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20 Abstract

21        Age is an important risk factor among critically ill children with neonates being the most vulnerable. 

22 Clinical prediction models need to account for age differences and must be externally validated and 

23 updated, if necessary, to enhance reliability, reproducibility, and generalizability. We externally 

24 validated the Smart Triage model using a combined prospective baseline cohort from three hospitals in 

25 Uganda and two in Kenya using admission, mortality, and readmission. We evaluated model 

26 discrimination using area under the receiver-operator curve (AUROC) and visualized calibration plots. In 

27 addition, we performed subsetting analysis based on age groups (< 30 days, ≤ 2 months, ≤ 6 months, 

28 and < 5 years). We revised the model for neonates (< 1 month) by re-estimating the intercept and 

29 coefficients and selected new thresholds to maximize sensitivity and specificity. 11595 participants 

30 under the age of five (under-5) were included in the analysis. The proportion with an outcome ranged 

31 from 8.9% in all children under-5 (including neonates) to 26% in the neonatal subset alone. The model 

32 achieved good discrimination for children under-5 with AUROC of 0.81 (95% CI: 0.79-0.82) but poor 

33 discrimination for neonates with AUROC of 0.62 (95% CI: 0.55-0.70). Sensitivity at the low-risk 

34 thresholds (CI) were 0.85 (0.83-0.87) and 0.68 (0.58-0.76) for children under-5 and neonates, 

35 respectively. Specificity at the high-risk thresholds were 0.93 (0.93-0.94) and 0.96 (0.94-0.98) for 

36 children under-5 and neonates, respectively. After model revision for neonates, we achieved an AUROC 

37 of 0.83 (0.79-0.87) with 13% and 41% as the low- and high-risk thresholds, respectively. The Smart 

38 Triage model showed good discrimination for children under-5. However, a revised model is 

39 recommended for neonates due to their uniqueness in disease susceptibly, host response, and 

40 underlying physiological reserve. External validation of the neonatal model and additional external 

41 validation of the under-5 model in different contexts is required. 
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42 Author summary

43        Clinical prediction model has become evermore popular in various medical fields as it can improve 

44 clinical decision-making by providing personalized risk estimate for patients. It is a statistical technique 

45 that incorporates patient-specific factors to personalize treatment and optimize health resources 

46 allocation. Clinical prediction models need to be validated in a different setting and population, and 

47 updated accordingly to ensure accuracy and relevance in clinical settings. We aim to evaluate one such 

48 model currently being implemented at the outpatient pediatric department at multiple hospitals in 

49 Uganda and Kenya. This model has been incorporated into a digital platform that is used to quickly 

50 identify critically ill children at triage. After validating the model against different age groups, we found 

51 the current model is not well suited for neonates and thus attempted to update the model. Our study 

52 provides new insight into clinical variables that impact neonatal outcome and we hope to improve 

53 neonatal morality for low-resource settings. 

54 Introduction

55        Significant progress has been made to decrease overall under the age of five (under-5) child 

56 mortality since the 1990s, though is due to improved outcomes among the non-neonatal population (1). 

57 Low- and middle-income countries (LMICs), particularly in Sub-Saharan Africa and South Asia continue to 

58 contribute disproportionately to childhood deaths globally (1). Amongst the five million children under-5 

59 that died in 2020, 2.4 million were neonates with infectious diseases such as diarrhea, lower respiratory 

60 tract infections, meningitis, and malaria being major contributors (2). Sepsis is a dysfunctional 

61 inflammatory pathway leading to infection, death, and co-morbidities account for the majority of 

62 emergency and acute care visits in LMICs (3).

63        Effective triage facilitates early identification of critically ill children in and can improve outcomes 

64 through case prioritization, as most in-hospital deaths in resource-poor settings occur within 24 hours of 

65 admission (4, 5). The Emergency Triage Assessment and Treatment (ETAT) guidelines have been 
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66 developed by the World Health Organization (WHO) for the assessment, triage, and initial management 

67 of acutely ill children in resource-poor facilities (6). The complexity of ETAT requires clinical knowledge, 

68 extensive memorization, and repetitive training, making its implementation a challenge in an 

69 environment where patient burden and new-staff turnover are high (7, 8, 9). An alternate solution is 

70 using electronic platforms with or without clinical prediction models which use data-driven algorithms 

71 to prioritize care (10, 11). One such example is the Smart Triage model, a 9-predictor pediatric triage 

72 model that can be embedded into a digital triage platform (12). Despite current progress, these models 

73 cannot be widely disseminated due to their lack of generalizability and external validation (13, 14, 15). 

74        Prediction models are increasingly being used for individualized decision-making and to inform 

75 service delivery planning in health care (14). However, these models need to be externally validated 

76 before implementation in clinical settings (14, 16, 17). External validation can bridge the gap between 

77 the development and implementation of prediction models to ensure the model’s reproducibility and 

78 generalizability (14). Whether a model should be re-derived or updated during external validation 

79 depends on its performance in the validation cohort, the availability of research resources, and the 

80 characteristics of participants in which the model will be applied (15). By keeping the same predictors, 

81 updating a model can maintain predictive performance without losing prior information captured in the 

82 original model (16). Thus, there is a clear need to optimize existing prediction models for new settings 

83 (15). 

84        Geographical validation and subsetting of data are two ways to evaluate prediction models. This 

85 study conducted geographical validation of the Smart Triage model by combining data from three 

86 hospital sites in Uganda and two sites in Kenya. Subsetting the data measures model accuracy to ensure 

87 the model is applicable to different subgroups in a dataset as certain subgroup(s) can lead to skewed or 

88 inaccurate predictions. As age is an important factor in risk prediction, we aim to remove older age 

89 groups from the data to measure model accuracy. The neonatal period is recognized as the period 
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90 associated with the highest clinical risk (18), likely due to differences in inciting infections, disease 

91 susceptibility, host response, and underlying physiological reserve (19). To optimize the performance of 

92 the risk prediction across ages we hypothesize that patients under one month of age (neonates) have 

93 different risks and physiology and therefore require a different model. We update the model for this age 

94 group through a sequence of model-updating procedures (20). 

95 Method

96        Model external validation and updating followed to Transparent Reporting of a multivariable 

97 prediction model for Individual Prognosis or Diagnosis (TRIPOD) guidelines on developing, validating, or 

98 updating a multivariable clinical prediction model (21).

99 Study population and design

100        The Smart Triage model was developed based on a prospective baseline cohort study conducted 

101 between April 2020 – March 2021 at the outpatient pediatric departments (OPD) of Jinja Regional 

102 Referral Hospital (Jinja), a public hospital funded by the Uganda Ministry of Health. It is the largest 

103 referral hospital in Eastern Uganda and serves patients residing in Jinja and eight surrounding districts. 

104 Its OPD, which functions similarly to an emergency department in high-income countries, evaluates 

105 between 20 and 100 patients per day and has an admission rate of approximately 20%. 

106        The model was externally validated by combining baseline datasets from three additional sites in 

107 Uganda: Gulu Regional Referral Hospital (Gulu), Uganda Martyrs’ Ibanda Hospital (Ibanda), and St. 

108 Joseph’s Kitovu Hospital (Kitovu), and two sites in Kenya: Mbagathi County Hospital (Mbagathi) and 

109 Kiambu County Referral Hospital (Kiambu), separately for different age groups (< 30 days, ≤ 2 months, ≤ 

110 6 months, and < 5 years). Ethics approval was obtained from the institutional review boards at the 

111 University of British Columbia in Canada (ID: H19-02398; H20-00484), Kenya Medical Research Institute 
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112 (ID: KEMRI/SERU/CGMR-C/183/3958), the Makerere University School of Public Health in Uganda (ID: 

113 SPH-2021-41), and the Uganda National Council for Science and Technology (ID: HS1745ES).

114        Data used for validation were prospective baseline cohort studies conducted from March 2021 – 

115 April 2022 at Gulu, December 2021 – May 2022 at Ibanda, December 2021 – June 2022 at Kitovu, 

116 February – December 2021 at Mbagathi, and March 2021 – December 2022 at Kiambu. Study nurses 

117 were recruited and trained to conduct study-specific procedures. They recruited and consented 

118 participants in the triage waiting area using a quasi-random sampling method based on time cut-offs, 

119 and collected health data. The OPD at Gulu, Ibanda, and Kitovu see approximately 150,000, 19,000, and 

120 19,000 patients annually with an admission rate of 18%, 33%, and 28%, respectively. The two hospitals 

121 in Kenya receive approximately 20,000 patients per year with an admission rate of 7% to 10%. 

122 Sampling and Eligibility 

123        The full details of study procedures are presented in previous publications (10, 12). Briefly, children 

124 under 12, 15, or 19 years of age seeking assessment for an acute illness at the pediatric emergency 

125 department of all hospital sites between 8:00 am and 5:00 pm were enrolled using time cut off sampling 

126 procedures. In addition to parental/caregiver consent, assent was obtained for children above eight 

127 years of age at Jinja and Gulu and 13 years of age in Kenya; although this study only uses under-5 data. 

128 Children at Ibanda and Kitovu were not individually consented as the program was implemented as a 

129 quality improvement program with a waiver of individual consent. Children presenting for elective 

130 procedures, scheduled appointments, or treatment of chronic illnesses were not eligible for enrollment.

131 Data collection and management

132        Data collection at all sites followed the same procedure that were used to develop the initial model 

133 at Jinja (12). Data were collected using password-secured Android tablets and a custom-built mobile 

134 application with an encrypted database. The Masimo iSpO2® Pulse Oximeter (City, Country) with micro 
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135 USB connector was connected directly to the tablet to collect pulse oximetry and heart rate, and the 

136 Welch Allen SureTemp 692 (City, Country) thermometer was used to measure core temperature. Data 

137 was uploaded directly from the Android tablets to REDCap (Research Electronic Data Capture) (23) and 

138 sent to the central study server at the BC Children’s Hospital Research Institute and KEMRI Wellcome 

139 Trust Research Programme office for Uganda and Kenya, respectively. After each upload, data on the 

140 tablets was automatically deleted. Standard operating protocols for data collection and management 

141 are available on the Pediatric Sepsis CoLab Dataverse (24).

142 Primary Outcome

143        The composite endpoint composed of one or more of the following: hospital admission of 24 hours 

144 or more determined from hospital records, readmission within 48 hours of enrollment, and mortality 

145 including in-hospital or post-discharge. Admission, readmission, and in-hospital or post-discharge 

146 mortality status were confirmed by follow-up phone calls to the caregivers 7 days post-study enrollment 

147 (for non-admitted patients) or post-discharge. As a secondary analysis, the proportion of children with a 

148 composite endpoint was compared using Fisher’s exact test between those over six months of age to 

149 under-5 and those six months and under.

150 Smart Triage Model

151        The multiple logistic model was derived using bootstrap stepwise regression method and based on 

152 clinical validity with nine predictor variables included in the final equation. The model was integrated 

153 into a mobile application with a built-in pulse oximetry application that can be connected to a sensor, 

154 providing a smart algorithm that detects disease severity or level of risk in a child presenting to the 

155 hospital. The mobile application sends data to an interactive dashboard that provides clinical 

156 measurements and triage data to physicians in real-time allowing for rapid identification and 

157 assessment of critically ill children (12, 22).
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158        The nine predictors included in the model were the square root of age, to attempt to linearize the 

159 nonlinear relationship between age and risk, heart rate, temperature, mid-upper arm circumference 

160 (MUAC), transformed oxygen saturation (using the concept of virtual shunt (25)), parental concern, 

161 difficulty breathing, oedema, and pallor (S1 Appendix). 

162 Statistical analysis 

163 Sample Size

164        Sample size was pre-determined at each site prior to enrollment. In Uganda, it was computed based 

165 on the formula N = (nx10)/I where N is the sample size, n is the number of candidate predictor variables, 

166 and I is the estimated event rate in the population. The Smart Triage model developed at Jinja has nine 

167 predictors and an admission rate of 20%; thus, requiring a minimum sample of 450 participants. In other 

168 Ugandan sites, admission rate was used to calculate approximate sample size needed since predictors 

169 were already determined. In Kenya, a four-step procedure was implemented in the pmsampsize R 

170 package (26) to determine the minimum required sample to perform model validation. An input C-

171 statistic of 0.8, an admission rate of 0.05, a Cox-Snell R-sq of 0.0697 based on 0.05 acceptable difference 

172 in apparent and adjusted R-squared, 0.05 margin of error in estimation of intercept, and an event per 

173 predictor parameter of 7 were assumed.

174 Model Validation, calibration, and update

175        The Smart Triage model equation was applied to a combined dataset comprising of five hospital 

176 sites, separated into four age groups: < 1 month, ≤ 2 months, ≤ 6 months, and < 5 years. These age 

177 groups were chosen based on the WHO’s age classification for special statistics of infant mortality (26). 

178 The older age groups were subsequently removed from the data starting with > 6 months, then > 2 

179 months, followed by >= 1 month until only neonates remained to assess the model’s performance in the 

180 younger population. We also performed validation using exclusive age groups: >6m to < 5y, >2m to 6m, 

181 and 1m-2m, and neonates only. The sample size for each age category was still sufficient following the N 
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182 = (nx10)/I rule. The model was assessed for its overall performance, discrimination, and calibration (14, 

183 28, 29). The overall performance of the model was assessed using Brier Score, ranging from 0 to 1, with 

184 smaller values indicating a better model. Discrimination was assessed using area under the receiver 

185 operating curve (AUROC) and visualized with receiver operating characteristic (ROC) curves. AUROC 

186 close to 1 indicates good discrimination, while AUROC close to 0.5 indicates an inability to discriminate 

187 (28). Calibration was evaluated via calibration plots of predicted versus observed outcome rates with a 

188 45-degree line representing perfect calibration (29). A calibration intercept of 0 and a slope of 1 is 

189 considered ideal. The model was updated for neonates only through a series of steps from recalibration 

190 to model revision, including the original Jinja cohort. The first step was recalibration-in-the-large to 

191 address the difference in baseline risks by re-estimating the model intercept. The next step was logistic 

192 recalibration to re-estimate the intercept and slope. Finally, a model revision was performed by re-

193 estimating all regression coefficients using the same set of predictors. Age was not square rooted due to 

194 narrower range. Each step was visually examined with a calibration plot along with AUROC, 

195 Observed/Expected ratio, and calibration intercept and slope. An internal validation was performed 

196 using a 10-fold cross-validation procedure applied to the entire dataset due to the smaller sample size of 

197 neonates. A pooled estimate of AUROC, sensitivity, specificity, and predictive values was computed to 

198 quantify predictive accuracy. 

199 Risk stratification

200        Following our previously reported model development process (12), two new risk thresholds were 

201 selected for the new models to divide participants into three triage categories (emergency, priority, and 

202 non-urgent). The low-risk threshold was selected at 90% sensitivity to limit misclassification of 

203 emergency and priority cases as non-urgent (avoiding false negatives), while the high-risk threshold was 

204 selected at 90% specificity to limit misclassification of non-urgent or priority cases as emergency cases 
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205 (avoiding false positives). A risk classification table was used to examine the accuracy of the updated 

206 model in classifying patients.

207        Missing values were very few and were imputed using median and mode for continuous and 

208 categorical variables, respectively. Analyses were conducted in Stata version 15.0/MP (StataCorp, 

209 College Station, TX), R version 4.1.3 (R Foundation for Statistical Computing, Vienna, Austria), and 

210 RStudio version 2022.2.3 (RStudio, Boston, MA). 

211 Results

212 Participants

213        A total of 13285 participants were enrolled in the study with 11595 (87%) under-5 included in the 

214 analysis and neonates accounted for 404 (3.5%) of the under-5. %). There was a higher prevalence of 

215 males in all the age groups, with a ratio of roughly 53% vs 46% (Table 1). Approximately 9% of the 

216 participants under-five were admitted to the hospital and that proportion increased as younger age 

217 groups were considered as the denominator, reaching 26% in neonates. There was a statistically 

218 significant difference (p-value < 0.0001) in the proportion of participants with a positive outcome 

219 between those over six months of age and those six months and under. For all age groups, more than 

220 90% of those admitted had a minimum length of stay of 24 hours and less than 1% were sent home and 

221 readmitted within 48 hours. Pneumonia and neonatal sepsis were the most common reasons for 

222 admission in participants under-5. Malaria was more common in older children 140 (13.9%) and no 

223 neonates were admitted with a malaria diagnosis.

224 Table 1. Participant characteristics

< 5 years, n (%) ≤ 6 months, n (%) ≤ 2 months, n (%) < 1 month, n (%)
Total participant1 11595 2421 (20.9) 886 (7.6) 404 (3.5)
Sex
       Male 6161 (53.1) 1298 (53.6) 494 (55.8) 216 (53.5)
       Female 5434 (46.9) 1123 (46.4) 392 (44.2) 188 (46.5)
Outcomes
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Admitted2 1004 (8.7) 273 (11.3) 154 (17.4) 105 (26.0)
       Length of stay ≥ 24 h3 979 (97.5) 260 (95.2) 144 (93.5) 96 (91.4)
       Readmitted3 20 (2.0) 6 (2.2) 3 (1.9) 2 (1.9)
            Within 48 h3 3 (0.3) 2 (0.7) 1 (0.6) 1 (1.0)
       Mortality3 27 (2.7) 17 (6.2) 9 (3.5) 6 (5.7)
Not admitted2 10591 (91.3) 2148 (88.7) 732 (82.6) 299 (74.0)
       Returned and readmitted3 41 (0.4) 7 (0.3) 4 (0.5) 2 (0.7)
          Within 48 h3 28 (0.3) 1 (0.05) 4 (0.5) 2 (0.7)
       Mortality3 23 (0.2) 7 (0.3) 5 (0.7) 4 (1.3)
Composite endpoint 2 1037 (8.9) 278 (11.5) 156 (17.6) 105 (26.0)
Admission diagnosis profile4

       Malaria 140 (13.9) 6 (2.2) 2 (1.4) 0
       Pneumonia 425 (42.3) 119 (43.6) 39 (27.1) 13 (12.4)
       Bronchiolitis 12 (1.2) 7 (2.6) 4 (2.8) 1 (1.0)
      URTI (cold, flu, etc) 22 (2.2) 1 (0.4) 0 0
       Reactive Airway 
disease/asthma

1 (0.1) 0 0 0

      Gastroenterititis/diarrhea 67 (6.7) 4 (1.5) 2 (1.4) 0
       Meningitis/encephalitis or   
other CNS infection

16 (1.6 2 (0.7) 1 (0.7) 1 (1.0)

      Skin/soft tissue infection 5 (0.5) 2 (0.7) 0 0
      Measles 1 (0.1) 0 0 0
      Sepsis 67 (6.7) 13 (4.8) 9 (6.3) 5 (4.8)
      Neonatal sepsis 42 (4.2) 41 (15.0) 38 (26.4) 35 (33.3)
       Anemia 57 (5.7) 12 (4.4) 6 (4.2) 1 (1.0)
       Malnutrition 22 (2.2) 3 (1.1) 2 (1.4) 0
       Other (e.g., fever, 
convulsions, Jaundice, 
Neonatal Jaundice etc.)

107 (10.7) 63 (23.1) 41 (28.5) 49 (46.7)

225 Note: age groups are inclusive, i.e. < 5 years includes the younger age groups. 1 percentage is based on 
226 total number included in the study, 2 percentage based on total number in the age group. 3 percentage 
227 based on the total number in the outcome category per age group, i.e. admitted and not admitted. 4 
228 percentage based on total number of admissions per age group.

229 Model performance and risk stratification

230        The overall performance of the Smart Triage model was best when all age groups were included 

231 with a Brier score of 0.08. As older age groups were removed, the Brier score increased to 0.18 in 

232 neonates. The model achieved good discrimination for all age groups, except neonates, with AUROC 

233 values ranging from 0.81 (95% CI: 0.79-0.82) for under-5 to 0.70 (95% CI: 0.65-0.76) for two months and 

234 under (Fig 1). The model achieved poor discrimination for neonates with an AUROC of 0.62 (95% CI: 

235 0.55-0.70). The calibration slope also decreased in younger age groups with a value of 0.78 for under-5 
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236 to 0.42 for neonates (Fig 2). The assessment of exclusive age groups (>6m to < 5y, >2m to 6m, and 1m-

237 2m) also resulted in good discrimination with AUROC of 0.82, 0.85, and 0.83, respectively, for all age 

238 groups except neonates (S1 Figure). Calibration plots showed a similar phenomenon (S2 Figure). When 

239 comparing model performance between inclusive and exclusive groups, the inclusion of younger 

240 participants decreased the model performance. 

241 Fig 1. ROC curves by age groups

242 Fig 2. Calibration plots by age groups

243        Table 2 shows the sensitivity and the specificity of the Smart Triage model by triage categories for 

244 each age group. The model achieved 85% (95% CI: 83%-87%) sensitivity at the low-risk threshold (non-

245 urgent) and 93% (95% CI: 93%-94%) specificity at the high-risk threshold (emergency) for children under-

246 5. Sensitivity decreased as older cohorts were taken out, while specificity remained relatively 

247 unchanged. For neonates, sensitivity was 68% (95% CI: 58%-76%) at the low-risk threshold, and 

248 specificity was 96% (95% CI: 94%-98%) at the high-risk threshold. The model identified around 10% of 

249 the participants as emergency. When examining mutually exclusive age groups, sensitivity remained 

250 high, ranging from 86% to 90% at the low-risk threshold, and specificity ranged from 93% to 98% (S1 

251 Table).

252 Table 2. Summary of risk stratification into the three triage categories and model performance

Non-urgent Priority Emergency
Risk threshold ≤ 0.08 >0.08 ≤ 0.40 > 0.40
Under 5 years
       Participant, n (%) 6018 (51.9) 4384 (37.8) 1193 (10.3)
       Participant with composite 
endpoint, n (%) 151 (2.5) 415 (9.5) 471 (39.5)

       Sensitivity 0.85 (0.83-0.87) 0.73 (0.71-0.76) 0.45 (0.42-0.48)
       Specificity 0.56 (0.55-0.57) 0.75 (0.74-0.76) 0.93 (0.93-0.94)
       NPV 0.97 (0.97-0.98) 0.97 (0.96-0.97) 0.95 (0.94-0.95)
       PPV 0.16 (0.15-0.16) 0.22 (0.22-0.23) 0.39 (0.37-0.42)
6 months and under
       Participant, n (%) 1339 (55.3) 887 (36.6) 195 (8.1)
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       Participant with composite 
endpoint, n (%) 53 (4.0) 123 (13.9) 102 (52.3)

       Sensitivity 0.81 (0.76-0.86) 0.67 (0.62-0.72) 0.37 (0.31-0.42)
       Specificity 0.60 (0.58-0.62) 0.79 (0.77-0.81) 0.96 (0.95-0.97)
       NPV 0.96 (0.95-0.97) 0.95 (0.94-0.96) 0.92 (0.91-0.93)
       PPV 0.21 (0.20-0.22) 0.29 (0.27-0.32) 0.52 (0.46-0.59)
2 months and under
       Participant, n (%) 461 (52.0) 361 (40.7) 64 (7.2)
       Participant with composite 
endpoint, n (%) 41 (8.9) 73 (20.2) 42 (65.6)

       Sensitivity 0.74 (0.67-0.81) 0.58 (0.490.65) 0.27 (0.20-0.34)
       Specificity 0.58 (0.54-50.62) 0.77 (0.74-0.80) 0.97 (0.96-0.98)
       NPV 0.91 (0.89-0.93) 0.90 (0.88-0.91) 0.86 (0.85-0.87)
       PPV 0.27 (0.25-0.30) 0.35 (0.31 (0.39) 0.66 (0.55-0.77)
Under 1 month
       Participant, n (%) 182 (45.0) 184 (45.5) 38 (9.4)
       Participant with composite 
endpoint, n (%) 34 (18.7) 45 (24.5) 26 (68.4)

       Sensitivity 0.68 (0.58-0.76) 0.51 (0.42-0.61) 0.25 (0.16-0.33)
       Specificity 0.50 (0.44-0.55) 0.73 (0.68-0.78) 0.96 (0.94-0.98)
       NPV 0.81 (0.77-0.86) 0.81 (0.78-0.84) 0.78 (0.77-0.81)
       PPV 0.32 (0.28-0.36) 0.40 (0.33-0.46) 0.68 (0.54-0.82)

253 Model update for neonates

254        As discrimination, calibration, and sensitivity dropped by 0.19, 0.36, and 17%, respectively, an 

255 updated model was developed for neonates. Fig 3 shows the sequence of the model update process. 

256 Each step resulted in an improvement in calibration (reaching the ideal value of 1 at step two) but 

257 limited improvement in discrimination until the final stage of model revision. The final model resulted in 

258 an AUROC of 0.83 (95% CI: 0.79-0.87) and calibration intercept and slope of 0 and 1, respectively (Fig 4). 

259 New intercept and coefficients for the predictor variables were derived. The equation from the updated 

260 model is: 

261

𝑙𝑜𝑔𝑖𝑡(𝑝) = ―21.847 + ( ―3.415 𝑥 𝑎𝑔𝑒) + ( ―0.013 𝑥 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒) + (0.674 𝑥 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)
+ ( ―0.011 𝑥 𝑚𝑖𝑑 ― 𝑢𝑝𝑝𝑒𝑟 𝑎𝑟𝑚 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
+ (0.048 𝑥 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑥𝑦𝑔𝑒𝑛 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + (3.135 𝑥 𝑝𝑎𝑟𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑒𝑟𝑛)
+ (0.216 𝑥 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑏𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔) + ( ―3.332 𝑥 𝑜𝑒𝑑𝑒𝑚𝑎) + (1.588 𝑥 𝑝𝑎𝑙𝑙𝑜𝑟)

262 Fig 3. Model update for neonates only
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263 Fig 4. ROC curve and calibration plot of updated model for neonates

264        Two new thresholds were chosen at 0.13 and 0.41 for the low and high risk, respectively, based on 

265 the desired sensitivity and specificity. Sensitivity at the low-risk threshold was 91% (95% CI: 86%-95%), 

266 and specificity at the high-risk threshold was 90% (95% CI: 87%-93%). The new model placed 23% of 

267 neonates into the emergency category, and 68% of those had an outcome.

268 Table 4. Summary of risk stratification in neonates by the updated model 

Non-urgent Priority Emergency
Risk threshold ≤ 0.13 >0.13 ≤ 0.41 > 0.41
Participant and Outcome 
Stratification
Participant, n (%) 178 (36.9) 192 (39.8) 113 (23.4)
Participant with composite 
endpoint, n (%)

12 (6.7) 43 (22.4) 77 (68.1)

Admission status
      Admitted, n (%) 10 (5.6) 46 (24.0) 79 (69.9)
      Not admitted, n (%) 168 (94.4) 146 (76.0) 34 (30.1)
Length of stay
      < 24h, n (%) 0 5 (2.6) 5 (4.4)
      ≥ 24h, n (%) 10 (5.6) 39 (20.3) 74 (65.5)
Readmitted
      Within 48 h, n (%) 1 (0.6) 1 (0.5) 1 (0.9)
      Beyond 48 h, n (%) 1 (0.6) 1 (0.5) 1 (0.9)
Mortality, n (%) 1 (0.6) 6 (3.1) 5 (4.4)
Performance Assessment
True positive to false positive 
ration

120:185 106:98 78:35

Sensitivity (95% CI) 0.91 (0.86-0.95) 0.80 (0.73-0.87) 0.58 (0.49-0.66)
Specificity (95% CI) 0.47 (0.42-0.52) 0.72 (0.67-0.76) 0.90 (0.87-0.93)
Negative predictive value (95% CI) 0.93 (0.90-0.97) 0.91 (0.88-0.94) 0.85 (0.82-0.88)
Positive predictive value (95% CI) 0.39 (0.37-0.42) 0.52 (0.48-0.57) 0.68 (0.61-0.76)
Negative likelihood ratio (95% CI) 0.19 (0.10-0.33) 0.28 (0.17-0.40) 0.47 (0.37-0.59)
Positive likelihood ratio (95% CI) 1.72 (1.48-1.98) 2.86 (2.21-3.63) 5.80 (3.77-9.43)

269 Discussion

270        This study externally validated the Smart Triage model in all children under five years of age using 

271 combined datasets from five hospital sites in Uganda and Kenya and evaluated performance across 

272 different age groups. Neonates had a higher proportion of composite endpoint at 26% compared to 
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273 8.9% in those under-5. The model achieved good discrimination with an AUROC of 0.81 in all children 

274 under-5. However, its discrimination decreased each time when older age cohorts were excluded, down 

275 to an AUROC of 0.62 for neonates. Calibration also deteriorated for those two months and under. 

276 Similarly, when comparing model performance using data that included neonates to data that did not, 

277 performance was better in the dataset that excluded neonates; therefore, the original Smart Triage 

278 model is not suitable for neonates. The model was updated for this age group by re-estimating the 

279 intercept and the coefficients of the selected predictors. Discrimination and calibration improved upon 

280 model revision with an AUROC of 0.83. 

281 External validation

282        External validation showed that the model maintained good discrimination in the new cohort at all 

283 sites. However, the model overpredicted the probability of having a composite endpoint due to a lower 

284 admission rate among the new cohorts at Gulu and the two sites in Kenya. Differences in the outcome 

285 incidence is the most likely cause of the miscalibration. When an algorithm is developed in a setting with 

286 high disease prevalence, it may systematically overestimate risk when used in settings with lower 

287 disease incidence (30). The difference in performance is due to the strength of the association between 

288 some predictors and the outcome being substantially different in the new population (31). This was 

289 evident when refitting the logistic regression in the new combined under-5 cohort (S2 Table). Heart rate 

290 and oedema were no longer statistically significant predictors because there were fewer percentage of 

291 children with oedema in the validation set despite the sample size being ten times larger than the 

292 derivation set (S3 Table). Additionally, the coefficient for square root of age changed from positive to 

293 negative in this refitting (S2 Table). The proportion of outcomes per categorical predictor were less in 

294 the external validation data set (S2 Table). Heterogenicity in predictor effects across the range of values 

295 of predictors can degrade overall performance. The discrimination and calibration decreased as older 

296 participants were excluded as would be clinically anticipated due to the differences in physiology and 
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297 pathology in the younger age group. Another reason for the decrease in discriminative performance is 

298 that the range of age is smaller in neonates, and age is a predictor in our model that affects model 

299 performance (14, 32). Calibration in lower age groups is more heterogeneous (Fig 2), which may be 

300 magnified by smaller sample sizes, differences in case mix between the development and validation 

301 cohorts, and participants being clinically heterogeneous amongst each other.

302 Model update for neonates

303        We updated the model for neonates as they differ in disease susceptibly, host response, and 

304 underlying physiological reserve. The first 28 days of life is the most vulnerable period and neonates are 

305 more likely to be admitted to hospital (18). Low birth weight, congenital malformations, unique 

306 infections, and gestational age are factors related to a worse outcome that may not significantly impact 

307 older children (33). Factors impacting neonatal outcomes may be different from those one month and 

308 older. This was evident in our data which indicated half of the predictors used in the original model to 

309 predict admission and mortality among children under-5 were no longer statistically significant in the 

310 updated model among neonates (S4 Table). Nonetheless, transformed oxygen saturation (OR 1.05, 

311 95%CI 1.02-1.08) and temperature (OR 1.96, 95%CI 1.45-2.69) are still significant risk factors for a 

312 composite endpoint (S4 Table). The reduced performance of the model for neonates was anticipated. 

313 We followed a sequence of three updating methods that differed in extensiveness. Recalibration-in-the-

314 large, adjusting the intercept (baseline risk), showed a modest improvement in calibration. Re-

315 estimation of the intercept and slope continued to improve calibration; however, re-estimating all 

316 coefficients of the included predictors was necessary to improve discrimination as it is evident in the 

317 improvement of AUROC from 0.66 to 0.83. Previous studies have shown that when the model’s 

318 discrimination needs to be improved, revision methods are necessary (16, 32). Model updating with a 

319 new set of predictors may be the optimal approach; however, a trade-off between research resources 

320 and model improvement needs to be considered. Revision methods with small adjustments for 
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321 predictors are preferred when a particular predictor in the original model has a different effect in the 

322 updating set (16). In our study, we opted to keep the original predictors and update the coefficients. A 

323 previous study has demonstrated that retaining the original selected variables where all coefficients are 

324 re-estimated using a large dataset improves both discrimination and calibration of the model (34). 

325 Clinical implication

326        External validation of clinical prediction models is critically important before implementation 

327 because models generally perform poorer during this external validation (14). It is imperative that 

328 prediction models are accurate in order to deliver precise case prioritization and appropriate 

329 individualized care recommendations based on illness severity to optimize patient outcomes. Thus far, a 

330 review that examined 84032 studies on prediction models concluded that only 5% had been externally 

331 validated (14). Furthermore, current neonatal predictive models used in low resources settings are 

332 developed mainly for estimating in-hospital mortality or limited to predefined populations such as 

333 infants born to mothers with severe preeclampsia or premature/low birth weight infants. We have 

334 demonstrated that the Smart Triage model, a parsimonious triage model, performs well during external 

335 validation in a different but related geographical context, making it reproducible. It is currently 

336 implemented at several sites in Uganda and Kenya (under review). We have also demonstrated that 

337 significantly improved performance can be achieved in a data subset by updating a model based on the 

338 same parsimonious variables. The high negative predictive performance of the model at the low-risk 

339 threshold demonstrates its ability to exclude low-risk patients. A positive predictive value of 68% (95% CI 

340 61%-76%) was achieved at the high-risk threshold which, given the relatively low prevalence of 

341 composite endpoint, demonstrates the capability of the model to correctly classify emergency patients. 

342 The positive likelihood ratio indicates a 5.8-fold increase in the odds of needing hospital admission for a 

343 patient classified as emergency (Table 3). Furthermore, 91% of participants admitted for at least 24 h, 

344 and 92% of deaths were contained in either the priority or emergency category (Table 3). The parsimony 
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345 of the Smart Triage model is easy to interpret and understand. This interpretability is particularly 

346 important where the results of a model may be used to make life-changing decisions. It requires less 

347 computation power and time to train, evaluate, and deploy compared to ETAT, making it practical for 

348 real-time applications where data may be limited and speed and efficiency are important.

349 Strengths and Limitations

350        The key limitation of this study is that the validation sites were in adjacent geographical regions. The 

351 sites were similar in types of health facilities, but there were differences in disease prevalence and 

352 socioeconomic status between facilities that added to the heterogeneity of the cohorts. The optimal 

353 resemblance between the original and validation cohorts is a trade-off between reproducibility and 

354 generalizability. The next steps would be external validation on a different continent or in an urban 

355 tertiary care facility. Subsetting our data was a further limitation as subgroups in a dataset are 

356 underrepresented, leading to skewed or inaccurate predictions introducing a potential data bias. 

357 However, we used our clinical knowledge of age-specific disease processes to stratify our cohort into 

358 specific age categories, and with additional cohorts, we were able to stratify subsets by age and improve 

359 the model performance with model adjustment in the neonatal age group. A key strength of this study is 

360 the use of a large dataset from multiple sites for external validation to offer good statistical power. The 

361 use of routinely available clinical data resulted in low rates of missing data. The updated model was 

362 internally validated using the bootstrapping technique, which is the most widely recommended 

363 technique for internal validation as it allows derivation of the final model from the full derivation sample 

364 and does not waste precious information (35). In addition, the revised model used a portion of the 

365 original data, preventing overfitting (35). 

366 Conclusion

367        The Smart Triage model has been externally validated for similar clinical contexts in East Africa. An 

368 updated model for neonates is proposed, but will require additional external validation. The model is 
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369 currently implemented in Uganda and Kenya to rapidly identify critically ill children at the first point of 

370 contact using routine clinical data and readily available vital signs. There is demonstrated evidence of 

371 improvement in the quality of care and patient outcomes as well as cost-effectiveness (36, 37). We 

372 believe the model is well adapted to use in resource-poor settings; however, further research is needed 

373 to continue to refine the model to increase its reproducibility and generalizability. 
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Figures

Fig 1. ROC curves by age groups

Fig 2. Calibration plots by age groups

Fig 3. Model update for neonates only

Fig 4. ROC curve and calibration plot of updated model for neonates
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