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Key messages:  

 

1. Previous studies have estimated the average effect an additional year of education 

has on health, irrespective of educational level. 

2. However, this assumes that each educational level has the same effect, e.g., an 

additional year of education in primary school has the same effect as an additional 

year at university; this assumption is implausible. 

3. Multivariable Mendelian randomization can be used to relax this assumption and 

estimate the independent effects of educational levels.  

4. Previously reported effects of education on smoking initiation appear to be due to 

remaining in school until age 18. In contrast, effects on BMI are due to attending 

university, and effects on systolic blood pressure are similar across education levels.  
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Abstract 
Objectives To investigate which levels of educational attainment affect health.  

Design Multivariable Mendelian randomization study (MVMR). 

Setting UK Biobank. 

Participants European ancestry participants born in England. 

Exposure Educational attainment was defined as leaving school before age 18, leaving 

school after 18, or getting a university degree. Randomly allocated genetic variants were 

used as instruments for these traits.  

Main outcome measures Body mass index (BMI), smoking initiation, and systolic blood 

pressure.  

Results The MVMR estimates provided little evidence that remaining in school to age 18 

affected BMI (mean difference=0.04, 95% CI: -0.42, 0.50), but evidence getting a degree 

reduced BMI by 0.47 standard deviation 95% CI: (0.01 to 0.97). The MVMR estimates 

provided evidence that remaining in school to age 18 reduced the odds of initiating smoking 

(odds ratio (OR): 0.48, 95% CI: 0.30 to 0.76), whereas it provided little evidence of effects of 

getting a degree (OR: 1.14, 95% CI: 0.69 to 1.88). MVMR suggested that both remaining in 

school to age 18 and getting a degree had similar effects on systolic blood pressure (mean 

difference=-2.60 95% CI: -3.73 to -1.46 and mean difference=-3.63 95% CI: -4.92 to -2.34, 

respectively).   

Conclusions Multivariable Mendelian randomization can be used to estimate the effects of 

complex longitudinal exposures such as educational attainment. This approach can help 

elucidate how and when factors such as educational attainment affect health outcomes.  
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Introduction 
 

Educational attainment is associated with important health and socioeconomic outcomes 

across life and represents a critical modifiable risk factor for improving population health.1-7 

Educational attainment is typically measured as a continuous variable indicating the number 

of years of education someone has. However, this continuous definition of education 

imposes strong assumptions on analyses, typically including that each additional year of 

education has the same effect or that the study is interested in a weighted average of the 

effect of all education levels. This is unlikely to be a plausible assumption. An additional year 

of education at age 16 is likely to affect different individuals and have different 

consequences than an additional year at age 20. Thus, the marginal effect of an extra year 

is likely to differ depending on each stage of education. In addition, policymakers and 

individuals are likely to be more interested in the effects of completing each stage of 

education.  

 

The association of levels of educational attainment and later health outcomes are likely to 

provide unreliable evidence because unmeasured factors, such as sociodemographic 

characteristics or family background, confound the relationship between education and 

health outcomes. Researchers have sought to overcome this problem using two forms of 

natural experiments (instruments): policy reforms that affected the amount of education and 

genetic variants associated with educational attainment, an approach known as Mendelian 

randomization (MR). Studies using policy reforms identify the effects of a specific 

educational change, e.g. the raising of the school leaving in 1972 in the UK identifies the 

effect of an additional year of education at age 15 in those who would not remain in school 

without the reform.1 8-10 Whereas other natural experiments identify the effects of different 

educational outcomes (e.g. distance to university identifies the effect of getting a university 

degree on those choosing to attend or not is affected by their distance to university).11 12  

 

Mendelian randomization uses genetic variants and instrumental variables for years of 

educational attainment to estimate the causal effect of the years of education.13 14 Mendelian 

randomization relies on three key assumptions. First, the instruments must strongly 

associate with the exposure; second, there must be no unmeasured confounders of the 

instruments-outcome association; and finally-there must be no effect of the instruments on 

the outcome that is not mediated via the exposure. As the genetic variants used as 

instruments in Mendelian randomization are fixed across an individual’s lifetime, Mendelian 

randomization estimates are often interpreted as ‘lifetime effects’.13 15 Specifically, Mendelian 
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randomization estimates a weighted average of the effects of genetically predicted years of 

education across the entire life course.16 The individual effects of an additional year of 

education are likely to differ across the levels of education, so the overall effect can be 

interpreted as the average effect of an additional year of educational attainment weighted by 

the effects of the genetic variants on the likelihood of achieving each level of educational 

attainment.  

 

An alternative assumption is to identify the effects on the outcome of binary variables for 

each stage of education (i.e. the effect of obtaining a specific level of education, e.g. primary 

school, secondary school, and university). Mendelian randomization can be used to estimate 

the effects of a single binary definition of education (e.g., the effects of getting a university 

degree on health). However, these estimates will also reflect the effects of the other 

educational levels required to attend university if there are shared genetic effects of the 

different educational stages. For example, suppose a variant associated with remaining in 

school to age 18 was also associated with getting a university degree. In that case, the 

Mendelian randomization estimate of a single exposure will reflect the effect of staying in 

school until age 18 and getting a university degree. This is illustrated in Figure 1, where a 

Mendelian randomization estimate of the effects of getting a degree will not reflect only the 

direct effect of getting a degree but also any direct effects of earlier educational outcomes on 

later health.   

 

Multivariable Mendelian randomization (MVMR) can estimate the direct causal effect of 

multiple exposures, conditional on the other exposures.17 18 Thus, MVMR can estimate the 

direct effects of each educational level on an outcome, conditional on the other educational 

levels.19 MVMR, applied in this way, allows for the effect of the genetic variants on the 

educational levels to be accounted for in the estimation. MVMR relies on the same 

assumptions as univariable Mendelian randomization (relevance, independence, and 

exclusion), with the additional requirement that the instruments explain sufficient variation in 

each exposure conditional on the other exposures (conditional relevance). This requires the 

genetic instruments to have sufficient differential effects on each educational level to identify 

the effects on each period. Note that genetic instruments can affect all educational levels; 

there merely needs to be sufficient variation in the size of these effects. Conditional 

relevance can be tested with a conditional F-statistic.20 21 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2023. ; https://doi.org/10.1101/2023.06.29.23292030doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23292030
http://creativecommons.org/licenses/by/4.0/


Figure 1 – A directed acyclic graph of a Mendelian randomization estimation of the 

effects of remaining in school to ages 16 and 18 and getting a university degree on 

health.  

 

The effect of attending university on health outcomes ( can be identified using multivariable 
Mendelian randomization by genetic variants affecting educational attainment under the following 
assumptions. First, the variants must explain sufficient variation in each level of educational 
attainment conditional on the other levels of educational attainment (the conditional relevance 
assumption). Second, there must be no direct effects of the SNPs on the outcome, except those 
mediated via educational attainment ( ). Thus, we can identify the effects of each educational 
level, and the pleiotropic effect due to an earlier educational level or initial cognitive ability will be 
accounted for (i.e.  and ) can be non-zero.  
 

In this paper, we demonstrate how MVMR can estimate the direct effects of educational 

levels on later health outcomes. We use educational attainment data from UK Biobank22 and 

summary-data two-sample Mendelian randomization to efficiently estimate the direct causal 

effect of remaining in school to age 18 or achieving a university degree, compared to leaving 

school before age 18, on body mass index (BMI), smoking initiation, and systolic blood 

pressure. Our results demonstrate that we can identify the differential effects of educational 

levels and that for two of the outcomes considered (BMI and smoking initiation), there may 

be differences in the effects of achieving different levels of education.  

 

Methods 

Data 

UK Biobank is a population-based health research resource consisting of 503,317 people 

aged between 38 years and 73 years who were recruited between 2006 and 2010 from 

across the UK. Participants reported their demographics, health status, lifestyle measures, 

cognitive testing, personality self-report, and physical and mental health measures) via 

questionnaires and interviews. A full description of the study design, participants and quality 
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control (QC) methods have been described in detail.22-24 UK Biobank received ethics 

approval from the Research Ethics Committee (REC reference for UK Biobank is 

11/NW/0382).  

 

DNA was extracted from the genotyped blood samples using UK BiLEVE Axiom and UK 

Biobank Axiom arrays. Full details of the genotyping, imputation and quality control 

procedure are available elsewhere.25 26  

 

Participants reported their educational qualifications. We defined each participant’s 

educational attainment as the highest qualification they reported. We then categorised these 

educational qualifications into three levels; left school around 16 (highest qualifications: 

GCSE’s/O-levels/CSEs or lower), completed school to age 18 (highest qualifications: A-

levels) and has a college or university degree.  Other qualifications were grouped based on 

the closest equivalent (see Supplementary Table 1).  

 

Genome-wide Association Study of educational attainment 

We ran an independent Genome-Wide association study (GWAS) to estimate the 

association of genetic variants with each of two binary variables: 1) remaining in school to at 

least 18 vs leaving before 18, and 2) having a university or college degree vs not. 

Participants were coded 1/0 based on whether they had achieved a qualification associated 

with that educational level (or higher). The GWAS was conducted using BOLT-LMM,27 which 

controls for relatedness and population stratification and relatedness. We applied standard 

exclusions to the UK Biobank data, limiting our sample to participants of European ancestry, 

excluding participants who had withdrawn consent, and for other reasons.26 We further 

limited our sample to participants who reported being born in England to restrict to 

individuals who experienced similar education systems. We also adjusted for age and sex. 

 

We identified genome-wide significant SNPs, defined as p<5×10-8 and independent 

(LD=10,000kb, r2 <0.01). These criteria were applied to each of the two GWAS results for 

the binary variables for the educational stage to select SNPs associated with that stage. To 

create a list of ‘hits’ associated with at least one educational level, we combined the hits 

selected from both GWAS and applied a further round of clumping to remove overlapping 

loci using the same parameters.  
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Mendelian Randomization 

We extracted the SNP-outcome associations for BMI, smoking initiation and SBP from a 

separate GWAS based on the largest GWAS studies available in OpenGWAS for each SNP 

identified as associated with educational attainment in our GWAS.28 29 We did not use 

GWAS that included only UK Biobank to minimise winner's curse bias.30 We used a BMI 

GWAS of 681,275 individuals of primarily European ancestry, in which BMI was reported as 

a standard deviation change. 456,426 individuals were from the UK Biobank, representing 

about 67% of the sample.31 We used a smoking initiation GWAS of 607,291 individuals; 

383,631 were from the UK Biobank, representing about 63% of the sample.32 This GWAS 

used a binary measure of smoking initiation defined as ever having smoked and reported the 

log odds of smoking from a logistic model. We used a systolic blood pressure (SBP) GWAS 

of 757,601 individuals of European ancestry; 458,577 were from the UK biobank, 

representing about 60% of the sample.33 In this GWAS, systolic blood pressure was adjusted 

for medication use by adding 15 mmHg for individuals reporting blood pressure lowing 

medication. We harmonised the exposure and outcome summary data and excluded 

palindromic SNPs with a minor allele frequency >0.4.  

 

We used univariable Mendelian randomization to estimate the effect of each level of 

education, compared to achieving a lower level of education, on each outcome using inverse 

variance weighting(IVW).34 This analysis used genome-wide significant SNPs from the 

GWAS of each educational level as instruments. We investigated how robust our results are 

to violations of the third instrumental variable assumption using weighted median35, weighted 

mode36  and MR Egger37 estimators. Consistent results across these estimators suggest that 

findings are less likely to be driven by pleiotropic or heterogeneous effects. The effect 

estimates from the univariable Mendelian randomization can be interpreted as the effect of 

remaining in school to at least 18 compared to leaving school before age 18 and the effect of 

achieving a university degree compared to not. These point estimates require a fourth point 

identifying assumption, such as a constant effect of treatment or no simultaneous 

heterogeneity (NOSH), both of which identify the average treatment effect or a monotonic 

effect of the SNPs on the likelihood of remaining in school, which would identify the local 

average effects of staying in school (i.e. the effects of staying in education to each level for 

those whose choice was affected by the genetic).14 38 39  

 

Multivariable Mendelian Randomization 

We used two-sample MVMR to simultaneously estimate the direct effects of staying in 

school to 18 and obtaining a university degree on each outcome. We included all SNPs 
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associated with either level of educational attainment at genome-wide significance as 

instruments in this analysis. The estimates from this analysis identify the direct effect of 

remaining in school to age 18 but not going to university, compared to leaving school before 

18 and the direct effect of getting a university degree compared to leaving school at age 18 

or earlier. We estimated MVMR using inverse variance weighting and calculated conditional 

F-statistics and Q-statistics to test for heterogeneity.17 

 

A fundamental assumption of MVMR is that the instruments are associated with each 

exposure strongly, given the other exposures included in the estimation. Violation of this 

assumption will decrease the precision of the results obtained and can bias the effect 

estimates. In summary-data MVMR, this assumption can be tested with a conditional F-

statistic.21 The critical values to test for weak instrument bias are generally approximated to 

a ‘rule-of-thumb’ of 10; if the conditional F-statistics are larger than ten, then the SNPs are 

typically considered strong instruments and are unlikely to suffer from weak instrument 

bias.40 41 

 

Patients and the public were not involved in designing the study. 

Results 

GWAS 

We identified 360 independent SNPs associated with one of the measures of educational 

attainment at genome-wide significance levels (p < 5×10-8) (Table 1). Of these, 130 SNPs 

were significantly associated with leaving school at 18 and achieving a degree. However, a 

substantial proportion of SNPs were only associated at genome-wide significance levels with 

one or other education level, illustrated in Figure 2. 

 

Table 1 – Number of SNPs by educational level. 

Education level  No. 

SNPs 

Remaining in school to 18 264 

Getting a degree 226 

Total 360 
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Figure 2 – Association of SNPs and remaining in school after 18 and/or getting a 

degree.  

 
A plot of the association between each SNP and remaining in school to age 18 and obtaining a degree for all 
SNPs associated with either staying in school after 18 or having a degree at genome-wide significance. Colours 
show whether each SNP was associated with staying in school to 18, getting a degree, or both. 
 

Instrument strength testing  

We tested whether the selected SNPs were sufficiently strongly conditionally associated with 

educational attainment using conditional F-statistics (Table 2).  They lie between 2.64 and 

2.86, indicating that our MVMR estimation may suffer from weak instrument bias. In MVMR, 

the direction of that bias can be either towards or away from the null, and therefore we 

cannot draw any conclusions about the impact of this bias. This reduction in the F-statistic 

between the univariable and MVMR is likely because of the high level of correlation between 

the effect of the SNPs on each measure of educational attainment, which will lower the 

power and instrument strength for MVMR.  
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Table 2 –F-statistics for each level of educational attainment.  
 BMI Smoking initiation SBP 
 F-statistic Conditional 

F-statistic 
F-statistic Conditional 

F-statistic 
F-statistic Conditional 

F-statistic 

Remaining 
in school 
after 18 

42.21 2.65 42.01 2.70 42.05 2.64 

Having a 
degree 

43.03 2.75 44.09 2.86 44.09 2.86 

Number of SNPs; BMI 254, smoking initiation 326, SBP 323. Phenotypic correlations between each educational 
attainment level calculated from individual-level data in UK Biobank. The number of SNPs in each estimation 
varies due to the availability of SNPs in the outcome data.  
 

Mendelian randomization results 

The univariable and MVMR estimates of the effect of remaining in school to 18 and getting a 

degree are shown in Figure 3 and Table 3. Full results, including sensitivity analyses 

allowing for alternative structures of pleiotropy, are given in Supplementary Table 3. The 

univariable Mendelian randomization estimates suggested that remaining in school to at 

least 18 and getting a university degree had similar effects on BMI. Remaining in school to at 

least age 18 decreased BMI by 0.36 standard deviations, 95% confidence interval (95%CI): 

[0.25 to 0.47]. Getting a degree decreased BMI by 0.38 standard deviations, 95%CI: [0.25 to 

0.52]. However, when both levels of educational attainment are included using MVMR, the 

effect of remaining in school to 18 attenuated (0.04, 95% CI: -0.42, 0.50). Very little change 

was seen in the point estimate for achieving a degree between the univariable MR and 

MVMR (MVMR estimated effect of having a degree; 0.47, 95% CI: [0.01 to 0.97]. 

 

The univariable Mendelian randomization estimates suggested that remaining in school to at 

least 18 and obtaining a degree affected the risk of smoking initiation. Staying in school to 18 

decreased the odds of smoking initiation (OR: 0.53, 95%CI: 0.47, 0.59), getting a degree 

reduced the odds of smoking initiation by a similar amount (OR: 0.58, 95%CI: 0.54 to 0.66). 

The MVMR estimates for remaining in school to 18 were consistent with the univariable 

estimates (OR: 0.48, 95% CI: 0.30 to 0.76). However, the MVMR estimates of the effect of 

getting a degree were entirely attenuated (OR: 1.14, 95% CI: 0.69 to 1.88).  

 

The univariable Mendelian randomization estimates for SBP suggested that both remaining 

in school and having a degree reduced blood pressure. Remaining in school to at least 18 

decreased SBP by 2.60mmHg (95%CI:1.46 to 3.73), and obtaining a university degree 

decreased SBP by 3.63mmHg (95%CI: 2.34 to 4.92). The MVMR estimates for both stages 

were attenuated towards the null; however these estimates were very uncertain and were 

also consistent with the univariable analysis.  
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Figure 3 – Univariable MR (blue) and MVMR (red) estimates for the effect of remaining 

in school to 18 and getting a degree on BMI, smoking initiation and systolic blood 

pressure.  

(a) BMI (b) Smoking Initiation (c) Systolic Blood Pressure 

   
IVW and MVMR estimate effects of remaining in school after 18 and having a degree on BMI (standard deviation 
change), smoking initiation (odds ratio) and systolic blood pressure (change in mmHg). UVMR=Inverse variance 
weighted univariable Mendelian randomization, MVMR= inverse variance weighted multivariable Mendelian 
randomization. BMI=Body mass index. SBP=systolic blood pressure.  
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Table 3 – Univariable and multivariable MR estimates of the effect of remaining in 
school to 18 and having a degree on BMI, smoking initiation and systolic blood 
pressure. 

 
 

No. 
SNPs 

Effect 
est. 95 % C.I. 

Q-statistic 
p-value 

BMI      
 Remaining in school to 18  
 UVMR 196 -0.45 [-0.56 -0.35] 1.92x10-311  
 MVMR 254 0.09 [-0.34 0.51] 2.26x10-321 

 Getting a degree  
 UVMR 178 -0.48 [-0.60 -0.36] 5.39x10-281 

 MVMR 254 -0.63 [-1.10 -0.17] 2.26x10-321 
Smoking Initiation       
 Remaining in school to 18  
 UVMR 258 0.53 [0.47 0.59] 2.15x10-78 
 MVMR 326 0.48 [0.30 0.76] 3.35x10-87 

 Getting a degree  
 UVMR 224 0.58 [0.50 0.66] 2.26x10-83 
 MVMR 326 1.14 [0.69  1.88] 3.35x10-87 
SBP       
 Remaining in school to 18   
 UVMR 256 -2.60 [-3.73 -1.46] 5.66x10-135 
 MVMR 323 -0.63 [-5.33 4.06] 6.50x10-170 

 Getting a degree      
 UVMR 221 -3.63 [-4.92 -2.34] 1.83x10-117 

 MVMR 323 -2.55 [-7.73 2.63] 6.50x10-170 
Mendelian randomization and MVMR effect estimates for remaining in school after 18 and having a degree 
estimated by Univariable Mendelian Randomization and Multivariable Mendelian Randomization. UVMR=inverse 
variance weighted univariable Mendelian randomization, MVMR=inverse variance weighted multivariable 
Mendelian randomization. BMI=Body mass index. SBP=systolic blood pressure. Effect estimates are standard 
deviation change in BMI, odds ratio for smoking initiation and mmHg unit change per unit change in remaining in 
school to 18/obtaining a degree. The number of SNPs varies across the analyses as not all SNPs were available 
in every outcome GWAS. Q statistic p-value is the p-value for a test of heterogeneity in the effect estimates 
across all SNPs. These are the same for each level of education in the MVMR analyses, as one statistic is 
reported per analysis.  

 

Discussion 
MVMR can estimate the effect of time-varying exposures on later outcomes. Here we 

demonstrated that MVMR can be used to estimate the effects of levels of educational 

attainment on a range of health outcomes. Previous studies have assumed that educational 

attainment is a continuous variable scaled by years of education. This simplifying 

assumption increases statistical power. However, it limits the policy relevance of the 

estimates. The effects of remaining in school until age 18 likely differ from those of getting a 

university degree. For example, our MVMR estimates suggest that staying in school until 

age 18 lowers the rate of smoking initiation but that achieving a degree has little additional 

benefit. In contrast, our MVMR results suggest that remaining in school until age 18 has little 

effect on BMI but that getting a university degree reduces BMI. This approach provides 
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valuable evidence about when educational effects occur, which can give clues on aetiology 

and potential intervention strategies and the external validity of Mendelian randomization 

estimates.  

 

MVMR estimates are the direct effect of achieving each educational level, conditional on the 

other levels of educational attainment. We used the lowest level of educational attainment as 

our reference category, so the estimated effect of remaining in school to age 18 but not 

getting a degree, compared to leaving at age 16 or before. The estimated effect is getting a 

degree is compared to leaving school at age 18. In contrast, the univariable Mendelian 

randomization estimates of the effect of a degree reflect the effect of getting a degree versus 

not getting a degree.  Furthermore, the MVMR estimates have less restrictive assumptions 

about the structure of pleiotropy. MVMR requires the assumption that there are no 

pleiotropic effects of variants which affect the outcome, which is not mediated via either of 

our measures of educational attainment. The effects of remaining in school to 18 will reflect 

many potential pleiotropic pathways (e.g., baseline ability). However, these pathways are 

unlikely to bias the estimated effect of getting a university degree in the MVMR estimation, 

as they have been accounted for through the exposure indicating remaining in school to 18. 

So, the results obtained are unlikely to be explained by the pleiotropic effects via ability.  

 

In general, MVMR estimators are generally less precise than univariable MR estimators. 

This is because MVMR only uses conditional variation in the exposure, which explains less 

of the overall variation in the exposures. This reduces the instruments' strength and the 

analyses' statistical power. As a result, MVMR requires very large sample sizes to estimate 

the effects of each level of educational attainment precisely. A limitation of our analysis is the 

conditionally weak instruments seen in our MVMR, and correspondingly large confidence 

intervals. Weak instruments can result in imprecise estimates. However, we had sufficient 

power to detect education stage specific effects on BMI and smoking initiation. Here, we only 

used a relatively small sample size of 371,053 to estimate the SNP-education associations. 

Future studies should run GWAS on binary outcomes of these educational stages to provide 

instruments to investigate the effects of these critical educational levels. This would allow 

more precise estimates of the effects of each educational level and provide more evidence 

about how, why and when educational attainment affects health outcomes. 

 

A further limitation that applies to all Mendelian randomization studies is that selection bias 

may induce bias in our results. This could occur if both educational attainment and our 

outcomes influence selection into our study. The participants of the UK Biobank were far 

more educated and healthy than the general population.24 Future studies should use inverse 
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probability weighting to account for the study's sampling. Our results may reflect the 

pleiotropic effects of the SNPs, which directly affect the outcome. However, these pleiotropic 

effects would have to be independent of remaining in school to 18 and thus likely exclude 

many common explanations (e.g., ability). We also investigated the level of heterogeneity in 

our results and used alternative estimators which make different assumptions about the 

structure of pleiotropy. The alternative univariable Mendelian randomization estimators gave 

results consistent with the IVW effect estimates. The lower precision in MR Egger and 

weighted Mode estimates is expected as these estimators have lower power than IVW and 

weighted Median. However, our estimates showed high levels of heterogeneity across both 

exposures highlighting the potential for further pleiotropic effects.  Finally, instrumental 

variable estimates require a fourth point identifying assumption. Under a constant effect of 

education or no simultaneous heterogeneity (NOSH), our results will reflect the average 

treatment effect. Under monotonicity, our results will reflect the local average treatment 

effects (i.e., the effects of remaining in school to age 18 or university for those whose 

decision was affected by these variants).  

 

In summary, we can use MVMR to estimate time-varying effects, such as the effects of 

different educational levels. We can improve the power and precision of these estimates by 

efficiently combining studies and could potentially provide new insights into when and how 

educational attainment affects health outcomes.  
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