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Abstract7
Background: COVID-19 will not be the last pandemic of the 21st century. To8
better prepare for the next one, it is essential that we make honest appraisals of9
the utility of different responses to COVID. In this paper we focus specifically10
on epidemiologic forecasting. Characterizing forecast efficacy over the history of11
the pandemic is challenging, especially given its significant spatial, temporal, and12
contextual variability. In this light, we introduce the Weighted Contextual Inter-13
val Score (WCIS), a new method for retrospective interval forecast evaluation.14
The WCIS reflects the potential utility of predictions, resulting in a score that15
is easily comparable across different pandemic scenarios despite remaining intu-16
itively representative of the in-situ quality of individual forecasts.17
Methods: The central tenet of the WCIS is a direct incorporation of contextual18
utility into the evaluation. This necessitates a specific characterization of forecast19
efficacy depending on the use case for predictions, accomplished via defining a20
utility threshold parameter. In essence, changes in forecast accuracy beyond this21
threshold do not map to changes in the utility of a prediction. This idea is gener-22
alized to probabilistic interval-form forecasts, which are the preferred prediction23
format for epidemiological modeling, as an adaptation of the existing Weighed24
Interval Score (WIS).25
Results: We apply the WCIS to two different forecasting scenarios. The first26
assesses the performance of facility-level COVID-19 hospital bed occupancy pre-27
dictions for the state of Maryland during the Omicron wave, and the second28
evaluates state-level hospitalization forecasts drawn from the COVID-19 Forecast29
Hub. We use these applications to demonstrate the parameterization of contex-30
tual utility, compare the WCIS to the WIS, and explore the utility of the WCIS.31
Conclusions: The WCIS provides a pragmatic utility-based characterization32
of probabilistic predictions. This method is expressly intended to enable prac-33
titioners and policymakers who may not have expertise in forecasting but are34
nevertheless essential partners in epidemic response to use and provide insightful35

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2023.06.29.23292042doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.29.23292042
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis of predictions. We note that the WCIS is intended specifically for retro-36
spective forecast evaluation and should not be used as a minimized penalty in a37
competitive context as it lacks statistical propriety.38

Keywords: COVID-19, Epidemiology, Public health, Statistics39

1 Background40

1.1 Introduction41

Given the devastating impact of COVID-19, and in the face of future pandemic42
threats, it is incumbent upon the epidemic forecasting community to deploy predic-43
tion tools that provide meaningful and actionable utility to those who need them. An44
important piece of this effort is candid retrospective evaluation of the utility of fore-45
casting during the COVID-19 pandemic. In this light, we present a new probabilistic46
forecast evaluation method, the Weighted Contextual Interval Score (WCIS). It is a47
relative metric that encodes a simple question. How useful could a forecast have been48
where and when it was made? Unlike other scores, the WCIS is designed specifically49
as a retrospective way to judge whether or not forecasting could have been useful.50
It is not intended for real-time model ranking and ensemble construction. Instead,51
the WCIS is meant for broader pandemic preparedness efforts, for taking an honest52
look at how helpful forecasts could have been and thus potentially could be in the53
future. Despite the high spatial and temporal variability of pandemic scenarios, the54
WCIS evaluates forecasts in a comparable and communicable way by scoring them as55
a function of their potential utility.56

The advent of the COVID-19 pandemic precipitated a massive public health57
response, including a significant modeling effort [1, 2]. In the United States, this58
quickly resulted in the formation of the COVID-19 Forecast Hub, a repository for59
short-term pandemic predictions [3]. Similar to prior collective forecasting efforts60
focused on seasonal influenza, dengue, and Ebola, the Forecast Hub solicited predic-61
tions from a large and diverse group of modelers, synthesizing their submissions into62
ensemble forecasts of COVID-19 cases, deaths, and hospitalizations. These outputs63
were provided to the United States Centers for Disease Control and Prevention (CDC)64
for policy making and dissemination to the public [4–9]. In addition to modeling65
efforts like the Hub at the regional level, COVID prompted a considerable amount of66
more granular forecasting, such as predictions for individual medical facilities [10, 11].67
Despite this abundance of pandemic modeling, translating short-term epidemiological68
forecasts into applicable, actionable, and insightful decision-making remains a signif-69
icant challenge [7, 12–17]. Understanding whether or not a forecast could have been70
useful requires understanding the conditions in which the forecast was made. It also71
requires knowledge about the type of decision the forecast would be used to inform.72
The WCIS was designed around these two requirements. It uses a utility-based nor-73
malization scheme to enable intuitive and meaningful comparison of forecast quality74
despite potentially dissimilar prediction contexts.75
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1.2 Motivation76

Probabilistic predictions are preferred in many disciplines, including the epidemic77
forecasting community. Unlike single outcome “point” predictions, probabilistic fore-78
casts convey the uncertainty of the underlying model. This is particularly important79
given the difficulty of correctly interpreting a quickly-evolving pandemic [7, 18]. The80
extant Weighted Interval Score (WIS), an error metric for quantile forecasts that81
approximates the Continuous Ranked Probability Score, is the primary method used82
to evaluate Forecast Hub submissions [19, 20]. As summarized by Bracher et al., “the83
(Weighted Interval) score can be interpreted heuristically as a measure of distance84
between the predictive distribution and the true observation, where the units are those85
of the absolute error” [19]. The WIS is an effective metric for real-time prediction86
scoring, model comparison, and ensemble forecast creation [20]. However, the WIS87
is limited in its ability to be used for intuitive forecast utility analysis, in particular88
because the score is scaled on the order of the prediction data [19]. Retrospective pan-89
demic evaluation involves comparing scenarios of highly different scales. One example90
of such a comparison would be between regions with large baseline differences in data91
magnitudes, such as highly vs sparsely populated regions (as in the Forecast Hub).92
Another situation where scale-related contextualization is essential to consider is the93
comparison of periods of high vs low epidemic activity (surge vs non-surge). In fact,94
both of these spatial and temporal scaling challenges are often necessary to consider95
at the same time (see Additional file 1: Section 1.1 for motivating examples of these96
issues drawn from state-level pandemic scenarios in the United States).97

The WCIS is an adaptation of the WIS that is framed around the two following98
ideas. First, any meaningful measurement of forecast quality must arise from the con-99
text into which predictions are disseminated. In other words, a useful forecast improves100
real-time knowledge and/or decision-making capabilities. The reverse also holds: a101
forecast is not useful if it is incapable of (or if it provides information detrimental to)102
gaining real-time information or improving decision-making. Second, for the purposes103
of enabling the comparison of forecast performances in disparate scenarios without104
post-processing, a helpful score should be a relative metric. Taken together, these two105
concepts informed the central idea of the WCIS: that a consistently meaningful score106
must have endogenous contextualization. In essence, the WCIS normalizes forecast107
performance as a function of the ability of the forecast to be used in the specific envi-108
ronment in which it was made. This way, despite potentially occurring in radically109
different spatial and temporal scenarios, individual evaluations can be meaningfully110
compared to others.111

Before moving to its technical basis and formulation in the next sections, it is112
necessary to address the intended purpose of the WCIS, and similarly, tasks for which113
it should not be used. The WCIS is not a statistically proper score (see Additional114
file 1: Section 1.3), which means it should not be used in competitive forecasting115
contexts. In these situations, such as real-time evaluation of COVID-19 Forecast Hub116
submissions, scores that are not statistically proper have the potential to be gamed117
[21]. Again, the WCIS is not designed for and should not be used for such purposes.118
It was not created to replace the WIS, which functions well for real-time forecast119
scoring and ensemble generation. Instead, the WCIS is designed to reflect relative120
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forecast quality using a flexible and contextually specific parameterization of utility.121
As is demonstrated in the test cases below, this results in a score that is not just122
intuitively interpreted, but is easy to compare and convey visually. We believe that123
these attributes are highly important in the context of pandemic preparedness efforts,124
given the need to more strongly connect the modeling and policy-making spheres of125
the public health community. Decision-makers need to be able to assess whether or126
not forecasting has the capacity to positively contribute to pandemic response. We127
believe that the WCIS enables an intuitive and flexible exploration of this question.128

1.3 Review of the Weighted Interval Score129

The Weighted Contextual Interval Score (WCIS) builds directly from the Weighted130
Interval Score (WIS). Bracher et al. [19] provide an excellent explanation of the131
mechanics of the score and its applications in epidemiology, and we endeavor to use132
the same symbology whenever possible. For brevity, the entire WIS formulation is not133
reviewed here, but the key elements (that are also important pieces the WCIS) are134
necessarily summarized:135

ISα(F, y) = (u − l) + 2
α

(l − y) 1 {y < l} + 2
α

(y − u) 1 {y > u} (1)

WISα{0:K}(F, y) = 1
K + 1

2

(
w0 · |y − m| +

K∑
k=1

{wk · ISαk
(F, y)}

)
(2)

• We assume a submission of K interval forecasts drawn from a predicted distribution136
F , a probabilistic representation of the target variable. Each of the K forecasts137
represents a (1 − αk) prediction interval (PI). These intervals are delineated by138
their lower and upper bounds l and u, the α

2 and 1 − α
2 quantiles of the predicted139

distribution, respectively. For example, a 95% interval would be represented by an140
αk of 0.05, its lower and upper bounds defined by the 0.025 and 0.975 quantiles of141
F .142

• A predictive median m (point prediction) is submitted, and the true target value y143
is known.144

• For each interval k ∈ {1, 2, ..., K}, an individual Interval Score (IS) is calcu-145
lated, penalizing both the width/sharpness of the interval: u − l, and (if necessary)146
the amount by which the interval missed the true value: 2

α (l − y) 1 {y < l} +147
2
α (y − u) 1 {y > u} [21]. Note that the “miss” component is scaled by the inverse of148
α, thus narrower prediction intervals are penalized less for missing than are higher149
confidence submissions.150

• The WIS is a weighted average of each of the K Interval Scores and the abso-151
lute error of the predictive median, with the weights wk used for the average152
corresponding to α

2 for each interval.153
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2 Methods154

2.1 Contextualizing Point Forecasts155

Although the WCIS (like the WIS) is an interval score, it is framed around a point156
score that we call the Contextual Relative Error (CRE). The CRE maps the absolute157
error of a point forecast x to its contextual utility. This is achieved by specifying158
δ, the utility threshold parameter. (Note that δ is the only parameter in the WCIS159
formulation that does not already appear in the WIS score).160

CRE(x, y, δ) = min

{
|x − y|

δ
, 1
}

(3)

δ is the magnitude of the absolute error above which a forecast loses its utility.161
The CRE is so named because instead of mapping to the distance between a predicted162
value and its target like absolute error, it maps to an interval from 0 to 1. A score of 0163
indicates a forecast with maximum possible utility (with an absolute error of 0), and a164
score of 1 indicates a useless forecast (with an absolute error of δ or more). See panel165
(a) of Additional file 1: Fig. S1 for a graphical representation of the CRE. An impor-166
tant feature to note is the “plateau” of the metric when the absolute error exceeds δ.167
This might seem problematic, given that beyond the δ threshold the absolute error168
is capable of increasing without any commensurate increase in the CRE. This is, in169
fact, the desired behavior of the CRE and warrants a slight re-framing of perspective.170
Selecting δ requires, when applying the CRE (and the WCIS, as it is a generalization171
of the CRE from point to interval scores), identification of a practical limit for how172
a forecast is used or interpreted in a particular context or for a particular purpose.173
For example, in many scenarios we have a finite capacity to respond to an expected174
outcome. If the “demand” imparted by an incorrect forecast exceeds that capacity,175
we are unable to alter our response despite an apparent increase in need. Therefore,176
an incorrect forecast with an absolute error of 2δ wastes exactly as many resources177
as a incorrect forecast of magnitude δ, where δ precipitates the maximum allocation178
in response to the forecast. A different way to interpret δ is as an “absorbable error179
magnitude.” The test cases later in the paper frame δ this way, wherea decision maker180
has limited capacity to recover from plans made according to forecasted outcomes. If181
the forecast is wrong enough that it precipitates an action that cannot be recovered182
from, such a forecast has met or exceeded the δ threshold.183

Note that δ is both a normalizer and a limit. Thus a forecast with an absolute184
error greater than δ is not at all useful, and a forecast with an absolute error less185
than δ is evaluated as a ratio of δ. This gives the CRE (and the WCIS) the ability186
to provide information about both forecast quality and how frequently forecasts are187
useful, which, as demonstrated later, is helpful for intuitive analysis and performance188
visualization.189

2.2 Contextualizing Interval-Form Forecasts190

We begin by introducing the Contextual Interval Score (CIS). The CIS is both a191
probabilistic extension of the Contextual Relative Error, and a contextualized version192
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of the Interval Score. Like the CRE, it maps a forecast’s error to the δ-parameterized193
utility space, and like the IS, it generates a score for a single interval forecast. (In fact,194
the CIS can be equivalently formulated in two different ways, based on either the IS or195
the CRE. For brevity, we use the IS-based formulation here but, particularly if more196
intuition about the score is desired, we suggest referencing Section 1.2 in Additional197
file 1 for the explanation of the CRE-based formulation.)198

CISα(F, y, δ) = min
{ α

2δ
ISα(F, y), 1

}
(4)

The WCIS is the simple average of the CIS across all α-intervals and the CRE of199
the predictive median m:200

WCISα{0:K}(F, y, δ) = 1
K + 1

(
CRE(m, y, δ) +

K∑
k=1

CISαk
(F, y, δ)

)
(5)

Note that we still retain the descriptor “Weighted” in the WCIS title even though201
there are no weights directly included in its formulation, whereas each component202
of the WIS is multiplied by α

2 . However, in our formulation, the same weights are203
effectively applied directly to the individual constituent CIS scores. Instead of the204
“miss” components of the score being multiplied by 2

α , the “width” term is scaled205
by α

2 . Thus when the average is taken to create the WCIS the scaling effect is the206
same as the WIS, but the weights are applied in this way because it preserves the207
interpretability of the individual single-interval CIS components as described above.208
Another notable difference is the WCIS uses K +1 for the denominator of the average209
(unlike K + 1

2 in the WIS) because like the single-interval components, the predictive210
median component of the score has a maximum penalty of 1. This, and the bound on211
each CIS term, means the WCIS also takes values only on the interval from 0 to 1.212
Note the natural equivalence between the WCIS for interval forecasts and the CRE for213
point forecasts, which mirrors that between the WIS and the absolute error. In both214
cases, the interval scoring method preserves the behavior and intuitive interpretation215
of the corresponding point forecast technique.216

3 Results217

The WCIS is expressly intended to be a flexible scoring method and as such there218
are many possible and highly variable ways to apply it. We use this Results section219
to present two demonstrative use cases. Both scenarios evaluate COVID-19 hospital-220
ization forecasts, but each works at a different scale and uses a necessarily different δ221
formulation. The first scenario applies the WCIS to results from a multi-facility-level222
forecasting model. We use this first application primarily to develop the intuition for223
the δ selection process. We show via a direct demonstration how δ can be chosen to224
represent contextually specific utility as a function of time-varying data, and explore225
how the choices made during this parameterization map onto the output of the WCIS.226

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2023.06.29.23292042doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23292042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Since this section focuses more on the WCIS formulation and less on interpreting the227
real-world applicability of the predictions, we use forecasts from a model developed228
in-house. Conversely, the second test case evaluates four weeks ahead predictions from229
the COVID-19 Forecast Hub’s ensemble model, examining hospitalization forecasts230
from May 2021 to May 2022 [3]. This period includes both the Delta and Omicron231
variant waves and allows for a larger exploration of the utility and communicability of232
the WCIS. Data for these analyses are sourced from the COVID-19 Reported Patient233
Impact and Hospital Capacity by Facility dataset for the first section and from the234
Forecast Hub’s repository for the second [22, 23].235

3.1 Facility-level Analysis (First Test Case)236

As introduced above, our first test case evaluates a facility-level hospitalization model.237
More specifically, the model forecasts daily COVID-19 bed occupancy, for each indi-238
vidual hospital in Maryland, from one to twenty-one days out, from July 2021 to July239
2022. Because our δ selection reflects capacity management within the three-week240
forecast window, we only use hospitals listed as “short-term” type (this excludes long-241
term and pediatric facilities) and for relevance only include facilities that had at least242
ten COVID-19 patients at some point during the time range specified. The partic-243
ular time range used was chosen because contextualization is vital when comparing244
and contrasting scenarios with highly different levels of pandemic activity, and July245
2021 to July 2022 includes the Omicron wave in Maryland. This scenario and facility246
selection yields 42 hospitals with an overall capacity range of 30 beds at the smallest247
facility to 919 beds at the largest facility.248

The model used is a Time Series Dense Encoder, using the prior ninety days for249
each hospital at each time point to predict the following twenty-one days [24]. For a250
complete model formulation see Additional file 1: Section 2.1 but in brief, this model251
type was selected because it is a state-of-the-art general-purpose time series forecaster252
that is efficient to train and flexible across different covariates, prediction horizons,253
output types, and loss functions. We note that the purpose of this test case is to254
explore and explain the formulation and application of the WCIS. Thus, we developed255
this relatively basic model in order to apply the WCIS to a facility-level scenario, not256
to refine a specific method for forecasting hospitalizations. The predictions from this257
section are not necessarily indicative of those performed in real time. Because the data258
used for training and scoring this model may contain retrospective corrections of errors259
that were present in the real time data, it has the potential for higher performance260
when compared to an equivalent in-situ forecaster.261

The δ-parameterization used for this analysis is intended to characterize the capac-262
ity of each facility to absorb an incorrect allocation of COVID-19 bed space based on a263
flawed forecast. We assume that capacity allocations are made at forecast time, under264
the in-situ assumption that forecasts perfectly reflect future outcomes. Thus, the δ265
value represents an achievable capacity correction during the time interval separating266
the making of the forecast and the realization of its true target value. For example,267
the δ value for a seven-day-ahead forecast for each facility is the amount of COVID-268
19 beds that each individual hospital can add or take away over a week. Specifically,269
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this δ is determined as follows. The daily capacity change for each hospital is calcu-270
lated as the mean of all single day, non-zero capacity changes over the entire available271
time series for each facility. δ for a particular forecast is then set as the product of272
the forecast horizon and the facility-specific daily change capacity. This means that273
the further out a forecast is, the larger (and thus more forgiving) the delta value is,274
based on the idea that the more time a facility has to respond to a poor allocation of275
resources, the greater the magnitude of the response can be. Please note that the par-276
ticular formulation chosen here is not intended to provide an assessment of forecast277
quality outside the utility scenario posited by the assumptions given above. How-278
ever, it demonstrates an important capability of utility threshold selection: δ can be a279
defined as a dynamic function of data that can change in time and space. Since con-280
textually meaningful forecast utility varies significantly over these same dimensions,281
a broadly applicable and interpretable score must be similarly adaptable.282

Using Figures 1 and 2, we are able to interpret some important aspects of how283
this selection of δ maps onto the scoring of our facility-level model. First, consider284
the relationship between the breadth of the confidence intervals and the δ region in285
Figure 1, which visualizes a single facility. The larger prediction intervals for the four-286
teen day-ahead forecasts indicate less model certainty than those of the two day-ahead287
predictions and, all else equal, would yield a worse score. However, δ is significantly288
higher for the fourteen day-ahead scenario, given the assumption that facilities have289
more time to adapt to inaccurate forecasts over longer horizons. This results in gen-290
erally better performance for the fourteen-day model. However, there remain in the291
fourteen-day scenario several forecasts that still receive a high penalty despite the292
more forgiving δ parameterization. Note that these instances tend to occur when the293
forecast median approaches or exceeds the utility threshold. Moving to Figure 2, we294
can see that these trends are also visible in the aggregate performance across all 42295
facilities. Comparing the WIS to the WCIS over these instances reveals a relatively296
linear relationship in the more forgiving scenarios, i.e. non-wave with a larger delta.297
During the wave, when absolute performance was broadly worse (as evidenced by the298
WIS values), the δ-limit was reached significantly more often. We also draw attention299
to the differences in marginal distributions that are visible in the scatter plot column300
of Figure 2. The scaling and limiting action of the WCIS distributes performances sig-301
nificantly more evenly than the WIS (see Additional file 1: Section 2.2 for plots with302
these marginal distributions included).303

In general, we are able to observe that given a contextually relevant δ choice, the304
score is able to simultaneously convey an intuitive sense of both relative quality and305
the overall frequency of useful forecasts, as shown in the histograms of Figure 2.306
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Fig. 1 Illustrated here are facility-level forecasts over two prediction horizons for one hospital: the
University of Maryland Medical Center. The top and bottom rows both show the same forecasts,
truth data, and δ (utility threshold) region. The top row displays these values normally, whereas the
bottom row shows how far each value deviates from the truth. The middle row displays the WCIS,
aligned with the data in the other rows. (Note that the facility-level analysis includes more prediction
intervals and more dates than are shown in this figure, the extent of both displayed here are reduced
for clarity.)
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Fig. 2 Results in this figure are generated from all 42 hospitals, for all prediction dates in the
facility-level model. The top three rows are from forecasts during the Omicron wave, and the bottom
three from before and after the wave. We define the wave as lasting from November 14 2021 through
May 15 2022, as illustrated in Additional file 1: Fig. S4.
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3.2 State-level Analysis (Second Test Case)307

For this test case, we apply the WCIS to real-world predictions drawn from the Fore-308
cast Hub, asking how much contextual utility hospitalization forecasts provided at309
the state level from May 2021 to May 2022 [3]. (Note that Forecast Hub hospitaliza-310
tion predictions were performed at daily resolution, but for the sake of visualizing a311
longer-term analysis we aggregate to and evaluate at weekly totals.)312

The WCIS always requires a specific interpretation of the use-case for forecasts313
in the selection of the utility threshold δ. Similar to Section 3.1, we choose to assess314
hospitalization predictions as a function of potential capacity changes. However, we315
assume a different decision-making scenario for hospital capacity at the state level316
than for its facility level counterpart. Due to the disaggregate decision-making appa-317
ratus across statewide hospitals and the inherent institutional inertia that must be318
overcome for larger scale change, we take a more conservative approach to estimating319
the absorbable error magnitude. Specifically, δ is the 0.9 quantile of the prior devia-320
tions in each state’s hospital bed capacity over the prediction horizon of the forecast.321
We assume prior bed capacity deviations are indicative of a state’s capacity to make322
changes, and that it is more difficult to make changes over a shorter timeline. Thus, any323
deviation over a shorter-term horizon can also occur for longer term horizons, but not324
the reverse. For example, when examining one week ahead predictions, only historical325
capacity changes over the course of a single week are considered. For four weeks ahead326
predictions, capacity changes for one, two, three, and four weeks ahead are considered.327
Finally, the 0.9 quantile is selected as the threshold under the assumption that states328
are not necessarily able to repeat their largest historical deviations, but can approach329
them. To be clear, this choice of δ is a heuristic for the amount of resource alloca-330
tion, staffing changes, and other matters that hospitals might practically accomplish331
in response to an assumed change in pandemic dynamics. It is intended to demon-332
strate the WCIS given a reasonable, data-driven parameterization of forecast utility.333
Namely, a response predicated on a forecast outside the δ-range as defined here would334
require corrective action of a magnitude that could not be reasonably expected over335
such a forecast’s prediction horizon.336
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Fig. 3 Heatmap of the WCIS for 4 week ahead hospitalization forecasts, performed by the Forecast
Hub’s ensemble model. The central and largest grid shows the most granular results: region- and
time-specific performance. On the right and lower sides of the grid are average performances over time
and space, respectively. The shaded line plot at the bottom of the figure is the target hospitalization
variable aggregated across all regions. Note that its domain is aligned exactly with those of the
time-dependent heatmaps above, to provide insight into the trends of the overall pandemic alongside
the more granular information in the heatmaps. (See Additional file 1: Section 3 for heatmaps over
differing prediction horizons).
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WCIS performance results for four weeks ahead state-level hospitalization predic-337
tions are demonstrated in Figure 3. Since the WCIS was designed primarily as a way338
to meaningfully evaluate and compare forecasts in disparate contexts, we can easily339
use it to observe several important aspects of hospitalization forecasting performance.340
For example, during surges and declines, forecast utility decreases substantially. We341
can intuit that this is a consistent trend across different locations both by directly342
observing the large central grid and by examining the lower, spatially averaged array343
of the figure. In contrast, if we examine the right-side, temporally averaged array, we344
observe that there is less variability in space than there is in time. Thus, by mak-345
ing an up-front determination about what constitutes a useful prediction (performing346
the δ-parameterization), we are capable of making, displaying, and intuitively evalu-347
ating forecasts. This allows, given a well-informed choice of δ, for meaningful overall348
analysis without needing to repeatedly delve into the specific circumstances during349
which each forecast was made. Without contextual normalization, conveying informa-350
tive and comparable performance would be much more challenging. This capability,351
demonstrated by the ease of interpreting Figure 3, is the overall aim for our creation352
of the WCIS. It permits substantive and easily interpretable performance evaluation.353

4 Discussion354

The WCIS is framed around our belief that a useful forecast contributes meaningful355
and/or actionable information given uncertain future outcomes. Determining whether356
or not forecasts accomplish this necessitates an explicit definition of utility. This brings357
up an important philosophical difference between the WCIS and other techniques.358
The WCIS formulation, centered around a user-defined utility threshold δ, arises from359
our assertion that there will never be a one-size-fits-all solution for assessing and com-360
paring short-term forecast quality. One must always consider prediction context and361
purpose lest standard metrics tell a misleading story. Additionally, different forecast362
use-cases yield different judgments of predictions. The helpfulness of a model that pre-363
dicts rainfall, for example, will be judged very differently by a user deciding whether364
or not to bring an umbrella on a walk as compared to a user deciding whether or not365
to issue regional flood warnings. An incorrect forecast of light rain with a realization366
of heavy rain is good enough for the first user but may be catastrophic for the second.367
Again, forecast purpose is essential to consider. The WCIS ensures this by building a368
definition of forecast utility directly into the formulation of the score.369

The core of the WCIS is the combined normalization and thresholding imposed370
by the δ parameterization, which incorporates a vital aspect of real-world forecast371
utility. Namely, past a certain point, changes in a prediction’s absolute error do not372
equate to changes in outcomes predicated on that forecast. Even when one forecast is373
more accurate than another, if both are beyond the utility horizon then the ”better”374
one is not actually more useful, just arbitrarily closer to the truth. This idea is the375
basis for the plateaued CRE point scoring function, which in turn is the basis for the376
WCIS. While a metric that does not always increase the penalty as forecast accuracy377
diminishes may seem counterintuitive, we believe that for characterizing contextual378
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utility, a score with a limited scope of relevance is actually more intuitive than a score379
that gets arbitrarily worse (or better) no matter how far away it is from being helpful.380

The WCIS builds on the Weighted Interval Score, adding the δ-parameterization381
to impel users to directly characterize contextual utility. Judging predictions in this382
way allows for a powerful and effective normalization of the error, making the WCIS383
easy to interpret and compare across heterogeneous forecasting scenarios. Importantly,384
this robust efficacy exists only for each individual definition of utility. We belabor this385
point because it is inherent to our overall assertion about forecast interpretability: that386
a specific use case is necessary to meaningfully evaluate prediction quality. Without an387
explicit link to how forecasts are used, there is no way to consistently and meaningfully388
evaluate them over variable spatial and temporal conditions. Other evaluation metrics389
are in essence arbitrary until they are contextualized, whereas the WCIS builds this390
contextualization directly into the formulation of the score.391

5 Conclusions392

Determining the future role of pandemic forecasting, as well as identifying areas of393
forecasting that need improvement, must at some point include the translation of394
modeling results to policy and decision makers. The WCIS is expressly intended to395
function well in this process, allowing for intuitive characterization of forecast utility396
that can be easily communicated to an audience with less technical expertise. Figure397
3 demonstrates this directly. Without effective contextual normalization, generating398
such a display would be challenging given large differences in error magnitude, likely399
requiring a transformation (such as log-scaling) that limits interpretability. Instead,400
the WCIS allows for a direct, clearly defined interpretation of forecast utility to be401
displayed and compared in a technically meaningful and intuitively understandable402
way.403

We created the WCIS to enable and encourage honest and contextually specific404
discourse about the utility of short-term epidemic predictions. It incorporates predic-405
tion uncertainty, keeps the technical definition of utility as simple as possible, and406
generates an intuitively interpretable and comparable numerical output. Our intent is407
to allow for people without specific technical experience to be able to interact with and408
evaluate probabilistic forecasting in a meaningful way. As the public health commu-409
nity learns from COVID-19 and prepares for future challenges, explicit analysis of the410
utility of historical predictions is essential. We hope the WCIS will help with effective411
and meaningful communication between modelers and practitioners in this effort.412

Declarations413

• Ethics approval and consent to participate: Not applicable. Ethics approval414
was not sought or required for this study. All human health data used are415
population-level COVID-19 outcomes sourced from publicly available online repos-416
itories.417

• Consent for publication: Not applicable.418
• Availability of data and materials: Code and processed data for both the419

facility- and state-level analyses are accessible from a publicly available GitHub420

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2023.06.29.23292042doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23292042
http://creativecommons.org/licenses/by-nc-nd/4.0/


repository [https://github.com/cpt-diabetes/wcis]. Forecast and ground truth data421
used for our state-level analysis are available from the COVID-19 Forecast422
Hub repository [https://doi.org/10.5281/zenodo.6301718]. The original source for423
ground truth hospitalization data is the COVID-19 Reported Patient Impact and424
Hospital Capacity by Facility repository [https://healthdata.gov/d/j4ip-wfsv].425

• Competing interests: The authors declare that they have no competing interests426
• Funding: This study was supported by the United States National Science427

Foundation (NSF) under grant no. 2108526.428
• Authors’ contributions: MM conceived of the study, performed the analysis, and429

wrote the manuscript. MM and FP developed the methodology. LMG supervised the430
project and provided essential methodological guidance. All authors read, edited,431
and approved the final manuscript.432

• Acknowledgements: Not applicable.433

References434

[1] Horbach SPJM. Pandemic publishing: Medical journals strongly speed up435
their publication process for COVID-19. Quantitative Science Studies. 2020436
Aug;1(3):1056–1067. https://doi.org/10.1162/qss a 00076.437

[2] Fraser N, Brierley L, Dey G, Polka JK, Pálfy M, Nanni F, et al. The evolving role438
of preprints in the dissemination of COVID-19 research and their impact on the439
science communication landscape. PLOS Biology. 2021 Apr;19(4):e3000959. Pub-440
lisher: Public Library of Science. https://doi.org/10.1371/journal.pbio.3000959.441

[3] Cramer EY, Huang Y, Wang Y, Ray EL, Cornell M, Bracher J, et al.442
The United States COVID-19 Forecast Hub dataset. Scientific Data. 2022443
Aug;9(1):462. Number: 1 Publisher: Nature Publishing Group. https://doi.org/444
10.1038/s41597-022-01517-w.445

[4] McGowan CJ, Biggerstaff M, Johansson M, Apfeldorf KM, Ben-Nun M, Brooks446
L, et al. Collaborative efforts to forecast seasonal influenza in the United States,447
2015–2016. Scientific Reports. 2019 Jan;9(1):683. Number: 1 Publisher: Nature448
Publishing Group. https://doi.org/10.1038/s41598-018-36361-9.449

[5] Johansson MA, Apfeldorf KM, Dobson S, Devita J, Buczak AL, Baugher B, et al.450
An open challenge to advance probabilistic forecasting for dengue epidemics.451
Proceedings of the National Academy of Sciences. 2019 Nov;116(48):24268–24274.452
Publisher: Proceedings of the National Academy of Sciences. https://doi.org/10.453
1073/pnas.1909865116.454

[6] Viboud C, Sun K, Gaffey R, Ajelli M, Fumanelli L, Merler S, et al. The455
RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics.456
2018 Mar;22:13–21. https://doi.org/10.1016/j.epidem.2017.08.002.457

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2023.06.29.23292042doi: medRxiv preprint 

https://doi.org/10.1162/qss_a_00076
https://doi.org/10.1371/journal.pbio.3000959
https://doi.org/10.1038/s41597-022-01517-w
https://doi.org/10.1038/s41597-022-01517-w
https://doi.org/10.1038/s41597-022-01517-w
https://doi.org/10.1038/s41598-018-36361-9
https://doi.org/10.1073/pnas.1909865116
https://doi.org/10.1073/pnas.1909865116
https://doi.org/10.1073/pnas.1909865116
https://doi.org/10.1016/j.epidem.2017.08.002
https://doi.org/10.1101/2023.06.29.23292042
http://creativecommons.org/licenses/by-nc-nd/4.0/


[7] Reich NG, Ray EL. Collaborative modeling key to improving outbreak response.458
Proceedings of the National Academy of Sciences. 2022 Apr;119(14):e2200703119.459
Publisher: Proceedings of the National Academy of Sciences. https://doi.org/10.460
1073/pnas.2200703119.461

[8] Ray EL, Brooks LC, Bien J, Biggerstaff M, Bosse NI, Bracher J, et al. Comparing462
trained and untrained probabilistic ensemble forecasts of COVID-19 cases and463
deaths in the United States. International Journal of Forecasting. 2022 Jul;https:464
//doi.org/10.1016/j.ijforecast.2022.06.005.465

[9] Reich NG, McGowan CJ, Yamana TK, Tushar A, Ray EL, Osthus D, et al.466
Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in467
the U.S. PLOS Computational Biology. 2019 Nov;15(11):e1007486. Publisher:468
Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007486.469

[10] Weissman GE, Crane-Droesch A, Chivers C, Luong T, Hanish A, Levy MZ,470
et al. Locally Informed Simulation to Predict Hospital Capacity Needs During471
the COVID-19 Pandemic. Annals of Internal Medicine. 2020 Jul;173(1):21–28.472
https://doi.org/10.7326/M20-1260.473

[11] Kociurzynski R, D’Ambrosio A, Papathanassopoulos A, Bürkin F, Hertweck S,474
Eichel VM, et al. Forecasting Local Hospital Bed Demand for COVID-19 Using475
on-Request Simulations. Scientific Reports. 2023 Dec;13(1):21321. https://doi.476
org/10.1038/s41598-023-48601-8.477

[12] Doms C, Kramer SC, Shaman J. Assessing the Use of Influenza Forecasts and478
Epidemiological Modeling in Public Health Decision Making in the United States.479
Scientific Reports. 2018 Aug;8(1):12406. Number: 1 Publisher: Nature Publishing480
Group. https://doi.org/10.1038/s41598-018-30378-w.481

[13] Reich NG, Wang Y, Burns M, Ergas R, Cramer EY, Ray EL.: Assessing the utility482
of COVID-19 case reports as a leading indicator for hospitalization forecasting483
in the United States. medRxiv. Pages: 2023.03.08.23286582. Available from:484
https://www.medrxiv.org/content/10.1101/2023.03.08.23286582v1.485

[14] Nixon K, Jindal S, Parker F, Marshall M, Reich NG, Ghobadi K, et al. Real-time486
COVID-19 forecasting: challenges and opportunities of model performance and487
translation. The Lancet Digital Health. 2022 Oct;4(10):e699–e701. Publisher:488
Elsevier. https://doi.org/10.1016/S2589-7500(22)00167-4.489

[15] Lutz CS, Huynh MP, Schroeder M, Anyatonwu S, Dahlgren FS, Danyluk G,490
et al. Applying infectious disease forecasting to public health: a path forward491
using influenza forecasting examples. BMC Public Health. 2019 Dec;19(1):1659.492
https://doi.org/10.1186/s12889-019-7966-8.493

[16] Guerrier C, McDonnell C, Magoc T, Fishe JN, Harle CA. Understanding Health494
Care Administrators’ Data and Information Needs for Decision Making during495

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2023.06.29.23292042doi: medRxiv preprint 

https://doi.org/10.1073/pnas.2200703119
https://doi.org/10.1073/pnas.2200703119
https://doi.org/10.1073/pnas.2200703119
https://doi.org/10.1016/j.ijforecast.2022.06.005
https://doi.org/10.1016/j.ijforecast.2022.06.005
https://doi.org/10.1016/j.ijforecast.2022.06.005
https://doi.org/10.1371/journal.pcbi.1007486
https://doi.org/10.7326/M20-1260
https://doi.org/10.1038/s41598-023-48601-8
https://doi.org/10.1038/s41598-023-48601-8
https://doi.org/10.1038/s41598-023-48601-8
https://doi.org/10.1038/s41598-018-30378-w
https://www.medrxiv.org/content/10.1101/2023.03.08.23286582v1
https://doi.org/10.1016/S2589-7500(22)00167-4
https://doi.org/10.1186/s12889-019-7966-8
https://doi.org/10.1101/2023.06.29.23292042
http://creativecommons.org/licenses/by-nc-nd/4.0/


the COVID-19 Pandemic: A Qualitative Study at an Academic Health System.496
MDM Policy & Practice. 2022 Jan;7(1):23814683221089844. Publisher: SAGE497
Publications Inc. https://doi.org/10.1177/23814683221089844.498

[17] Lee TH, Do B, Dantzinger L, Holmes J, Chyba M, Hankins S, et al. Mitigation499
Planning and Policies Informed by COVID-19 Modeling: A Framework and Case500
Study of the State of Hawaii. International Journal of Environmental Research501
and Public Health. 2022 Jan;19(10):6119. Number: 10 Publisher: Multidisci-502
plinary Digital Publishing Institute. https://doi.org/10.3390/ijerph19106119.503

[18] Nixon K, Jindal S, Parker F, Reich NG, Ghobadi K, Lee EC, et al. An evaluation504
of prospective COVID-19 modelling studies in the USA: from data to science505
translation. The Lancet Digital Health. 2022 Oct;4(10):e738–e747. https://doi.506
org/10.1016/S2589-7500(22)00148-0.507

[19] Bracher J, Ray EL, Gneiting T, Reich NG. Evaluating epidemic forecasts in an508
interval format. PLOS Computational Biology. 2021 Feb;17(2):e1008618. Pub-509
lisher: Public Library of Science. https://doi.org/10.1371/journal.pcbi.1008618.510

[20] Cramer EY, Ray EL, Lopez VK, Bracher J, Brennen A, Castro Rivadeneira AJ,511
et al. Evaluation of individual and ensemble probabilistic forecasts of COVID-19512
mortality in the United States. Proceedings of the National Academy of Sciences.513
2022 Apr;119(15):e2113561119. Publisher: Proceedings of the National Academy514
of Sciences. https://doi.org/10.1073/pnas.2113561119.515

[21] Gneiting T, Raftery AE. Strictly Proper Scoring Rules, Prediction, and Estima-516
tion. Journal of the American Statistical Association. 2007 Mar;102(477):359–517
378. https://doi.org/10.1198/016214506000001437.518

[22] gov H.: COVID-19 Reported Patient Impact and Hospital Capacity by Facility.519
United States Department of Health & Human Services. Available from: https:520
//healthdata.gov/d/j4ip-wfsv.521

[23] Cramer E, Wang SY, Reich NG, Hannan A, Niemi J, Ray E, et al.:522
reichlab/covid19-forecast-hub: release for Zenodo 20220227. Zenodo. Available523
from: https://doi.org/10.5281/zenodo.6301718.524

[24] Das A, Kong W, Leach A, Mathur S, Sen R, Yu R.: Long-term Forecasting with525
TiDE: Time-series Dense Encoder. arXiv. ArXiv:2304.08424 [cs, stat]. Available526
from: http://arxiv.org/abs/2304.08424.527

Additional Files528

• “Additional file 1.pdf” - This document contains the Supplemental Materials for529
this article. These include sections that provide more detail on and/or motivating530
examples for the formulation of the score, the impropriety analysis, and the facility-531
level model formulation. It also includes figures comparing the WIS and the WCIS532

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2024. ; https://doi.org/10.1101/2023.06.29.23292042doi: medRxiv preprint 

https://doi.org/10.1177/23814683221089844
https://doi.org/10.3390/ijerph19106119
https://doi.org/10.1016/S2589-7500(22)00148-0
https://doi.org/10.1016/S2589-7500(22)00148-0
https://doi.org/10.1016/S2589-7500(22)00148-0
https://doi.org/10.1371/journal.pcbi.1008618
https://doi.org/10.1073/pnas.2113561119
https://doi.org/10.1198/016214506000001437
https://healthdata.gov/d/j4ip-wfsv
https://healthdata.gov/d/j4ip-wfsv
https://healthdata.gov/d/j4ip-wfsv
https://doi.org/10.5281/zenodo.6301718
http://arxiv.org/abs/2304.08424
https://doi.org/10.1101/2023.06.29.23292042
http://creativecommons.org/licenses/by-nc-nd/4.0/


performance of the facility-level model for different scenarios, and state-level WCIS533
hospitalization heatmaps for all 4 standard Forecast Hub prediction horizons (1, 2,534
3, and 4 weeks ahead).535
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