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0. Abstract 
 
Introduction: Model projections of COVID-19 incidence into the future help policy makers about 
decisions to implement or lift control measures. During 2020, policy makers in the Netherlands were 
informed on a weekly basis with short-term projections of COVID-19 intensive care unit (ICU) 
admissions. Here we present the model and the procedure by which it was updated.  
Methods: the projections were produced using an age-structured transmission model. A consistent, 
incremental update procedure that integrated all new surveillance and hospital data was conducted 
weekly. First, up-to-date estimates for most parameter values were obtained through re-analysis of 
all data sources. Then, estimates were made for changes in the age-specific contact rates in 
response to policy changes. Finally, a piecewise constant transmission rate was estimated by fitting 
the model to reported daily ICU admissions, with a change point analysis guided by Akaike's 
Information Criterion.  
Results: The model and update procedure allowed us to make mostly accurate weekly projections, 
accounting for recent and future policy changes, and to adapt the estimated effectiveness of the 
policy changes based only on the natural accumulation of incoming data.  
Discussion: The model incorporates basic epidemiological principles and most model parameters 
were estimated per data source. Therefore, it had potential to be adapted to a more complex 
epidemiological situation, as it would develop after 2020. 
 
 
1. Introduction 
 
Since early 2020, the COVID-19 pandemic has had a severe impact on society. To mitigate the 
primary impact due to infection with the SARS-CoV-2 virus, including the large burden on health care 
systems affecting both quantity and quality of care beyond COVID-19, public health control 
measures were taken that seriously affected everyday life, economically as well as socially (1, 2). A 
great responsibility lay with the policy-makers who had to weigh these factors into a balanced 
control policy, despite all uncertainties about both the positive and negative effects of control 
measures. 
 
An important source of information guiding the decision to implement or lift a control measure, was 
the input from epidemic models. In the Netherlands, the National Institute for Public Health and the 
Environment (RIVM) was responsible for modelling to inform policy. Results were presented weekly 
to the Outbreak Management Team, the official medical advisory body to the government. Models 
were developed for various objectives, such as to advise on the introduction or optimisation of 
particular control measures, including contact tracing and vaccination (3, 4), and to assess the 
current state of the epidemic, by making nowcasts and estimating the effective reproduction 
number (5, 6).  
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To assess the effect of control measures in place and to allow timely decisions regarding 
modifications of control, there was a need for short-term projections (up to three weeks) of 
admissions to Intensive Care Units (ICU). Many forecasting models have been used worldwide, which 
make use of mechanistic transmission models or statistical techniques such as time series analyses, 
filtering methods, and machine learning (5, 7-14). In the Netherlands, the National Centre for Patient 
Exchange (LCPS), the body responsible for hospital capacity planning and patient relocations, 
produced weekly short-term forecasts for hospitals. These were based on extrapolation of the 
current growth rate (15). The Netherlands Organisation for Applied Scientific Research (TNO) 
developed a transmission model that was briefly used for forecasts (16), using publicly available data 
on ICU admissions in an ensemble smoother fitting algorithm. Both the LCPS and TNO models were 
not designed to project the effect of recent changes in control measures. 
 
To provide policy-makers with short-term projections of new admissions, resulting healthcare 
demand and the effects of control measures, we developed a dynamic transmission model for the 
spread of SARS-CoV-2 in the Dutch population. The model was primarily used for projections of 
hospital and ICU admissions on a three-week time horizon, and a modelling procedure was designed 
to minimise the need for arbitrary decisions about the impact of control measures. Here we present 
the model, and the procedure for integration of the most recent data and recent changes in control 
measures. Although the procedure was followed for the entire two years with major contact-
restricting control policy in place, in this article we present the model used between 28 March 2020 
and 6 January 2021, which avoids the complexities of incorporating vaccination and the rise of new 
variants in the model description. 
 
 
 
2. Methods 
 
The model incrementally combined incoming data with a mechanistic description of recent changes 
in control measures, to make projections for the course of the epidemic on a three-week time 
horizon. On the day of analysis, the most recent data were collected to parameterize and fit the 
model.  
 
 
2.1. Data 
CBS: Population 
We used the population size and age structure of the Netherlands in 2020, published by Statistics 
Netherlands (CBS), in 10-year age groups 0-9, 10-19, …, 70-79, 80+ years (www.opendata.cbs.nl). 
 
Pienter: Contacts 
In 2016-2017, the third Pienter study was conducted in the Netherlands, a nationwide 
seroprevalence study including a contact survey (17, 18). In this contact survey, participants aged 0-
89 years (or the parents in case of child participants) filled out a contact diary over one day, in which 
they registered all their contacts specified by age and setting: work, school, home, leisure, transport, 
or other. 
 
CoMix: Contacts 
In 2020 an international collaboration started collecting contact survey data in several European 
countries (19). We used the data of the first survey conducted in the Netherlands in early April 2020 
(20). 
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PiCo: Serology 
In April 2020, the first serological survey in the general population for antibodies against SARS-CoV-2 
was carried out in the Netherlands, followed by a second survey in June 2020 (21, 22). These surveys 
provided estimated seroprevalences per age group, for the mean days of sample collection of 6 April 
and 15 June. 
 
 
Osiris: Case notifications 
Positive SARS-CoV-2 tests are notifiable and all cases were registered in the Osiris database (23). 
Relevant variables for this study were: age, day of symptom onset, day of hospital admission, and 
potential infector. Following initial notification, records were not always updated, resulting in 
incomplete hospitalisation records in this database, especially after June 2020, when community-
wide testing became available for everyone with COVID-19-like symptoms.  
 
NICE: Hospital and ICU admissions 
The National Intensive Care Evaluation registered all COVID-19 hospital admissions in the 
Netherlands (24). Records consisted of dates of admission and discharge or death for every patient 
in every ward, with pseudonymized patient identifiers allowing the linkage of potential multiple 
records for a single patient. As near real-time data were used, the duration of stay was censored for 
many patients, especially during periods of high occupancy.  
 
Ownership and privacy 
Most datasets contained personal information and were therefore privacy sensitive, only CBS is 
open data. Pienter, CoMix, and PiCo were collected and owned by RIVM. Osiris were collected by the 
Dutch municipal health services and reported to RIVM. NICE data from the hospitals was processed 
by NICE Research and Support under supervision of the NICE foundation. RIVM was permitted to use 
these data sources for research purposes. Anonymized case data and aggregated data were made 
available for public use on the RIVM website (https://data.rivm.nl/covid-19/). For the weekly data 
analysis the most recent individual-based data were always used. 
 
 
2.2. Model 
We used a deterministic age-structured SEEIIR compartmental model for transmission of SARS-CoV-2 
in the Netherlands (Figure 1a), described with ordinary differential equations (ODEs), for nine age 
groups (0-9, 10-19, …, 80+ years). In this model structure, an individual starts in the S (susceptible) 
compartment, enters the E1 (latently infected) compartment by infection at rate λ(t), and then 
moves through each of the E2, I1, and I2 compartments into R (immune or dead), with each transition 
made at the same rate γ. Cases were not infectious in the E1, E2, and R compartments, and were 
equally infectious in both I compartments. This structure served to obtain the desired generation 
interval distribution (Figure 1b). The model was initialized on 12 February 2020 with y0/4 individuals 
in each age group in each of the four compartments E1, E2, I1, and I2. The infection incidence yi(t) in 
age group i, i.e. the daily rate of new infections caused by susceptibles making contacts with 
infectives in both infectious classes (I = I1 + I2), was modelled as 
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This assumes homogeneous mixing within age groups. The time-varying force of infection λi(t) is the 
fundamental descriptor of the transmission model, and combines the underlying components 
infectivity, susceptibility and contact rates between individuals of all age classes, as well as how 
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these contact rates changed due to control measures, behaviour or by other means (see next section 
for parameter estimation). The components of λi(t) consist of: 

- the population size N, with proportion of the population xi in age group i to determine the 
initial values Si(0) = xi N – y0. 

- the number of infected people in age group j, Ij. 
- the relative susceptibility of age group i, σi

S, and relative infectivity of age group j, σj
I. 

- the rate by which each individual in age group i makes contacts with individuals of age group 
j (if all individuals would be of type j), cij(t). This rate is an element of the contact matrix C(t), 
and is stepwise constant, depending on control measures in periods of the epidemic T 
ending at transition times uT (u0 is before the pandemic). Given the contact matrices CT, and 
the transition times uT, 

 ( )
1, T TT u t ut
− < ≤=C C  

- the transmissibility parameter, β(t). This rate is stepwise constant with change points at 
some of the transition times uT, which reflect changes in transmissibility that are not covered 
by changes in the contact matrices: 

 ( )
1, T TT u t utβ β
− < ≤=  

 
The basic reproduction number R0 of this model, defined as the mean number of secondary cases 
per primary case in a susceptible population, is equal to the largest eigenvalue of the next-
generation matrix (25) 
 

 ( ) ( ) ( ) ( )T2 0
1 10 I Sβ

γ=M σ C σ x , (2) 

 
in which ◦ indicates element-wise multiplication. The reduction in contact rates due to control 
measures results in a relative transmission rate φT(t), which is determined by replacing β(0) and C1 by 
β(t) and C(t), and calculating the ratio of largest eigenvalues 
 
 ( ) ( )( ) ( )( )1 0T Tt tφ ρ ρ= M M  (3) 

 
To decrease simulation time, as of 25 November 2020 this continuous-time version of the model was 
not used anymore and replaced (for the entire epidemic) by a discrete-time version with time steps 
of one day, with Ij(t) described in terms of  earlier incidence up to 12 days previously (renewal 
equation (25)), and generation interval  distribution g(τ) (Figure 1b): 
 

 ( ) ( ) ( )
12

1
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τ
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This model was initialized with incidence y0/12 in each age group on each day from 1-12 February 
2020. 
To simulate the daily numbers of hospital and ICU admissions and the daily numbers of discharges 
and deaths, the daily infection incidence yi(t) was used as input for the clinical progression model 
(Figure 1c). In this model, expected numbers of hospital and ICU admissions and occupancy are 
calculated, by using age-specific time-varying probabilities and delay distributions (Figure 1d-f). For 
instance, the expected number of ICU admissions at time t for age group i was: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 ' '' '

'' '' ' '' ' ''
t t t

A ICU S A ICU
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τ τ τ τ τ
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This is a convolution of three delay distributions: the delay from infection to symptom onset, the 
delay from symptom onset to hospital admission, and the delay from hospital admission to ICU 
admission. Here, pi

A(∙) and pi
ICU(∙) are the respective probabilities of hospital admission and transfer 

to the ICU, stratified by age and as a function of date of hospitalisation; and dS(∙), di
A(∙), and dICU(∙) are 

the three delay distributions. 
 
 

 
Figure 1. Schematic of the model, which is age-structured into nine groups 0-9, 10-19, ..., 80+; (a) 
the dynamic SEEIIR compartmental transmission model, with incidence of infection y from S 
(susceptible) to E1 (exposed – first stage), and equal fixed rates between all compartments from 
E1 to E2 (exposed – second stage), to I1 and I2 (both infected and infectious), and finally to R 
(either immune or dead). Incidence y results from contacts of susceptibles (S) with infectives (I1 
and I2); (b) the continuous generation interval distribution resulting from the SEEIIR structure of 
the transmission model (line), and the discretized version g() used for the discrete-time model 
(histogram); (c) the clinical progression model, from infection incidence to hospital admission 
(general ward), transfer to the ICU, and transfer back to a general hospital ward, with outflow 
because of discharge or death; (d) delay distribution from infection to hospital admission (general 
ward); (e) length-of-stay distributions on the general ward (patients not going to ICU), on the ICU, 
and on the general ward (after discharge from the ICU). Points are means, white gaps are 
medians, solid colours are 50% range, transparant colours are 90% ranges (f), delay distribution 
from hospital admission to ICU admission; (d-f) situation on 6 January 2021, with colours matching 
the arrows in (c) 
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Table 1. Overview of model parameters, as estimated on 6 January 2021. 
 
Parameter Data 

source a 
Age group 

 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ 
Population size CBS 17.3 million 
Age distribution CBS 0.103 0.116 0.127 0.122 0.131 0.145 0.121 0.088 0.046 
Incubation period 
distribution 

(26, 27) Weibull (shape = 2.1, mean = 5.0) 

Generation interval 
distribution 

(28, 29) Figure 1b 

Susceptibility and 
Infectivity 

PiCo and 
Pienter 1b 3.05 5.75 3.54 3.71 4.36 5.69 5.32 7.21 

Probability of hospital 
admission after 
infection* 

PiCo and 
NICE 0.003 0.000 0.001 0.004 0.008 0.017 0.025 0.049 0.046 

Mean delay symptom 
onset to hospital 
admission(days)* 

Osiris 
2.3 5.5 5.1 5.7 6.5 5.9 5.7 5.1 4.3 

Probability of transfer 
to ICU from a hospital 
ward* 

NICE 
0 0.062 0.096 0.110 0.164 0.202 0.244 0.196 0.035 

Probability of transfer 
from ICU to a hospital 
ward* 

NICE 
0.866 0.866 0.866 0.866 0.866 0.829 0.720 0.573 0.555 

Delay and length-of-
stay distributions 

NICE Figure 1d-f 

* Time-varying parameters, values of 6 January 2021; a Data sources as described in the main text: 
CBS = Statistics Netherlands, PiCo = serological survey, Pienter = contact survey, NICE = hospital data, 
Osiris = case notification data; b Reference group  
 
 
 
2.3. Estimation of parameters and distributions  
 
Step 1: parameters and distributions (excluding contact rates and transmissibility) 
Each weekly model analysis started with the collection of all parameter values other than the 
contact matrices CT , initial state y0 and transmissibility parameters βT. The analyses were adapted 
when necessary throughout the year, when additional data sources became available, or if 
parameter values appeared to change over time. We describe all analyses as carried out on 6 
January 2021 (Supplement). 
 
Step 2: the contact matrices 
In the model, contact matrices CT describe how different age groups interact with each other in 
consecutive periods T of the pandemic during which different sets of control measures were in 
place. Each matrix was used up to transition time uT, the time of policy change (Figure 2a and 
Supplement). An exception was made for the rapid sequential deployment of control measures mid-
March 2020, with associated adaptations in contact behaviour. For this period we assumed the 
existence of two transition times, with the same contact matrix after the first and second transition. 
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The dates of these transitions, u1 and u2, were estimated in step 3 (below); note that these dates do 
not necessarily correspond to the actual days when major policy changes were implemented. 
 
The matrices were based on contact data collected for the Pienter study in 2017, before COVID-19 
(18). In this contact survey, participants recorded their contacts over the course of a day in different 
settings: home, school, work, leisure, transport, and rest. COVID-19 measures can affect these 
contacts; how much, in which setting and in which age group will depend on the specific measure. 
Estimating the reduction in contacts, something that cannot be measured, was done by treating it as 
a Fermi problem, i.e. by breaking it down many smaller estimation problems which reduces the 
expected error of the problem as a whole (30, 31). For each set of COVID-19 measures, two 
researchers independently predicted how the measures would affect the contacts of each age group 
in each setting, while ensuring consistency with previous sets of measures. This yielded the Fermi 
estimates, i.e. consensus estimates for the contact rate reductions with an uncertainty range, which 
were used to resample the Pienter data and estimate the contact matrices CT to ensure the 
reciprocity of the contacts between age groups (32). By uniformly sampling from the uncertainty 
ranges of the Fermi estimates, 200 contact matrices were obtained to describe the effect of a given 
set of COVID-19 control measures. On 28 May 2020, new estimates were made for all sets of control 
measures, to match the observations of the first CoMix contact study (19, 20), and new matrices 
were created. 
 
Step 3: the transmissibility parameter 
The transmissibility parameters βT and matrix transition times uT were required for the rate of 
transmission β(t). Together with the initial state y0, all βT, u1 and u2 were estimated by fitting the 
model to the ICU admission data, conditional on all parameter values as inferred in steps 1 and 2, 
and all transition times uT for T>2. We used the optim function in R version 3.6.0 (33) to maximize 
the log-likelihood, with Tmax stepwise constant transmissibilities in β(t): 
 

 
( ) ( )( )

( ) ( ) ( )( )
max max max

max max max
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1 1 1
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 − 
 

∑ ∑

C C
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 (6) 

 
Here, Z(t) are the observed daily ICU admissions which were assumed to follow a Poisson 
distribution, θ all parameters estimated in step 1, CT the means of all sets of 200 sampled contact 
matrices, pobs(tanalysis - t)  the probability of reporting at the day of analysis, and zi(t;…) the simulated 
numbers of admissions. 
 
At each later transition time uT, the change in contact matrices from CT to CT+1 reflected the anticipated 
changes in contact behaviour caused by the policy change at that moment, as estimated in step 2. If 
the changes in behaviour were correctly reflected in the matrices, it could be assumed that βT+1 = βT, 
thus reducing the number of model parameters. As a consequence, the stepwise constant 
transmissibility parameter β(t) would have fewer changepoints (where βT+1 ≠ βT) than there are 
transition times. We fitted models with changepoints at different subsets of transition times uT, and 
selected the set with the lowest value of the Akaike's Information Criterion (AIC, (34)). From the final 
selected model, point estimates were obtained with a covariance matrix for all stepwise constant 
transmissibilities and the initial number of infected persons, calculated from the Hessian matrix 
obtained with the optim function in R. 
 
 
2.4. Model simulations: projections and scenario analyses 
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The parameter estimates were used to conduct 200 model simulations with different parameter sets 
to reflect uncertainty. Constant values were taken for the parameters estimated in step 1, and 200 
samples of the parameters estimated in step 3. For the period up to two weeks prior to the analysis 
date, the means of the sampled contact matrices were used.  
 
For the period after two week prior to the analysis date, additional uncertainty was added. First, all 
200 samples of each contact matrix were used because contact behaviour in that period was not yet 
adjusted by fits to ICU data in step 3. Second, as no data were yet available to support potential 
future change points in transmissibility, we assumed that the transmissibility parameter remained 
constant, multiplied by random noise (range 0.98-1.02) to reflect the uncertainty inherent in this 
assumption. The simulations resulted in 200 time courses of expected ICU admissions per day. To 
account for stochasticity in admissions, we used each once as mean of a Poisson distribution to 
simulate 200 stochastic outcomes per day. Finally, mean ICU admissions and 95% intervals for each 
day were plotted and presented as results.  
 
 
2.5 Model development during the pandemic 
 
Up to 6 January 2021 the model and estimation procedure has undergone several changes, such as 
implementation of the SEEIIR compartments (instead of SIR), and of age-dependent susceptibility 
and infectivity. Also, alternatives have been explored but not implemented, such as a negative 
binomial likelihood and an MCMC procedure to fit the model to data, which was too time-consuming 
for weekly fits. Changes to the model were carefully checked in sensitivity analyses when 
implemented (e.g. the transition from the continuous-time to discrete-time model, see Supplement), 
but not systematically challenged thereafter unless evidence became available to do so.  
 
3. Results 
 
Towards the end of the first COVID-19 wave in April 2020, lengths of stay in hospital and ICU 
decreased and then remained constant throughout the rest of the study period (Supplement). For 
instance, for patients aged 60-69 years who ended up in ICU, it took on average 11 days between 
infection and admission to the hospital general ward (Figure 1d), then an average of two days to be 
transferred to the ICU (Figure 1f), where they stayed on average 15 days, with 10% of patients 
staying longer than 34 days (Figure 1e). After discharge from the ICU, they stayed on average a 
further 10 days in a general ward before being completely discharged (Figure 1e).  
 
To assess the performance of the estimation procedure for the contact matrices and the 
transmissibility parameter β(t) (see Supplement for numerical results), we summarised the contact 
matrices by their associated reduction in transmission rates before fitting to ICU admission, φT(0), 
and after fitting to ICU admissions, φT(t) (Equation (3), Figure 2a). The reduction in transmission rates 
before fitting describes the effects of the control measures according to the estimated contact 
matrices. There was a large drop in transmission around 18 March, when the first lockdown started. 
It then gradually increased until September 2020, when more measures were imposed until reaching 
a new minimum just before the Christmas holiday of 2020. 
 
The reduction in transmission rates after fitting to the ICU admissions combines the estimated 
transmission matrices and the stepwise constant transmissibility function β(t). In this function, a 
total of six changepoints were needed as of 6 January 2021. The first was placed at the start of 
lockdown (18 March 2020) and the second about one week later. These timepoints reflect stepwise 
implementation of control measures, and suggested a short-lasting extreme decrease in contact 
behaviour before settling to a level approximately matching the contact matrix estimate. The 
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estimates of the exact timing and magnitude of this short decrease in March 2020 changed several 
times during the year when the model changed, but that did not affect projections (Supplement). No 
further change points were needed until the end of September, after which three were needed 
during October and November in which infections were rising rapidly, but with only minor changes 
in transmissibility. A large correction was needed mid-November at u11 (Figure 2a), when 
transmissibility was estimated much higher than anticipated based on the control measures only. 
 
 
 

 
Figure 2. (a) Transmission rates relative to prepandemic values, before and after fitting to daily 
ICU admissions (analysis of 6 January 2021; Equations (2) and (3)). Arrows indicate transition times 
between contact matrices uT; the dotted vertical lines indicate the change points in stepwise 
transmissibility β(t); (b) All 40 three-week projections (starting with crosses) of numbers of ICU 
admissions per day until the projection made on 6 January 2021, with colour indicating when 
actual admissions (shown as dots) were within the 95% interval. 
 

 
The resulting three-week projections during this first year of COVID-19 modelling show that most 
were accurate in the sense that the actual (i.e., later observed) number of ICU admissions fell within 
the 95% prediction intervals (Figure 2b). ICU admission projections were too high at the end of 
March during the first peak, and at some instances during August 2020; projections were 
occasionally too low in November 2020. These projections improved when new data became 
available, providing evidence for new changepoints (Supplement). 
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4. Discussion 
 
During the Dutch COVID-19 epidemic, real-time short-term projections of COVID-19 ICU admissions 
were provided to policy makers in the Netherlands. Every week, the most recent data were 
incrementally incorporated into an age-structured transmission model in three steps: firstly, 
transition probabilities and delay distributions for the clinical progression model were estimated, as 
well as most parameters of the transmission model; secondly, contact matrices were estimated for 
each set of control measures; thirdly, a time-varying transmissibility parameter was estimated that 
provided the best fit to the observed daily numbers of ICU admissions. This data assimilation process 
avoided a combinatorial explosion of parameter inferences for a model that increased in complexity 
over time, while minimizing arbitrary decisions about the impact of control. The resulting model is 
semi-mechanistic: it combines statistical flexibility for an accurate and parsimonious description of 
the incidence of ICU admission in real time with a causal interpretation of the changes in contact 
matrices that allowed the anticipation of effects of recent and planned changes in control measures 
that are not yet detectable in the incoming data. The model complies with the theoretical (and 
practical) requirement that the model's dynamical behaviour explains the observed dynamics, and, 
more importantly, the projections match the actual ICU admissions remarkably well. 
 
A substantial change in the transmissibility parameter was estimated at only two points in the study 
period to correct the epidemic growth rate implied by the contact matrices (between u1 and u2, and 
at u11, Figure 2a). The first of these corrections was for March 2020, in the first week of the first 
lockdown, when the estimated transmissibility parameter was lower than anticipated for one week 
before increasing to the anticipated level. A similar brief drop in contact rates in this period in the 
Netherlands was reported by van Wees et al (35). The estimates likely reflect an actual behavioural 
change in the population in response to the rapidly rising number of daily hospitalizations with 
COVID-19. The second correction was for November 2020, during the second epidemic wave, when 
estimated transmissibility parameter was higher than anticipated. This may in part be explained by a 
decreasing adherence of the population to control measures. Another explanation is a seasonal 
change in transmissibility, with higher values in winter. Indeed, after implementing a seasonally 
dependent transmission parameter into the model (implemented in January 2021, subsequent to 
our study period), a much smaller correction was needed. Naturally, short-term projection intervals 
did not capture the actual reported numbers of ICU admissions at these two time points, with 
projections improving shortly thereafter, when new data became available (Figure 2b and 
Supplement). In addition some projection interval failed to capture admission in August, when the 
numbers of daily ICU admissions were low. Overall, the projections captured the later reported 
dynamics in ICU admissions reasonably well, which is a prequisite for informing policy-makers.    
 
In practice, the need for timely short-term projections required making a number of assumptions, 
the impact of which should be considered. The transmission model used here is deterministic and 
assumes homogeneous mixing within age groups for the whole Dutch population. Even though the 
model did not capture spatial heterogeneity and local stochastic effects, the simulations captured 
the national average well for a population of 17 million persons. Many parameters and delay 
distributions were estimated independently, which risks underestimating uncertainty and ignoring 
potential correlation between parameter values. However, it seems that less accurate projections 
were generally caused by differences in anticipated contact rates – later corrected by estimates of 
the time-dependent transmissibility, as explained above – and not by overly narrow prediction 
intervals resulting from the use of independent estimates. By estimating most parameters in the first 
step, the inferential procedure was time-efficient, ensuring sufficient time to update all weekly 
estimates and to integrate the most recent data into the transmission model. This efficiency proved 
vital when more complex extensions of the model were deployed later in the pandemic. Estimation 
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of the contact matrices was done by combining contact data from before the pandemic and 
reductions estimated by two researchers in a standardized protocol. This was feasible given the time 
constraints and turned out well. A major uncertainty in this protocol was future adherence to 
control measures. This may be inferred from behavioural surveys, but more research is needed to 
evaluate this possibility for real-time prediction.  
 
This study has focused on the epidemic dynamics over the period February 2020 to January 2021 a 
period when the vast majority of the population was susceptible to infection and recurrent waves 
were a direct consequence of contact behaviour. Because the model incorporates basic principles 
dictated by epidemic theory, it had potential for use in the range of epidemiological situations that 
occurred since then. Firstly, the model can be readily adapted to include compartments and 
stratified parameters for vaccinated persons such that it could be used to make projections in a 
situation with COVID-19 vaccination. Secondly, the model can be adapted to include dynamic 
transmissibility and immune escape rates, when data on genomic surveillance provide evidence 
thereof, caused by variants of the virus. Thirdly, the loss of immunity can be modelled to facilitate 
the description of endemic dynamics of an infection spreading in a population that has been 
vaccinated or previously infected. When the epidemiological situation becomes more complex, 
when more data sources are available, and when research and policy questions become more 
interrelated, the approach of relating the transmission model to incoming data proves efficient and 
flexible. We believe this testifies to its practical merits. 
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