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Summary 
Authors proposed and utilized a novel stepwise transfer learning approach to develop and 

externally validate a deep learning auto-segmentation model for pediatric low-grade glioma whose 

performance and clinical acceptability were on par with pediatric neuroradiologists and radiation 

oncologists. 

 
Key Points 
§ There are limited imaging data available to train deep learning tumor segmentation for 

pediatric brain tumors, and adult-centric models generalize poorly in the pediatric setting. 

§ Stepwise transfer learning demonstrated gains in deep learning segmentation performance 

(Dice score: 0.877 [IQR 0.715-0.914]) compared to other methodologies and yielded 

segmentation accuracy comparable to human experts on external validation. 

§ On blinded clinical acceptability testing, the model received higher average Likert score rating 

and clinical acceptability compared to other experts (Transfer-Encoder model vs. average 

expert: 80.2% vs. 65.4%) 
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§ Turing tests showed uniformly low ability of experts’ ability to correctly identify the origins of 

Transfer-Encoder model segmentations as AI-generated versus human-generated (mean 

accuracy: 26%). 

 
ABSTRACT 
Purpose: Artificial intelligence (AI)-automated tumor delineation for pediatric gliomas would 

enable real-time volumetric evaluation to support diagnosis, treatment response assessment, and 

clinical decision-making. Auto-segmentation algorithms for pediatric tumors are rare, due to 

limited data availability, and algorithms have yet to demonstrate clinical translation.  

Methods: We leveraged two datasets from a national brain tumor consortium (n=184) and a 

pediatric cancer center (n=100) to develop, externally validate, and clinically benchmark deep 

learning neural networks for pediatric low-grade glioma (pLGG) segmentation using a novel in-

domain, stepwise transfer learning approach. The best model [via Dice similarity coefficient (DSC)] 

was externally validated and subject to randomized, blinded evaluation by three expert clinicians 

wherein clinicians assessed clinical acceptability of expert- and AI-generated segmentations via 

10-point Likert scales and Turing tests.   

Results: The best AI model utilized in-domain, stepwise transfer learning (median DSC: 0.877 

[IQR 0.715-0.914]) versus baseline model (median DSC 0.812 [IQR 0.559-0.888]; p<0.05). On 

external testing (n=60), the AI model yielded accuracy comparable to inter-expert agreement 

(median DSC: 0.834 [IQR 0.726-0.901] vs. 0.861 [IQR 0.795-0.905], p=0.13). On clinical 

benchmarking (n=100 scans, 300 segmentations from 3 experts), the experts rated the AI model 

higher on average compared to other experts (median Likert rating: 9 [IQR 7-9]) vs. 7 [IQR 7-9], 

p<0.05 for each). Additionally, the AI segmentations had significantly higher (p<0.05) overall 

acceptability compared to experts on average (80.2% vs. 65.4%). Experts correctly predicted the 

origins of AI segmentations in an average of 26.0% of cases. 

Conclusions: Stepwise transfer learning enabled expert-level, automated pediatric brain tumor 

auto-segmentation and volumetric measurement with a high level of clinical acceptability. This 

approach may enable development and translation of AI imaging segmentation algorithms in 

limited data scenarios. 
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INTRODUCTION 
Pediatric low-grade gliomas (pLGGs) are the most common type of brain tumors in children, 

accounting for approximately 30% of all pediatric brain tumors (1). pLGGs are heterogeneous in 

their molecular underpinnings, natural history, and aggressiveness, and therapies carry 

significant risks, thus making management decisions challenging (2–4). Optimal risk-stratification, 

response assessment, and surveillance for pLGG hinge on the ability to accurately localize and 

characterize brain tumors on magnetic resonance imaging (MRI) scans, which, in turn, relies on 

accurate tumor segmentation. Compared to adult gliomas, manual segmentation of pLGG carries 

distinct challenges, requiring expertise, resources, and time, thus limiting its clinical efficiency (5).  

 

Given the utility of accurate segmentation and the inherent limitations of manual segmentation, 

there has been interest in developing auto-segmentation tools for pediatric brain tumors (6–8). 

The progress in medical imaging techniques and computational methods have led to the 

development of various approaches for brain tumor segmentation, including machine learning-

based methods, deep learning-based methods, and hybrid approaches (8–10). Recently, deep 

learning has emerged as a powerful tool in medical imaging, offering solutions to diverse clinical 

challenges (11–15). Auto-segmentation based on deep learning is thus a promissing approach 

for accurate and efficient brain tumor segmentation, including pLGGs (6,16,17), though distinct 

challenges remain. In particular, pLGGs are relatively rare tumors and there are no publicly 

available datasets for training models. Most brain tumor segmentation algorithms have been 

developed for adult glioma, which are much more common and have large volumes of public and 

institutional data for training (18,19). In contrast, there has been only limited study of dedicated 

pediatric glioma segmentation - with a paucity of pLGG-specific models that rely on small, single-

institution datasets that have not been externally validated nor subjected to clinical testing (16,17). 

Human clinical evaluation of segmentation models is essential to benchmark performance to 

experts and determine their true level of performance and potential for clinical translation.  

 

There are numerous proposed ways to improve deep learning performance in limited-data 

settings (20). Aside from traditional techniques like data augmentation, ensembling, regularization, 

recently, advances have been made in knowledge transfer-learning (21) and self- (22) and semi-

supervision (23). These have shown promise in improving medical image analysis algorithms, 

though can be challenging to implement. Pediatric brain tumors represent an ideally situated 

setting for which to apply these techniques, given the relative scarcity of data. Here, we aim to 

bridge the translational gap for pediatric brain tumor segmentation algorithms and achieve 
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clinically acceptable performance despite a limited-data scenario with several innovations: 1) 

implementation of in-domain stepwise transfer learning; 2) aggregation of the largest pLGG 

imaging database to-date, and 3) performing blinded human acceptability testing. 

 

 

Figure 1. Schematic illustration of the study design. (A) An overview of the study workflow, 

including data preprocessing, expert segmentation on the tumors, model training/testing and well 

as the model clinical acceptability evolution. (B) A workflow showing the proposed in-domain 

stepwise transfer learning with detailed sequential steps involved in this approach.  (C) A workflow 

detailing the 2-phase clinical acceptability evaluation.  

 

MATERIALS AND METHODS 
Study Design and Datasets 
This study was conducted in accordance with the Declaration of Helsinki guidelines and following 

the approval of the Dana-Farber/Boston Children’s/Harvard Cancer Center Institutional Review 

Board (IRB). Waiver of consent was obtained from IRB prior to research initiation due to public 

datasets or retrospective study. Data from one high-volume academic institution and one national 

consortium from 2001 through 2015 were included. The Children’s Brain Tumor Network (CBTN) 

dataset consists of one de-identified patient cohort (n=187). The Boston Children’s Hospital (BCH) 

dataset includes one patient cohort (n=100). These subsets represent all scans that passed initial 
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quality control of DICOM metadata. Patient inclusion criteria were the following: 1) 0–18 years of 

age, 2) histopathologically confirmed pLGG, and 3) availability of preoperative brain MR imaging 

with a T2-weighted (T2W) imaging sequence. Spinal cord tumors were not considered for this 

study. Scans with spine tumors (n=12) and undetectable lesions (n=3) were excluded from 

analyses. Publicly available data from the Brain Tumor Segmentation (BraTS) 2021 competition 

was acquired from http://braintumorsegmentation.org (24–26). The BraTS competition data 

represents 1,251 adult glioma multiparametric MR scans along with expert-generated 

segmentation masks for T1-weighted (T1W), T2W, fluid attenuated inversion recovery (FLAIR), 

and contrast enhancement generated by radiologists (24,25). Full data description for BraTS is 

available here: http://braintumorsegmentation.org.  

 

MR Imaging Acquisition and Parameters 
Patients from the CBTN cohort underwent brain MR imaging at 1.5T or 3T Siemens MR scanners 

(Table S1). Sequences acquired included 2D axial T2-weighted turbo spin-echo (TR/TE, 1000–

7300/80–530 ms; 0.5- to 5-mm section thickness), 3D axial or sagittal pre-contrast, and 3D axial 

gadolinium-based contrast agent–enhanced T1-weighted turbo or fast-field echo. Patients from 

the BCH cohort underwent brain MR imaging at 1.5T or 3T from various MRI vendors (Table S2). 

MRIs were performed using the brain tumor protocol of the institution, which included 2D axial 

T2-weighted fast spin-echo (TR/TE, 2600–12,000/11–120 ms; 2- to 5.5-mm section thickness), 

2D axial or sagittal pre-contrast T1-weighted spin- echo, 2D axial T2 FLAIR and 2D axial 

gadolinium-based contrast agent–enhanced T1-weighted spin-echo sequences (Table S1-S2; Fig. 

S1-S4). All MR imaging data were extracted from the respective PACS and were de-identified for 

further analyses. Given that many pLGGs do not enhance with intravenous contrast, are 

hypointense on T1, and are hyperintense on T2-weighted sequences, we chose to develop a T2-

weighted segmentation algorithm with a primary use case of volumetric tumor monitoring. 

 

MR Image Preprocessing  
MRI images were converted from DICOM format to NIFTI format via rasterization packages 

utilizing dcm2nii package (https://www.nitrc.org/projects/dcm2nii) in Python v3.8. N4 bias filed 

correction was adopted to correct the low-frequency intensity non-uniformity present in MRI 

images using SimpleITK (SITK) in Python v3.8. All scans were resampled to 1´1´3 mm3 voxel 

size using linear interpolation via SITK. After interpolation, the MR scans were co-registered using 

a rigid registration step with SITK. Lastly, a brain extraction step was performed for all the scans 
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using HD-BET package in Python v3.8 (27). Preprocessing scripts are found here: 

https://github.com/BoydAidan/nnUNet_pLGG. 

 

MR image review and segmentation 
For model development and initial training, tumors in all T2w scans within the CBTN and 60 scans 

within the BCH cohort were initially segmented by a board-certified radiation oncologist 

(experience: 8 years) to serve as primary ground truth segmentations. Annotators were instructed 

to segment all areas of T2 signal abnormality concerning for tumor involvement, including areas 

of peritumoral T2 hyperintensity if suspicious for tumor involvement. Segmentations were 

performed and saved in NIFTI format using ITK-SNAP v4.0 (http://www.itksnap.org) in 3D utilizing 

axial, sagittal, and coronal views (Fig. S5).   

 

Deep learning approach: stepwise, in-domain transfer learning 
For this work, the nnUNet architecture (28) which is a deep learning-based segmentation 

approach that configures itself completely automatically, was chosen for the deep learning 

framework. nnUNet includes auto-configuration for preprocessing, network architecture selection, 

model training and post-processing and can be applied to any task.  nnUNet performs well out of 

the box on many medical imaging tasks, and it has been specifically shown to produce strong 

results for brain tumor segmentation (28). The built-in ensembling of nnUNet was utilized for 

training and inference. Early stopping was implemented such that once the model does not 

improve on the validation set after 50 epochs, the training is stopped, up to a maximum of 1000 

epochs. All other training parameters (learning rate, batch size, data augmentations, loss function) 

are the default nnUNet settings (28).  All training settings described below are trained in the same 

manner. 

 

Adult brain tumor model performance [BraTS model] 

Competitions such as Brain Tumor Segmentation (BraTS) Challenge 2012-2021 have shown that 

deep learning-based solutions can effectively segment adult gliomas, mainly of the high-grade 

variety (18). Given the proven performance of nnUNet on adult tumors, we sought to determine 

the performance of these models when applied to the pediatric setting. We hypothesized that, 

given significant biological and morphological differences between adult and pediatric gliomas, 

adult tumor-trained model performance would degrade in the pediatric setting. To test this 

hypothesis, an nnUNet model was trained using the BraTS 2021 training dataset, which contains 

1,251 MRI scans and associated expert annotations. To compare performance in the adult and 
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pediatric settings, inference was performed first on an adult hold-out set from BraTS 2021. 

Inference was then completed on the internal CBTN pediatric test set (n=60). 

 

Training from scratch [Scratch model] 

Given the similarities in data distribution, we hypothesized that a model trained on pediatric brain 

tumors would perform better in a pediatric test set than a model trained on adult tumors. To test 

this hypothesis, using the CBTN training dataset (n=148), an nnUNet model was trained in the 

same way as the adult model. This model employed only the limited pediatric data available and, 

as such, relied on much less training data.  

 

In-domain transfer learning from adults [Transfer model] 

Transfer learning involves leveraging data from other sources, that is often out of distribution, 

domain, or modality, to initialize models with foundational knowledge that can be then fine-tuned 

to a particular task (21). This technique has been employed successfully in several medical 

imaging applications and is commonly performed by leveraging models trained on the 2D 

ImageNet (29). More recently, 3D medical imaging-specific pretrained models have become 

available and have demonstrated improved performance compared to ImageNet-trained models 

on medical tasks. Multiple studies suggest that the closer the data distribution between pretrained 

neural network and the task, the better (30). Thus, in the case of limited data scenario of pLGG 

segmentation, we sought to leverage in-domain transfer learning from the adult model combined 

with pediatric data. Specifically, the nnUNet model is initialized (i.e., pretrained) with the Adult 

model weights and then fine-tuned with additional training on the CBTN data under the same 

procedure as the Scratch model.  

 

Stepwise Transfer Learning 

Due to the limited quantity of pediatric data available for training, we hypothesized that reducing 

the number of parameters a network must optimize may help improve model convergence. This 

can be achieved by freezing specific model parameters during the fine-tuning process. This 

effectively reduces the complexity of the network for the optimizer. When the model is optimizing 

both the encoder and decoder simultaneously, it may not be able to find the optimal solution given 

the sparsity of data. Starting from the checkpoint of Transfer model, training is continued with all 

parameters frozen in either the nnUnet encoder block (Transfer-Encoder model) or decoder block 

(Transfer-Decoder model).   
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Figure 2. Comparative performance of deep learning training methodologies on internal validation 

set (n=60). Among the five different segmentation models assessed, the methods using stepwise 

transfer learning (Transfer-Decoder and Transfer-Encoder) had the highest segmentation 

accuracy. Additionally, the Transfer-Encoder model generated the fewest segmentations with a 

DSC: 0 (n=4, 6.7%) (indicating a complete segmentation miss). Conversely, the BraTS model 

exhibited the highest number of segmentations with a DSC: 0 (n=11, 18.3%). The Transfer-

Encoder model demonstrated the highest median DSC (0.877 [IQR 0.715-0.914]), and was 

selected for further investigation. The BraTS model, trained only on adult glioma, demonstrated 

the lowest median DSC (0.812 [IQR 0.559-0.888]). 

 
Model evaluation and statistical analysis 
The primary performance endpoint of the study was the Dice similarity coefficient (DSC) (31), 

which measures the relative overlap of the predicted and ground-truth segmentations, with a DSC 

of >0.80 considered to be worthy of clinical testing (10). DSC was calculated based on Equation 

[1]: 

																																		𝐷𝑆𝐶	 = 	 !∑ #$!#!!
∑ (#$!! &	#!)	

               [1] 

where yk is the ground truth for voxel k of one image, and 𝑦"! is the prediction for voxel k of that 

image. Median DSCs between models were compared with Wilcoxon Rank Sum tests within the 

CBTN test set. The highest performing model on the CBTN test set was then externally validated 

on the BCH dataset (n=60). Additionally, 3D volumetric measurement was calculated from each 

predicted and ground-truth segmentation, and median relative volume difference (RVD) and 
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absolute volume difference (AVD) were evaluated. Other secondary endpoints included 

aggregated DSC, which calculates DSC over the entire test set population (rather than case-by-

case), and intraclass coefficient (ICC) for calculated volumes. Aggregated DSC (DSCagg) was 

calculated based on Equation [2]: 

																														𝐷𝑆𝐶)** 	= 	
!∑ ∑ #$",!#",!!

$
"

∑ ∑ (#$",!! &	#",!)$
" 	

                 [2] 

where N is the number of test images, yi,k is the ground truth for voxel k and image i, and 𝑦"",! is 

the prediction for voxel k and image i. Means were compared with ANOVA. All tests were two-

sided with a p<0.05 considered statistically significant. Statistical analyses were conducted using 

the Scikit-learn and SciPy packages in Python v3.8. Three inter-rater group DSCs were combined 

between three experts, between model 1 and experts, and between model 2 and experts. Mean 

inter-rater group DSCs between combined expert models and two AI models were compared with 

One-way ANOVA. Mean ratings of three individual experts, combined experts, and two individual 

segmentation models were compared by One-way ANOVA. Tukey's ‘Honest Significant 

Difference’ method was used as post-hoc analysis to find specific groups with significantly 

different mean DSCs or mean ratings from other groups. All tests were two-sided with a p<0.05 

considered statistically significant. Statistical analyses were conducted using R. 

 

Randomized, blinded clinical acceptability testing and inter-expert variability 
While DSC is an important quantitative measure of segmentation performance, positioning the 

algorithm for real-world use requires clinical validation and benchmarking (32,33). To determine 

segmentation variation across expert clinicians and diagnosticians of different specializations, a 

second radiation oncologist specializing in central nervous system tumors and a pediatric 

neuroradiologist were enlisted to annotate the entire BCH external dataset (n=100) for clinical 

acceptability testing (Fig. 1B). Pairwise inter-expert variability between the three annotators as 

well as two deep learning models (BraTS model and Transfer-Encoder model) was similarly 

evaluated with DSC to determine if model performance was within the range of inter-expert 

variability. To assess the clinical utility of the AI models, the three experts conducted a blinded, 

segmentation rating and acceptability study (Fig. 1C). For each of the 100 BCH cases, each 

expert was presented with three different segmentations overlaid with each other, with the ability 

to hide/unhide each individual segmentation as needed (Supplementary Protocol). The three 

segmentations consisted of at least one, and up to two expert segmentations (from the other two 

annotators) and at least one, and up to two AI-generated generated segmentations (selected from 

the BraTS model and/or the Transfer-Encoder model), selected at random (n=300 total 
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segmentations per reviewer). The expert reviewers were blinded to the origin of the 

segmentations. The order and color of the segmentations displayed for each scan was 

randomized to reduce bias. The review was carried out using 3D Slicer (www.slicer.org). Experts 

were given written instructions and asked to rate each of the three segmentations on a scale from 

1 (worst) to 10 (perfect), with a 7 being defined as a clinically acceptable segmentation for 

volumetric assessment (Fig. S6). For each segmentation, raters were also asked to choose 

whether the segmentation was AI-generated, also known as the Turing test. 

 

Table 1. Patient demographics. 

 
Patient Cohorts 

CBTN (n = 184) BCH (n = 100) 
Age (years)   
median (range) 7 (1 - 23) 8 (1 – 19) 
Sex n (%)   
Female 84 (45.7%) 53 (53%) 
Male 94 (51.1%) 47 (47%) 
Unknown 6 (3.2%) 0 
Race/Ethnicity n (%)   
Non-Hispanic Caucasian/white 124 (67.4%) 68 (68%) 
African American/Black 24 (13.0%) 5 (5%) 
Hispanic/Latinx 17 4 (4%) 
Asian American/Asian 3 (1.6%) 4 (4%) 
Other/Unknown 33 (17.9%) 19 (19%) 
Histologic diagnosis n (%)   
pilocytic astrocytoma 58 (31.5%) 34 (34%) 
Pilomyxoid Astrocytoma 10 (5.4%) 0 
Juvenile Pilocytic Astrocytoma 0 13 (13%) 
Ganglioglioma 1 (0.5%) 11 (11%) 
Oligodendroglioma 1  
Diffuse astrocytoma 9 (4.9%) 3 (3%) 
Fibrillary Astrocytoma 13 (7.1%) 0 
Optic pathway glioma 27 (14.7%) 3 (3%) 
Other Low-grade glioma/astrocytoma  65 (35.3%) 36 (36%) 
Primary Tumor Location n (%)   
Posterior fossa 45 (24.5%) 28 (28%) 
Temporal lobe 13 (7.1%) 18 (18%) 
Frontal Lobe 7 (3.8%) 2 (2%) 
Cerebellum 0 18 (18%) 
Suprasellar 21 (11.4%) 6 (6%) 
Optic Pathway 27 (14.7%) 3 (3%) 
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Brainstem 9 (4.9%) 3 (3%) 
Thalamus 5 (2.7%) 2 (2%) 
Others 47 (25.5%) 20 (20%) 

CBTN = Children Brain Tumor Consortium; BCH = Boston Children Hospital.  

 
RESULTS 

Patient Characteristics 
The total pLGG patient cohort consisted of 284 pLGG patients from two cohorts, with 184 patients 

in the development set from CBTN cohort and 100 patients in the external test set from BCH 

(Table 1). Median age was 7 (range: 1-23) in the CBTN cohort and 8 (range: 1-19) in the BCH 

cohort. 84 patients (45.7%) were female in CBTN cohort, while 53 patients (53%) were female in 

BCH cohort. All patients had pathologically diagnosed grade I/II low-grade glioma, with a mixture 

of histologic subtypes of pilocytic astrocytoma (32.4%), optic pathway glioma (10.6%), juvenile 

pilocytic astrocytoma (4.6%), fibrillary astrocytoma (4.6%), ganglioglioma (4.2%), diffuse 

astrocytoma (4.2%), and other low-grade glioma/astrocytoma (44.0%). The primary tumor 

locations were posterior fossa (25.7%), temporal lobe (10.9%), Suprasellar (9.5%), frontal lobe 

(3.2%), and others (50.5%). 

 

Table 2. Model performance for internal test set (n=60).  

Models Median DSC 
(IQR) 

Aggregated 
DSC 

Median RVD 
(IQR) ICC 

Percentage 
of Cases 

with DSC 0 

BraTS model 0.812 
(0.559-0.888) 0.730 0.192 

(0.109-0.682) 0.736 16.7% 

Scratch model 0.862 
(0.672-0.91) 0.815 0.098 

(0.04-0.407) 0.804 11.7% 

Transfer model 0.871 
(0.724-0.914) 0.823 0.124 

(0.036-0.334) 0.799 10% 

Transfer-
Decoder model 

0.877 
(0.708-0.914) 0.832 0.126 

(0.052-0.289) 0.832 8.3% 

Transfer-
Encoder model 

0.877 
(0.715-0.914) 0.840 0.109 

(0.032-0.31) 0.825 6.7% 

IQR = inter-quartile; DSC = Dice similarity coefficient; RVD: relative volume difference; ICC = 

intra-class correlation coefficient.  
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Figure 3. Analysis of Transfer-Encoder model failures. Failure analysis was performed based on 

cases with DSC<0.6 and 6 cases were identified in total. The failures were caused by big cystic 

area in brain (A, C&D), empty segmentation from poor image quality due to respacing for large 

slice thickness (B), tumor located in ventricle (E), under-segmentations for large heterogeneous 

tumor lesion (F). 

 

In-domain Stepwise Transfer learning with fine-tuning improves performance 
The performance of the five model settings outlined in Fig. 1 is illustrated in Table 2. The BraTS 

model performed highly on held-out adult data, however, the performance of the model decreased 

significantly when applied to the pediatric data (Table 2; median DSC 0.926 [IQR 0.886-0.953] to 

0.812 [IQR 0.559-0.888], p<0.05). Additionally, accuracy of volumetric assessment declined 

significantly when the BraTS model was applied to pediatric data (Table 2; median RVD: 0.052 

[IQR 0.024-0.119] to 0.192 [IQR 0.109-0.682], p<0.05). This result highlighted the difference 

between adult gliomas and pediatric low-grade gliomas and emphasized the importance of 

developing a model capable of accurately segmenting pediatric cases. The Scratch model and all 

Transfer models performed significantly better (p<0.05 for each) than the BraTS model, with 

median DSC of 0.862 [IQR 0.672-0.91], 0.871 [IQR 0.724-0.914], 0,877 [IQR 0.708-0.914] and 

0.877 [IQR 0.715-0.914] for Scratch, Transfer, Transfer-Decoder, and Transfer-Encoder models, 
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respectively (Table 2 & Fig. 2). Of all approaches investigated, the highest performing was the 

Transfer-Encoder model (Table 2; median DSC: 0.877 [IQR 0.715-0.914]; median relative volume 

difference (RVD): 0.109 [IQR 0.032-0.31]). While both fine-tuned transfer learning models showed 

near equivalent performance for the primary endpoint, we chose Transfer-Encoder model for 

further testing giving its increased aggregated DSC (Table 2; aggregated DSC: 0.730 to 0.840), 

which indicated it had fewer incidences of empty segmentation masks. Overall, Transfer-Encoder 

model has the lowest empty mask percentage.  

 

 
Figure 4. Clinical acceptability testing. Three human experts were invited to rate randomized AI-

generated (BraTS model or Transfer-Encoder model) or expert-generated segmentations blinded 

to segmentation origin (n=100 scans, 300 segmentations). (A) The distributions of inter-rater 

DSCs from three experts and two AI models for external test dataset (n=100). (B) The median 
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inter-rater DSCs between each pair of the experts and AI models. (C) Boxplot shows inter-rater 

DSCs grouped by experts, Transfer-Encoder model and BraTS model. Both Transfer-Encoder 

model and average experts shows significantly higher (p<0.05) inter-rater DSCs than BraTS 

model. There was no significant difference on inter-rater DSCs between average experts and 

Transfer-Encoder model. DSC: Dice similarity coefficient; AI: artificial intelligence; E1: Expert 1; 

E2: Expert 2; E3: Expert 3; AI1: BraTS model; AI2: Transfer-Encoder model. 

 
External validation of Stepwise Transfer Learning  
On an external testing set with expert segmentations (n=60), the Transfer-Encoder model 

achieved median DSC 0.833 [IQR 0.743-0.900] and median RVD of 0.161 [IQR 0.058-0.393] as 

compared to manual segmentations. We performed failure analysis for cases with DSC<0.6 and 

found 6 cases in total. The failures were caused by: 1) tumor located in ventricle (Fig. 3E; n=1); 

2) large cystic area in brain (Fig. 3A, C&D; n=3); empty segmentation from poor image quality 

due to respacing for large slice thickness (Fig. 3B; n=1); 4) under-segmentations for large 

heterogeneous tumor lesion (Fig. 3F; n=1).  

 

Stepwise transfer learning demonstrates clinical expert-level performance  
The distribution of inter-rater DSCs between experts and AI models is presented in Fig. 4A, while 

the heatmap in Fig. 4B displays the median inter-rater DSCs for each pair. We further compared 

the inter-rater DSCs from three experts, the Transfer-Encoder model, and the BraTS model. The 

Transfer-Encoder model (median: 0.834 [IQR 0.726-0.901]) did not show a significant difference 

(p=0.13) compared to the three experts (median: 0.861 [IQR 0.795-0.905]), but it exhibited a 

significantly higher DSC (p<0.01) than the BraTS model (median: 0.790 [IQR 0.662-0.870]) (Fig. 

4C).  

 

For clinical acceptability testing, the segmentation ratings of the Transfer-Encoder model (median: 

9 [IQR 7-9]) were significantly higher (p<0.01 for each) than those of Expert 1 (median: 7 [IQR 6-

9]), Expert 3 (median: 7 [IQR 5-8]), the average expert (median: 7 [IQR 6-9]), and the BraTS 

model (median: 8 [IQR 6-9]). However, there was no significant difference between the Transfer-

Encoder model and Expert 2 (median: 8 [IQR 7-9]) (Fig. 5A). Expert 2 had significantly higher 

ratings (p<0.01 for each) compared to Expert 1, Expert 3, and the average experts. There was no 

significant difference (p=0.54) between Expert 1 and Expert 3 in terms of the ratings (Fig. 5A). 

Furthermore, the Transfer-Encoder model demonstrated a significantly higher (p<0.05 for each) 

proportion of clinically acceptable segmentations (rating score≥7) compared to two out of three 
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experts (Expert 1 & Expert 3) and the experts average (Fig. 5B: Transfer-Encoder: 80.2%; BraTS: 

72.1%; Expert 1: 68.3%; Expert 2: 78.7%; Expert 3: 49.3%; Experts average: 64.8%). Finally, 

results from the Turing test revealed consistently low accuracy in distinguishing AI-generated 

segmentations from those produced by experts. The Transfer-Encoder model segmentations 

were correctly identified by experts in only 26.0% of scans, which is lower than the correct 

identification rates for Expert 1 (35.0%), Expert 2 (66.5%), Expert 3 (26.9%), and the BraTS model 

(41.5%) (Fig. 5C). 

Figure 5. (A) The mean segmentation rating scores for the three experts and two AI models, as 

evaluated by the experts, are presented in a heatmap. Violin plots are used to compare and group 

the rating scores for each expert and AI model, along with the corresponding p-values from 

statistical tests for group comparisons. (B) The percentage of segmentations that were considered 

acceptable, with a rating score of 7 or above, is summarized for each expert and model. (C) The 

accuracy of determining whether annotations were AI generated is shown for each expert and 

model, indicating how well the experts were able to distinguish between AI-generated and expert-

generated segmentations. DSC: Dice similarity coefficient; AI: artificial intelligence; E1: Expert 1; 

E2: Expert 2; E3: Expert 3; AI1: BraTS model; AI2: Transfer-Encoder model. DSC: Dice similarity 

coefficient; AI: artificial intelligence; E1: Expert 1; E2: Expert 2; E3: Expert 3; Es: average experts; 

AI1: BraTS model; AI2: Transfer-Encoder model. 

 
DISCUSSION 
In this study, we developed, validated, and clinically benchmarked a deep learning pipeline using 

stepwise transfer learning for automated, expert-level pLGG segmentation and volumetric 
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measurement. Accurate tumor auto-segmentation models could be useful for risk-stratification, 

monitoring tumor progression, assessing treatment response, and surgical approach (6), though 

have had limited traction in pediatric tumors due to very sparse available training data. We 

leveraged a novel strategy of in-domain, stepwise transfer learning to demonstrate measurable 

gains in segmentation accuracy and clinical acceptability that was on par with clinician 

performance. To our knowledge, this is the first study to utilize stepwise transfer learning in this 

context and to evaluate clinical acceptability of auto-segmentation tools.  The rigorous clinical 

benchmarking studies with three blinded experts suggest that this approach is nearing a 

performance ceiling for pLGG segmentation – i.e., output is comparable and indistinguishable to 

human experts. These findings position the model for prospective testing and clinical translation. 

 

The current state-of-the-art approaches for automated brain tumor segmentation rely on deep 

learning. However, most available auto-segmentation tools have been specifically developed and 

trained for adult brain cancers, particularly glioblastoma (GBM) (9,18,19). In this work, we find 

that tools such as these do not effectively generalize to pediatric brain tumors. Performance 

degradation may stem from the distinctive heterogeneous imaging appearance and types of 

pediatric brain tumors compared to adult brain tumors, as well as the anatomical differences 

resulting from the ongoing brain development in children. Several studies have proposed various 

DL solutions to address the segmentation of pediatric brain tumors, achieving Dice similarity 

coefficients (DSC) ranging between 0.68 and 0.88 (6,16,34,35), however the clinical acceptability 

of these approaches was not validated. To date, only one study has proposed an algorithm for 

pLGG segmentation, achieving a DSC of 0.77 (17). This study utilized FLAIR images from 311 

patients from a single institution. The proposed model employed deep Multitask Learning, 

incorporating a tumor's genetic alteration classifier as an auxiliary task to the main segmentation 

network (17). However, this model was trained on a limited number of MRI scans from a single 

institute and lacked external validation and clinical testing. In the present study, our stepwise 

transfer learning model achieved median DSC of 0.833 [IQR 0.743-0.900] with a median RVD of 

0.161 [IQR 0.058-0.393] in the external test set, which represents a significant improvement over 

previous work (17). Improved performance may be due to sequential knowledge transfer - first 

from the adult setting, and then the pediatric setting.  Additionally, freezing the encoder or decoder 

in the final fine-tuning step enabled optimization of a smaller parameter space, which may have 

mitigated overfitting given the limited amount of data. Training on a sufficient quantity of pediatric 

data from scratch may obviate the need for transfer learning, but what represents ”sufficient” is 

yet to be defined for pLGGs, and current datasets remain relatively small.  
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While statistical metrics like the DSC and RVD offer valuable insights into a model's overall 

segmentation performance, it is important to acknowledge their limitations in providing a 

comprehensive evaluation of a model’s utility (6). To ensure a thorough evaluation and facilitate 

the clinical translation of our model, we conducted a rigorous clinical-acceptability evaluation and 

validation process involving three expert clinicians. This multidimensional evaluation approach 

captures additional nuances and considerations that impact the model's practical utility in a real-

world clinical setting. The involvement of expert clinicians provides valuable feedback and insights, 

accelerating the translation of the model into clinical practice. In our study, we went a step further 

by conducting blinded, segmentation rating, acceptability, and Turing tests involving three expert 

clinicians. Notably, all experts performed worse than random chance (50%) in predicting the origin 

of the transfer learned model segmentations, suggesting that this model passes the Turing test, 

though this was not the case for the adult-trained model. To our knowledge, this is the first brain 

tumor segmentation study to incorporate such a clinical-acceptability test. The results highlight 

the importance of such clinical testing in positioning a model for potential clinical translation. 

 

There are several limitations of this study that should be taken into consideration. Firstly, the study 

is retrospective in nature and selection of scans for inclusion for this study, while performed a 

priori and based solely on availability, may introduce bias. Secondly, the model utilizes only T2W 

images, as these were the most commonly available for all the patients included in our analysis. 

Although T2 FLAIR images are commonly used for defining tumor regions, T2 FLAIR images 

were not available for many patients with pLGGs in our study, particularly in the CBTN cohort. 

Consequently, it becomes challenging to distinguish vasogenic edema from the tumor region on 

T2W images, making it difficult to accurately segment tumor areas based solely on T2W images. 

Despite these challenges, our study demonstrated that our DL model exhibited impressive 

segmentation performance compared to expert clinicians, suggesting that the model successfully 

captured the feature differences. However, we acknowledge that the incorporation of multiple MRI 

modalities, such as T2W, pre-contrast T1W, post-contrast T1W, and T2 FLAIR images, would 

enhance the granularity of tumor segmentation in pLGG patients. On the other hand, an 

advantage of a T2W-only model, is that it may be more widely applicable in situations where 

multiparametric and contrast-enhanced scans are unavailable, which can sometimes be the case 

for low-grade glioma studies. Furthermore, it is important to note that our study focused solely on 

whole tumor segmentation, and not the segmentation of specific tumor subregions. Consequently, 

the clinical utility of our findings may be restricted in certain cases, when change in cystic 
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component is not relevant to the clinical response assessment. Finally, it is notable that the 

algorithm did fail on some cases, and while we identified certain factors that were associated with 

failures, it is difficult to predict with certainty why a failure occurred owing to the black-box nature 

of deep learning algorithms. Therefore, it is important for the model output to undergo a clinical 

review prior to use in clinical decision-making. 

 

CONCLUSION 
We developed, externally validated, and clinically benchmarked an automated deep learning 

pipeline using in-domain, stepwise transfer learning that enables expert-level MRI segmentation 

of pediatric low-grade gliomas. On blinded evaluation, the model demonstrated clinically 

acceptable performance that was higher on average than clinical experts. Prospective and 

longitudinal evaluation of the pipeline is planned to determine the algorithm’s potential for 

integration into the clinical care of children with low-grade glioma. 
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measured results to replicate the statistical analysis are shared at the GitHub webpage: 
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