution, several well-defined clusters were identified, including a cluster 

representing the established metabolic syndrome26 (including obesity, raised cholesterol, 

hypertension, diabetes and diabetes complications), forms of stroke, autoimmune and 

inflammatory conditions, and liver conditions (Fig 8). Many malignancies clustered together 

at this fine resolution, except for breast, gynaecological and thyroid primary malignancies, 

which clustered separately, and primary malignancy of the skin and prostate, which clustered 

separately along with urological conditions. As would be expected from similarities drawn 

from co-occurrences in data, some clusters reflected diseases common in particular age 

groups, for example a cluster of diseases affecting younger people (including acne, 

dysmenorrhoea, polycystic ovarian syndrome and allergic and chronic rhinitis), and another 

cluster with diseases more common in older people (including dementia, hearing loss and 

visual impairment). 

 

The sequence of clusterings at multiple resolutions revealed that most of the disease clusters 

at the 23-cluster resolution integrate quasi-hierarchically at coarser resolutions (Fig 5). 

Notably, the metabolic cluster displayed the strongest stability, with the same conditions 

clustered together across all resolutions. However, some diseases separated from given 

clusters across different scales. For example, cystic fibrosis (CF) was present in an 

‘Autoimmune and inflammatory’ cluster at a resolution of 23 clusters but joined an ‘Alcohol, 

haematological and liver’ cluster at coarser resolutions, which may reflect the challenge of 

assigning a multi-system disease such as CF to a consistent set of clusters.  

 

2. Clusters from SG-M embeddings 

The clusters derived from the SG-M embeddings, which consider not only co-occurrence 

patterns but also information contained in the multiple code sequence, were different to those 
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from MCA-30. At the fine 25-cluster resolution, well-defined clusters include, for example, 

one representing stroke sub-types and another representing heart failure, valvular and 

arrhythmogenic cardiac conditions (Fig 9). As with MCA-30, a metabolic cluster including 

diabetes and obesity was observed, but hypertension was clustered instead with renal 

diseases, and both Raised Total Cholesterol and Raised LDL-C clustered separately with 

enthesopathy, hearing loss and skin cancer. We found instances of clustering according to 

underlying causal mechanisms: two separate autoimmune clusters are present in this 

clustering, one including rheumatoid arthritis and related diseases, and another including 

spondyloarthropathies and inflammatory bowel disease which are strongly associated with 

the HLA-B27 gene.27 

 

The quasi-hierarchy of the partitions across resolutions in SG-M is less strong than for MCA-

30 (Fig 6), reflecting the additional complexities contained in the contextual information of 

sequences captured by NLP embeddings. For example, thyroid cancer was clustered with 

thyroid disease and learning disabilities at the 25-cluster resolution, which could be partially 

attributed to a well-established link between thyroid disease and Down’s syndrome.28 At the 

fifteen-cluster resolution, thyroid disease and thyroid cancer joined a cluster with melanoma, 

testicular and brain cancer. While people with melanoma may be at higher risk of developing 

thyroid malignancy29, other associations within this cluster were unexpected. To investigate 

this cluster further, we compared the observed to expected ratio of co-occurrence for each 

pair of conditions in the cluster (Supplementary Table 8). This demonstrated a stronger than 

expected ratio of co-occurrence of thyroid disease and thyroid malignancy (9.29), of primary 

brain cancer with melanoma (2.29), and of thyroid cancer with melanoma (2.35). Testicular 

cancer had a lower ratio of co-occurrence with thyroid disease and thyroid cancer (0.45 and 

0.89, respectively), but higher-than-expected ratio of co-occurrence with brain cancer and 

melanoma (1.96 and 1.17, respectively), demonstrating that appearance together in a cluster 

needs to be examined in more detail, as it does not necessarily indicate that each disease is 

directly associated with every other in the cluster.  
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Figure 8: Assignment of diseases to clusters at resolutions of 23, 9 and 6 clusters, using MCA-30 embeddings 

Footnote: Arrows assigned between clusters if at least two conditions, or ≥ 20% of conditions within a cluster are assigned to a cluster at a finer resolution. CKD = Chronic Kidney Disease; HF 

= Heart Failure; LD = Learning Disabilities; MH = Mental Health; MSK = Musculoskeletal; MCA-30 = Multiple Correspondence Analysis retaining 30 dimensions

23 clusters 9 clusters

6 clusters
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Figure 9: Assignment of diseases to clusters at resolutions of 25, 15 and 7 clusters, using SG-M embeddings 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Footnote: Arrows assigned between clusters if at least two conditions, or ≥ 20% of conditions within a cluster are assigned to a cluster at a finer resolution. CKD = Chronic Kidney Disease; HF 

= Heart Failure; LD = Learning Disabilities; MH = Mental Health; MSK = Musculoskeletal; SG-M = Skip-Gram using Multiple code sequences.
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Discussion 

Our study presents a novel application of an unsupervised, multiscale graph-based clustering 

method (MMCD) to vector embeddings of diseases derived from EHR data of 10.5 million 

patient records. Our analysis produces interpretable clusters of diseases from fine to coarse 

resolutions, based on the intrinsic patterns of co-occurrence and sequences in people with 

multimorbidity. We found that MMCD outperformed k-means and hierarchical algorithms in 

clustering pairs of diseases known to be associated using disease embeddings generated from 

both co-occurrence-based MCA and sequence-based NLP methods. We also find optimal 

clusterings over multiple resolutions, highlighting the advantages of considering a range of 

levels of coarseness. Although a full description of the relationships of all 212 diseases was 

outside the scope of this study, we demonstrate the power of these methods for classifying 

multimorbidity clusters at different resolutions, which may help identify more fine-grained 

relationships in future research. We also provide access to the disease embeddings and cluster 

assignments, as an open resource for other researchers. 

 

Clinical implications 

Clusters derived from MCA-30 and SG-M embeddings differed, but both pick up meaningful 

patterns of diseases that are clinically interpretable. In general, clusters from SG-M were less 

interpretable than those from MCA-30, which is likely to reflect the additional contextual 

information captured in disease sequences, beyond those captured by co-occurrence alone. It 

may also reflect differences in coding frequency between diseases, with previous work 

indicating that some diseases are more likely to have recurrent codes, particularly those with 

financial incentives attached to their management.[Beaney et al (2022), Determinants of 

disease code frequency in the primary care electronic healthcare record: a retrospective 

cohort study. Under review at BMJ Open] Although there is no ‘gold-standard’ ground truth 

for disease clusters to be compared to, conditions that are known to form part of the well-

established metabolic syndrome26 clustered together across resolutions in MCA-30, while 

other clusters represented conditions with similar underlying causal mechanisms, for 

example, those associated with the HLA-B27 gene.27 

 

Finer resolutions with more clusters are likely to be the most valuable in identifying novel 

disease associations and, at these resolutions, we found more unexpected disease patterns that 

suggest avenues for further investigation, for example, the grouping of thyroid cancer, 

thyroid disease, melanoma, testicular and brain cancer in SG-M. However, as discussed 
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earlier, it is important to recognise that the cluster assignment does not necessarily indicate 

that each disease is directly associated with every other disease (Supplementary Table 8). 

This may be due to a distinguishing feature of sequence-based models compared to co-

occurrence-based models, whereby the representation is determined not only by direct co-

occurrence but by shared associations of two diseases with other diseases, capturing indirect 

information which is less obvious. 

 

The clusters demonstrate a remarkably hierarchical structure with MCA-30, and to a lesser 

extent, with SG-M. It is important to remark that this is an intrinsic feature of the data, rather 

than MMCD, which does not impose any hierarchical structure on the sequence of 

clusterings. Our findings suggest that using hierarchical clustering algorithms that enforce a 

hierarchical structure may mask meaningful variation in the structure of the data over 

different resolutions. For example, in both MCA-30 and SG-M embeddings, CF appeared 

with different diseases across resolutions. As a condition linked to both liver disease30 and 

higher prevalence of anxiety and depression,31 its separation at different resolutions likely 

represents the challenge of assigning a multi-system disease to a single branch of hierarchical 

clusters. Our multi-resolution approach thus provides the advantage of allowing assessment 

of the stability of disease assignment to clusters across resolutions as a means of drawing 

further information. 

 

Some studies have evaluated the quality of embeddings by comparing clusters to known 

hierarchical disease taxonomies, such as ICD-10, which are predominantly based around 

organ systems rather than aetiology.19,20 We found that our disease clusters were substantially 

different to the classification of the ICD-10 chapters, highlighting the disparity with systems-

based classifications and suggesting that hierarchical taxonomies may not be a suitable 

method by which to evaluate the quality of disease similarity based on co-occurrence or 

sequence. 

 

Implications for embedding and clustering methods 

A strength of our work is the direct comparison of co-occurrence to sequence-based 

embedding methods. With MCA, although practitioners often retain two dimensions to 

visualise relationships, we demonstrated here that this fails to explain a substantial amount of 

known disease associations and limits interpretability when using a large set of LTCs. We 

trialled a range of popular word embedding methods and given the applications of these 
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methods in healthcare data are still relatively new, hypothesised that optimal hyperparameters 

for text data might not be optimal for disease code sequences, which do not follow the same 

syntactic relationships. We therefore experimented with a range of hyperparameters and 

found optimal ranges outside of the default values for standard text applications (see 

Supplementary Tables 3-6). When using unique code occurrences, we found that both GloVe 

and SG performed similarly to MCA-30 in identifying known associations, whilst CBOW’s 

poorer performance was in line with previous reports in both text and healthcare data.32,33 

That NLP models and MCA produce similar results when using unique code sequences is 

unsurprising given the common basis in using disease-disease co-occurrence. Where NLP 

models showed substantial improvement (see SG-M in Fig 2) was when using longer 

sequences that included recurrent codes in the record, thus utilising additional information 

beyond direct co-occurrence. Previous studies have shown that sequence-based models have 

superior predictive performance for a range of outcomes,18,34 but we additionally found that 

the generated embeddings also better reflect clinically known disease associations. 

 

To help alleviate the lack of a gold-standard set of disease clusters, we created a list of 

established disease pairs and used these to compare across methods, finding MMCD to 

perform substantially better than both k-means and hierarchical clustering, particularly at 

finer resolutions. K-means and hierarchical clustering both produced unbalanced clusters 

with a large, dominant cluster and other smaller clusters of rarely occurring diseases. The 

effect was more marked for MCA-30, suggesting a smoothing effect of the SG-M-generated 

embeddings when compared to MCA. However, in both cases, MMCD produced more 

balanced clusters, likely due to both the sparsification of the network using the MST-CkNN 

algorithm and the clustering cost function (Markov Stability), which enables MMCD to 

overcome such problems when using highly dimensional data. 

 

Future work 

In future, we plan to extend our methods to cluster patients directly, using approaches 

analogous to topic modelling and document embeddings in NLP,35,36 specifically using large 

language models, such as BERT, which may provide additional insights into the similarity of 

disease sequences across people.20,34 Although previous studies have evaluated the 

association of disease clusters with patient outcomes9,37 we believe that evaluating outcomes 

should be reserved for clusters of patients, rather than clusters of diseases. Indeed, our 

preliminary assessment showed that disease clusters are not directly representative of 
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patients, as relatively few patients were allocated to a single disease cluster, even when only 

two of their diseases were randomly sampled. Various approaches have been used to assign 

patients to disease clusters based, e.g., on a patient having one or more,38 two or more,39,40 or 

three or more41 diseases in a cluster. However, these methods can assign patients to multiple 

clusters, an issue that will escalate with a larger number of clusters, and which can bias 

assessment of outcomes and complicate clinical use. 

 

With MCA, age was a strong contributor to the first dimension which explained the largest 

proportion of variance. Furthermore, some of our clusters reflected sex differences, such as 

the clustering of gynaecological and breast malignancies at finer resolutions. Future work 

could consider stratification of clustering by age and sex, which may increase the ability to 

detect associations between less common diseases. Although our study already used a larger 

number of diseases (212) than previous studies of multimorbidity disease clustering, further 

increasing the number of conditions or using individual diagnostic codes (rather than 

categorising into diseases) may also increase the ability to detect novel associations at finer 

resolutions.  

 

Strengths and limitations: 

A strength of our study is the use of a large and representative sample of patients registered to 

general practices in England which enhances the generalisability of our results.42 We used a 

larger set of LTCs than used previously in multimorbidity research to aid replicability, which 

we have made available to other researchers. We experimented with a range of 

hyperparameters for our NLP algorithms and selected the best performing models. 

Nevertheless, it is possible that better-performing models exist outside the range of 

hyperparameters tested. 

 

To compare embedding models, we developed a list of clinically-established disease 

associations. However, this list is not exhaustive, and may be biased towards inclusion of 

more common conditions which have a stronger evidence base. Furthermore, the combination 

of conditions included in the CALIBER study may also lead to bias in the embeddings and 

the clustering. For example, several unique conditions describe forms of liver disease and its 

sequelae (alcoholic liver disease, hepatic failure, cirrhosis, portal hypertension, oesophageal 

varices), which may all represent the same pathophysiological process, and so may inflate 

similarity metrics between these conditions. This may explain the prominent separation of 
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liver diseases on the second dimension in MCA (Supplementary Fig 3). However, other 

authors using different data sources and definitions have found similarly strong clustering of 

liver-related conditions.24 Similarly, the stability of the metabolic cluster across resolutions in 

MCA-30 may in part stem from the inclusion of more diseases of this type in the code-lists 

(five diseases representing diabetes and its complications, and four representing cholesterol 

and triglycerides). 

 

There are examples where a disease may be classified as both a specific and non-specific 

version of the same disease, both of which may appear in a patient’s record. For example, 

codes for ‘Diabetes: other or not specified’ may be found in a patient’s record in addition to 

those for ‘Type 2 diabetes’ or ‘Type 1 diabetes’, and similarly ‘Stroke: not otherwise 

specified’ in addition to ‘Ischaemic stroke’ or ‘Intracerebral haemorrhage’. In these cases, the 

non-specific disease may represent use of generic codes used across each disease subtype, 

rather than that the disease itself is ‘other’ or unspecified’ and are likely to be explained by 

clinician coding practices and the specificity of the available codes. As a result, the 

embeddings and clusters generated from routinely collected EHR data as used here reflect not 

only disease co-occurrence, but factors related to patients, clinicians, and healthcare 

organisations.[Beaney et al (2022), Determinants of disease code frequency in the primary 

care electronic healthcare record: a retrospective cohort study. Under review at BMJ Open] 

 

Conclusion 

In conclusion, using a representative cohort of over ten million people registered to general 

practices in England, we found clusters of diseases corresponding to both established and 

novel patterns. Clusters derived from co-occurrence-based embedding methods tended to be 

more straightforward to interpret than those from sequence-based NLP embedding methods, 

likely reflecting the additional relationships captured in disease sequences. Our multi-

resolution approach highlights the nearly hierarchical structure of disease clusters but with 

notable exceptions that indicate the complexity of categorising certain diseases into a single 

set of inclusive clusters. Our study demonstrates the promise of these methods for identifying 

patterns of disease clusters within highly dimensional healthcare data, which could be used to 

facilitate discovery of associations between diseases in the future and help in optimising the 

management of people with multimorbidity, which is a priority for health systems globally. 
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Methods 

Data sources and data cleaning 

We used the CPRD Aurum dataset, a nationally representative source of general practice data 

in England.42 We included all patients aged 18 years or over, registered to a GP practice in 

CPRD Aurum between 1st January 2015 and 1st January 2020. Patients were censored at the 

earliest of date of deregistration, date of death, date of last collected data extraction from the 

practice, or the 1st January 2020. Any codes that were recorded or observed after the 

censoring date were excluded (see Supplementary Methods for details). Patients with two or 

more of the diseases defined below were included. Data cleaning rules for variables, 

including socio-demographics, are explained in detail in the Supplementary Methods. 

 

Disease definitions 

Diagnostic codes are recorded in CPRD as Medcodes. These are entered by clinicians during 

clinical consultations and converted into a numeric code, for example, the term ‘Allergic 

asthma’ as Medcode ID 1483199016. We translated codes to a corresponding set of 212 

LTCs based on code-lists developed for the CALIBER study, from which 211 conditions 

were selected relevant to LTCs by Head et al (2021). For example, the diagnostic codes 

representing ‘Allergic asthma’ and ‘Exercise induced asthma’ are grouped under the disease 

category of ‘asthma’. We reviewed these codes and supplemented them with an additional 

disease of chronic primary pain as a prevalent condition often included in multimorbidity 

studies (see Supplementary Methods).45,46 Diseases were ordered in sequences from earliest 

to latest according to timestamp of the observation, for example, a patient record might read 

sequentially as: “asthma, asthma, type 2 diabetes, hypertension, asthma, hypertension”. We 

constructed two sequences for comparison: the first (“multiple”) used all codes, and the 

second (“unique”) included a disease only at its first occurrence (i.e., date of diagnosis); in 

the example above, this sequence is simplified as: “asthma, type 2 diabetes, hypertension”. 

Where two codes had the same timestamp, we randomly ordered the corresponding codes.  

 

Statistical methods 

Generating disease embeddings  

Fig 1 summarises the steps of our pipeline from data processing to clustering. We compared 

four different methods to create disease embeddings. As a baseline approach used previously 

in multimorbidity research, we used MCA.24,25 Correspondence analysis (CA) is a class of 

methods which aim to reduce the dimensionality of binary or categorical data, analogous to 
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Principal Component Analysis for continuous data, by minimising the chi-squared distance 

between observed and expected values based on the global co-occurrence matrix, or Burt 

matrix.47–49 MCA is an extension of CA to two or more variables and has an advantage of 

allowing supplementary variables to be added which do not contribute to the calculation of 

the variance.48 We applied MCA to the disease co-occurrence matrix, using the MCA 

algorithm implemented in Stata version 17.0 (StataCorp).50 

 

We compared MCA to three popular NLP word embedding models: the Word2vec models 

using CBOW and SG,32 and GloVe.51 CBOW and SG are related methods which use neural 

network architectures: in the case of CBOW, the model predicts a target word given a 

surrounding context window, whereas in SG, the model predicts the context given a target 

word.32 In contrast, GloVe incorporates matrix factorisation of global co-occurrence 

statistics, combined with a local window.51 In each case, we compared the default 

hyperparameter values of the models to values we hypothesised might better represent the 

smaller vocabulary and relatively short sequences (in comparison to the documents for which 

the methods were originally developed). We then selected the best performing model 

according to our evaluation metrics below. 

 

For CBOW and SG, we used the Word2vec model implemented in the gensim package for 

training on the sequences of all 10.5 million patients.52 We compared vector sizes of 10 and 

30, window sizes of 2 and 5, negative sampling of 2 and 5 and down-sampling of frequent 

diseases comparing the default of 0.001 to no down-sampling. For GloVe, we used the glove-

python implementation and compared a default window size of 5 to values of 2, and learning 

rate of 0.05 to values of 0.01 and 0.1.53 We also tested models over a range of epochs as 

detailed in the Supplementary Methods. 

 

Evaluation of embeddings 

We evaluated our embedding methods using a curated set of 253 known disease association 

pairs. These were created by three co-authors with a clinical background, TB, JC and DS, 

based on the 212 available diseases, using the British Medical Journal Best Practice 

guidelines and clinical judgement as detailed in the Supplementary Methods.54 For each 

embedding model we proceeded as follows: for each disease d1 in the set of known disease 

association pairs we calculated the percentage of known associated diseases (d2… dN) that 

were in the set of ten most similar diseases of d1 in terms of cosine similarity computed from 
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the embedding. Similar approaches have been used by other authors, with Solares et al 

(2021) using a range of neighbourhood sizes from three to 20.20 Beam et al (2019) used 

bootstrap sampling of the similarity distribution for each condition, and assigned conditions if 

in the top 5% of the distribution of most similar conditions, which is roughly equivalent to 

use of the top ten conditions in our case (given 212 conditions).22 We checked the robustness 

of our evaluation by comparing different thresholds of neighbourhood sizes, and found they 

produced similar optimal models (Supplementary Fig 4). 

 

Markov Multiscale Community Detection 

To cluster the selected disease embeddings, we used MMCD. The first step is to construct a 

similarity graph of diseases, a sparsified weighted graph where the diseases are the nodes of 

the graph and the weights represent the similarity between the embedding vectors. To 

construct the graph from the data, we calculated the pairwise cosine similarity matrix S for all 

diseases and followed the normalisation approach of Altuncu et al (2019), by calculating the 

distance matrix 𝐷 = 1 − 𝑆, applying max normalisation to give 𝐷&, and then calculating the 

normalised cosine similarity as 𝑆' = 1 − 𝐷&.55 This produces a dense similarity matrix, which 

is then sparsified to transform it into a similarity graph. This sparsification is a key pre-

processing step in MMCD as it removes edges with weaker associations. Although simple 

thresholding based on weights was originally applied in this step, it is not robust to noise and 

does not capture well the inhomogeneities in the similarities in the data. Hence, several 

methods have been proposed for this step using global constructions that involve the 

minimum spanning tree (MST), which contains the collection of edges with minimum weight 

sum that fully connect all nodes on the graph, thus ensuring global connectivity. To this 

sparse network, edges representing local connectivity are often added, such as the k-nearest 

neighbours (kNN) for each node. Recently, Liu and Barahona (2020) demonstrated 

improvement on the kNN graph by using continuous kNN (CkNN).17 In CkNN, for distance 

di,j connecting nodes i and j, and where dk(i) and dk(j) are the distances to the k-th nearest 

neighbour of i and j, respectively, then the edge is retained if: 

 

𝑑(𝑖, 𝑗) < 	𝜕1𝑑!(𝑖)𝑑!(𝑗) 

 

where 𝜕 is a parameter that can be varied to alter the sparsity of the network. In our case, we 

hold 𝜕 constant at a value of 1, but vary the value of k; as shown by Liu and Barahona 
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(2020), the MMCD algorithm is relatively robust to different parameterisations.17 We 

selected a CkNN value of ten, but comparison of CkNN values of five, fifteen and twenty 

resulted in similar partitions. 

 

To this sparsened undirected network, we then applied MMCD, using the pygenstability 

module in Python16,56,57 which models a random-walk across the network, and evaluates 

subgraphs of the original graph over which the Markov dynamics is contained over a time (t) 

that acts as a scale. The natural scanning over scales performed by the diffusion on the graph 

reveals larger communities (i.e., coarser clusterings) as the scale t is increased.16 For details 

of the method and its applications see Delvenne et al (2010) and Arnaudon et al (2021).16,56 

At each time step, we optimise the cost function 2,000 times using the Leiden algorithm,58 

and calculate the normalised variation of information (NVI), an information theoretic 

measure for comparing cluster partitions, where 0 indicates identical partitions and 1 

indicates dissimilar partitions. The algorithm then selects partitions that have low values of 

the NVI across scales and also with respect to the Leiden optimisation, using the automated 

scale selection algorithm developed by Schindler et al (2023) which smooths the NVI to 

identify persistence across scales.60 Models were run over a Markov scale aiming for between 

4 and 30 clusters, using 500 scale steps, 2000 optimisation evaluations and select 400 

optimisations to compute the NVI at each scale.57  
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Benchmarking and evaluation of clusters 

As a benchmark, we compared the cluster partitions derived from MMCD to k-means and 

hierarchical clustering using Ward’s method, as baselines widely used in multimorbidity 

research.13 We compared to the same number of clusters as identified in MMCD. In contrast 

to MMCD, which used the cosine similarity matrix, these methods were applied directly to 

the disease embeddings as input features. We implemented k-means with the Lloyd 

algorithm, iterating 1,000 times with different random centroid seeds. We used scikit-learn 

package for both k-means and Ward’s clustering algorithms.61 

 

To enable comparison across methods, we calculated metrics related to the interpretability of 

clusters. As an intrinsic measure of the relevance of disease clusters to patterns of diseases in 

patients, we first randomly sampled 100,000 patients with replacement. For each patient, we 

then randomly sampled two different diseases from their set of all diseases, once per patient. 

We assigned patients to a disease cluster if both diseases were contained within the same 

cluster. Of these patients {P1,… PN} assigned to a disease cluster, we calculated a metric of 

the pairwise Jaccard similarity between the set of two diseases {d1, d2} for each patient in the 

same cluster, and report the arithmetic mean of all possible pairs. 

 

To compare between the three clustering algorithms for partitions with the same number of 

clusters, we used information from the 253 known disease pairs. We expect that in a more 

interpretable clustering solution, known disease pairs are more likely to be assigned to the 

same cluster. To correct for the bias that favours unbalanced and uninformative clustering 

solutions with all diseases assigned to a single cluster, we considered the observed 

assignment of known disease pair edges within clusters to that expected, assuming the 

contingency table in Table 1. 

 

Table 1: contingency table of assignment of known disease pairs to clusters 

 Intra-cluster  Inter-cluster  

Known disease pair edges DPintra DPinter 

Other disease pair edges Eintra Einter 

 

Following from Table 1, we calculated the odds ratio for a known disease pair edge being 

intra-cluster compared to inter-cluster: 
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𝑂𝑅 = 	
𝐷𝑃"#$%& 	× 	𝐸"#$'%
𝐷𝑃"#$'% 	× 	𝐸"#$%&

 

 

A higher OR here can be interpreted as higher odds that a known disease pair edge is found 

in the same cluster given the cluster distribution for a partition with the given number of 

clusters, representative of more balanced and informative clusters. 

 

Comparison to ICD-10 classification 

We compared the clusters to the ‘system’ a condition is assigned to in the CALIBER code-

lists, which is corresponds closely to the classification of chapters in ICD-10,43 using the 

NVI. Each disease is assigned to one of sixteen ‘systems’, for example, ‘asthma’ is assigned 

under ‘Diseases of the Respiratory System’, similar to the chapters used in ICD-10. 

 

We used Python version 3.8.10 and Pandas version 1.3.5 for data manipulation and 

management.62,63 Sankey diagrams were created in Plotly.64 
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