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Abstract— High detail and fast magnetic resonance imaging
(MRI) sequences are highly demanded in clinical settings,
as inadequate imaging information can lead to diagnostic
difficulties. MR image super-resolution (SR) is a promising
way to address this issue, but its performance is limited
due to the practical difficulty of acquiring paired low- and
high-resolution (LR and HR) images. Most existing methods
generate these pairs by down-sampling HR images, a process
that often fails to capture complex degradations and domain-
specific variations. In this study, we propose a domain-distance
adapted SR framework (DDASR), which includes two stages:
the domain-distance adapted down-sampling network (DSN)
and the GAN-based super-resolution network (SRN). The DSN
incorporates characteristics from unpaired LR images during
down-sampling process, enabling the generation of domain-
adapted LR images. Additionally, we present a novel GAN
with enhanced attention U-Net and multi-layer perceptual loss.
The proposed approach yields visually convincing textures
and successfully restores outdated MRI data from the ADNI1
dataset, outperforming state-of-the-art SR approaches in both
perceptual and quantitative evaluations. Code is available at
https://github.com/Yaolab-fantastic/DDASR.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is widely used as a
crucial neuroimaging method because it delivers detailed in-
sights into brain tissue structure without the need for invasive
procedures. However, obtaining high-quality MRI images
often involves challenges such as the need for extended
scanning times, high magnetic field strengths, and patient
discomfort, which can lead to motion-sensitive images and
increased costs [1]. Additionally, the complex nature of MR
signals makes them prone to various distortions and artifacts,
including motion blur, noise, and signal dropout. These
further complicate the imaging process and potentially hinder
accurate diagnoses. Single image super-resolution (SISR)
techniques have been developed to enhance a low-resolution
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(LR) image by improving signal-to-noise ratio [2], accen-
tuating texture details, and eliminating visual artifacts [3].
This technology is particularly beneficial in brain imaging
as it offers a solution to the labor-intensive and demanding
process of analyzing substandard MR images that lack suf-
ficient information. While recent advances in deep learning-
based MR image SR offer a promising solution to enhance
image quality and maintain diagnostic quality [4], there are
several challenges that must be addressed before clinical
implementation.
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Fig. 1. Synthesizing downsampled LR images from the real HR and
unpaired real LR datasets. (a) shows the explicit down-sampling. (b) shows
the conventional implicit down-sampling, which proposes minimizing the
distance between synthetic and real LR images. (c) shows our proposed
domain-distance adapted down-sampling method, in which real LR domain
characteristics were embedded into the down-sampling process to facilitate
the domain translation.

One major challenge is modeling the unknown and com-
plex degradation of a real LR image in the absence of
paired LR/HR MR images. Since paired LR/HR MR images
are usually unavailable, existing methods are dedicated to
generating an LR/HR pair by synthesizing an LR image from
the HR image to model the transformation [5], [6]. Recent
works primarily focused on explicit modeling (as shown in
Fig. 1(a)), such as bicubic down-sampling [7], k-space filter-
ing [8], and combination of image degradation operations [5],
[9]. These works performed well when the true degradation
is known prior. However, the performance is significantly
compromised when the real degradation differs from their
estimation. Alternatively, a few other works employ implicit
modeling (as shown in Fig. 1(b)), such as domain-distance
adaptation using convolutional neural network (CNN) [6],
data distribution learning with GAN [10], and representation
learning [11]. Although they offer greater flexibility in han-
dling various degradation scenarios, as shown in Fig. 1(b),
existing implicit methods primarily focus on minimizing the
distance between real and synthetic images and overlook the
transfer of domain representations.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2024. ; https://doi.org/10.1101/2023.06.29.23292026doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://github.com/Yaolab-fantastic/DDASR
https://doi.org/10.1101/2023.06.29.23292026


Another challenge is recovering texture details while pre-
serving the topological structures. An enhanced image may
pass quantitative assessment but fail visual inspection as
existing algorithms usually fail in balancing sharpness and
structural details [12]. In some cases, tissue structure is even
altered, which can be a fatal error as the structural texture
is critical for visual diagnostics (i.e., lesion localization) and
neuroscience studies (i.e., brain parcellation). There are two
common directions to prioritize the preservation of topo-
logical structures and texture details: 1) design proper deep
learning architectures for SR, where recent efforts have been
made to improve autoregressive models [13], GAN [14],
[15], variational autoencoder (VAE) [16], [17], encoding-
decoding networks [18], [11], and diffusion probabilistic
models [19]; and 2) design loss functions that consider
visual effects to produce convincing results like perceptual
loss [14], [7] and texture matching loss [20], [21] functions.
Overall, the investigation in both directions offers exciting
opportunities for advancing MR image SR, and we believe
that their combination has the potential to yield even more
impressive results.

To tackle the aforementioned challenges, we develop a
realistic down-sampling strategy, as illustrated in Fig. 1(c).
This strategy aims to incorporate LR domain characteristics
while learning the mapping relationship between the target
domain (i.e., real LR) and the source domain (i.e., real
HR). In addition, it includes an effective texture restora-
tion component that utilizes multi-scale image features for
enhancing MR brain image super-resolution. By combining
these innovative designs, our proposed method significantly
improves the preservation of both structural integrity and
texture details, leading to better visual and quantitative
quality. Our contributions can be summarized as follows:

• Realistic down-sampling: We introduce a transformer-
based, domain-distance adapted down-sampling net-
work (DSN) to efficiently capture domain representa-
tions and incorporate these features into the mapping
relationship between HR images and LR images.

• Structure and texture preservation: We propose a
super-resolution network (SRN) that employs a gener-
ator enhanced with multi-layer perceptual loss and a
discriminator utilizing an attention U-Net to produce
biologically reasonable textures and precise contours.

• Denoising and super-resolution: We propose a novel
domain-distance adapted SR framework to enhance both
the image quality and resolution of MR brain images,
achieving substantial improvements over state-of-the-
art models in both qualitative visual assessments and
quantitative evaluations.

II. METHODOLOGY

Given two MR image domains characterized by two sets
of unpaired HR images X(r)

HR and LR images Y(r)
LR, our goal

is to train an SR model that can increase the resolution
of an LR domain image while enabling the synthesized
HR image align with the real HR domain. To achieve this,

we propose a two-stage framework that comprises a down-
sampling network and a super-resolution network.

The down-sampling stage (Fig. 2(a)) employs a trans-
former architecture to embed the real LR domain rep-
resentation into the downsampled images and introduces
the content-aware positional encoding (CAPE, Fig. 2(c)) to
capture invariant brain structural representation from source
HR images and preserve fine-grained details. The SR stage
(Fig. 2(b)) uses a GAN architecture, where the generator
(Fig. 2(d)) employs an encoder-bottleneck-decoder scheme
and the discriminator (Fig. 2(e)) adopts an attention U-
Net. Meanwhile, to ensure visually convincing textures, we
incorporate multi-layer perceptual loss into the SR stage.
We present the details of the domain-distance adapted down-
sampling strategy in Sect. II-A, the GAN-based SR frame-
work in Sect. II-B for reproducibility. In principle, one can
apply any image SR task in the proposed architecture.

A. Domain-Distance Adapted Down-Sampling

Existing down-sampling methods, such as linear, k-space,
blur kernels, or a combination of down-sampling operations
have low generalization ability and cannot adapt to complex
degradation processes during MRI scans. To address this, we
propose a domain distance-adaptive down-sampling network
(DSN) based on the transformer architecture. As shown in
Fig. 2(c), we employ transformer blocks with attention mech-
anisms to extract image domain characteristics, textures, and
structural features, thereby facilitating the construction of
source and target feature embeddings in the latent space [22].
This mechanism enables the transformer to capture local
and global contextual information and generate multi-scale
feature representation. In addition, we apply CAPE [23]
on the source HR images (X(r)

HR) during multi-scale down-
sampling, which aims to ensure that the brain structure and
texture information remains invariant during the transforma-
tion process by encoding the positional information.
Image positional coding. Given a source image X (r)

HR ∈
RHs×Ws and a target image Y

(r)
LR ∈ RHt×Wt , patches are

projected into a sequential feature embedding E of size
N × C using a linear projection layer, where N = H

m × W
m

and C are the length and dimension of E respectively, and
m × m is the patch size. The CAPE Pc was proposed to
integrate the semantics of image content into the positional
encoding, thereby reducing the impact of the image scale on
the relative distance. Specifically, Pc(i, j) between patches
(i, j) is calculated as follows:

PL = Fpos

(
AvgPooln×n(E)

)
,

Pc(i, j) =
s∑

k=0

s∑
l=0

(akl × PL (ik, jl)) ,
(1)

where Fpos is a 1 × 1 convolution operation, PL is the
learnable relative positional relationship, n is the block size,
akl is the interpolation weight, and s is the number of
adjacent patches.
Transformer encoder. Two transformer encoders are em-
ployed to encode the structure information from the source
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Fig. 2. Overview of the proposed two-stage SR framework. (a) Stage 1: taking the real HR and real unpaired LR data as input, a transformer-based
down-sampling network (DSN) is designed to generate paired (to the HR images) LR images, aligning to the real LR domain. (b) Stage 2: the synthesized
(LR, HR) pairs are used to train the super-resolution network (SRN), where the GAN architecture with multi-layer perceptual loss (for the generator) and
attention U-Net mechanisms (for the discriminator) is employed. (c-e) illustrate the details of DSN, GAN generator, and discriminator, respectively.

domain image X
(r)
HR and encode the domain characteristic

information from the target domain image Y
(r)

LR . Specifically,
the embeddings of the source domain image sequence Zs =
{Es1 + Pc1, Es2 + Pc2, · · · , EsL + PcL, } and the target
domain image sequence Zt = {Et1, Et2, · · · , EtL, } are fed
into each transformer encoder to produce the encoded struc-
ture sequence ξ

(r)
HR and domain characteristic sequence ξ

(r)
LR.

Each encoder layer is composed of a multi-head attention
(MHA) module and a feed-forward network (FFN) [24],
which together encode the input sequence as follows:

Q = ZWQ, K = ZWK , V = ZWV ,

MHA(Q,K, V ) =

h∥∥∥
i=1

Attentioni (Q,K, V ) ·WO,
(2)

ξ′ = MHA(Q,K, V ) +Q,

ξ = E(Z) = FFN(ξ′) + ξ′.
(3)

For each input sequence, the queries (Q), keys (K), and
values (V) are generated via three learnable weight matrices
WQ, WK , and WV , respectively. The ∥ denotes the con-
catenation of h independent heads, and WO is the projection
matrix that aggregates the output from all attention heads.

Following Eq. 2 and Eq. 3, the source HR images and the
target LR images are encoded as ξ

(r)
HR = E(Zs) and ξ

(r)
LR =

E(Zt).
Transformer decoder. As shown in Fig. 2(c), the trans-
former decoder is used to generate decoded image Y

(g)′

LR from
the source image sequence ξ

(r)
HR while absorbing the domain

characteristic information from the target image sequence

ξ
(r)
LR. In particular, the transformer decoder consists of two

cross-attention layers and one FFN, from which the decoded
image Y

(g)′

LR is calculated as:

Q = ξ̂
(r)
HRW

Q, K = ξ
(r)
LRW

K , V = ξ
(r)
LRW

V ,

Y
(g)′′′

LR = MHA(Q,K, V ) +Q,

Y
(g)′′

LR = MHA(Y
(g)′′′

LR + Pc,K, V ) + Y
(g)′′′

LR ,

Y
(g)′

LR = FNN(Y
(g)′′

LR ) + Y
(g)′′

LR .

(4)

Here, ξ̂(r)
HR = {ξ(r)

HR,1 + Pc1, ξ
(r)
HR,2 + Pc2, · · · , ξ(r)

HR,L + PcL} is
the CAPE encoded source image sequence.
Resizing. For the training purposes, the decoded output Y (g)′

LR
undergoes additional processing through a three-layers up-
sampling decoder [25] and a linear degradation operation to
obtain the downsampled result Ŷ (g)

LR . There is a convolution
layer of 3× 3 convolution kernel, ReLU activation function,
and 2× upsample applied in each three-layer convolution up-
sampling module, respectively. By controlling the number
of layers of the CNN up-sampling module, we can output
images with any integer multiple downsampled multiple.
DSN loss. There are two objectives for down-sampling:
preserving the original structure and texture of the source
HR MR image and attaining the domain characteristics of the
target LR images. To achieve these, two loss functions are
introduced: the structural loss Ls that reduces the structure
and texture discrepancies between the generated LR (Ŷ (g)

LR )
and real HR images (X(r)

HR), and the domain loss Ld to ad-
dress the gap between synthesized LR and target LR domains
(i.e., real LR domain). To improve the model stability, we
employ the pre-trained VGG19 to extract feature maps and
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train the model:

Ls =

Nl∑
l=0

∥∥∥ϕl

(
Ŷ

(g)
LR

)
− ϕl

(
X

(r)
HR

)∥∥∥
2
, (5)

Ld =

Nl∑
l=0

∥∥∥µ(
ϕl

(
Ŷ

(g)
LR

))
− µ

(
ϕl

(
Y

(r)
LR

))∥∥∥
2

+
∥∥∥σ (

ϕl

(
Ŷ

(g)
LR

))
− σ

(
ϕl

(
Y

(r)
LR

))∥∥∥
2
,

(6)

where Nl denotes the number of VGG layers, and ϕl(·)
extracts features from the l-th VGG layer, µ(·) and σ(·)
represent the mean and variance of the features, respectively.

To help keep more detailed and local structural infor-
mation, we further introduce an identity loss Lid into the
DSN optimization. Instead of trading off between image
structure and domain, the identity loss considers both local
mapping and global distributions by maintaining structural
information rather than changing domain representation. Let
I
(g)
s and I

(g)
t denote the images generated by inputting

two identical source domain images Is and two identical
target domain images It into the DSN, respectively. The
identity loss measures the difference between Is and I

(g)
s for

the source domain, and between It and I
(g)
t for the target

domain:

Lid=λid1

(
||I(g)

s − Is||2 + ||I(g)
t − It||2

)
+ λid2

Nl∑
l=0

∥∥∥ϕl(I
(g)
s )−ϕl(Is)

∥∥∥
2
+
∥∥∥ϕl(I

(g)
t )−ϕl(It)

∥∥∥
2
.

(7)

It should be noted that all images are resized to have the
same dimension during the training process.

Overall, the total DSN loss can be expressed as:

LDSN = λsLs + λdLd + Lid. (8)

Empirically, we set λs = 7, λd = 10, λid1 = 30 and λid2 =
5 across the experiments.

B. GAN-based super-resolution

Using the pseudo (LR, HR) image pairs synthesized by
the DSN, a GAN-based super-resolution network (SRN) is
trained to model the HR reconstruction. We now detail the
SRN framework, as illustrated in Fig. 2(b,d,e).
Generator. The generator consists of an encoder, a bot-
tleneck, and a decoder (see Fig. 2(d)). The encoder ex-
tracts features from the input LR images, the bottleneck
incorporates dense connections and deeper networks for
deep feature fusion, and the decoder merges features from
both the encoder and bottleneck to generate HR images.
This process emphasizes the restoration of both large-scale
contour structures and fine-grained texture details.

Encoder. We employ the residual-in-residual dense block
(RRDB) [14] for effective feature extraction, which first
extracts features from the LR image, yielding a low-
dimensional feature representation f0. To capture multi-scale
feature information, we then employ convolutional modules
that progressively downsample the features while expanding

their dimensionality. This process yields multi-scale features
fi = Ei (fi−1) , i ∈ {1, · · · , N}, where Ei (·) represents a
convolutional layer with a kernel size of 4, a stride of 2, and
padding of 1.

Bottleneck. Previous studies [26], [27], [28] have shown
the effectiveness of integrating dense connections and deeper
networks in SR tasks. To enhance deep feature extraction
and fusion, we use cascaded RRDB blocks within a high-
dimensional space. This method facilitates the integration of
high-dimensional features both before and after deepening
the network with dense connections. Meanwhile, residual
blocks can help reduce computational overhead and address
gradient vanishing issues commonly associated with deeper
networks. The proposed method is designed to promote
the optimization of critical visual features and facilitate the
extraction of detailed features, particularly lines and curves.

Decoder. A decoder with progressive fusion is used to
merge the encoder and bottleneck features for HR MR image
generation. This decoder utilizes convolutional layers with a
kernel size of 3 and padding of 1 for upsampling, along
with an efficient sub-pixel convolution operation (pixshuf-
fle) at each layer. Skip connections are used to retain the
large-scale low-dimensional information obtained from the
encoder and perform multi-scale fusion with the small-scale
high-dimensional information generated by the bottleneck,
thereby increasing the amount of information obtained by
the encoder. This allows the model to simultaneously focus
on both the large-scale contour structures and small-scale
texture details, resulting in more detailed and accurate MR
image reconstruction.
Discriminator. Inspired by [29], we adopt an attention U-net
discriminator architecture to specifically target and improve
poorly generated textures during adversarial training. This
architecture includes attention blocks (AB) and concentration
blocks (CB), building upon a U-Net structure, as shown in
Fig. 2(e). To boost training stability and tailor the discrimina-
tor more effectively for image SR tasks, we apply a spectral
normalization regularization operation as described in [30].
SRN loss. The SRN loss comprises the generator loss and the
discriminator loss. We denote the generator and discriminator
as G(·) and D(·), respectively. Specifically, to preserve
the structural integrity of MR images and enhance their
texture details, we introduce the multi-layer perceptual loss
Lmper into the generator. The pre-trained VGG19 is used
to extract image features for the multi-layer perceptual loss,
with layers l ∈ {2, 7, 9, 12, 17} selected and weighted at
τl = {0.1, 0.1, 1.0, 1.0, 1.0}. We further employ the 1-norm
distance loss L1 into the generator to evaluate the distance
between the generated HR image and the ground truth. The
multi-layer perceptual loss and content distance loss are as
follows:

Lmper =
∑

l∈{2,7,9,12,17}

τl

∥∥∥ϕl(X
(r)
HR)− ϕl(X̂

(g)
HR )

∥∥∥
2
, (9)

L1 = E
ŷ
(g)
LR

∥∥∥G(
ŷ
(g)
LR

)
−X

(r)
HR

∥∥∥
1
. (10)
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Therefore, the discriminator loss, enhanced generator loss,
and the total SRN loss are calculated as follows:

LD = −E
X

(r)
HR

[
log

(
D

(
X

(r)
HR, X̂

(g)
HR

))]
− E

X
(g)
HR

[
log

(
1−D

(
X̂

(g)
HR , X

(r)
HR

))]
,

(11)

L′
G = −E

X
(r)
HR

[
log

(
1−D

(
X

(r)
HR, X̂

(g)
HR

))]
− E

X
(g)
HR

[
log

(
D

(
X̂

(g)
HR , X

(r)
HR

))]
,

(12)

LG = η1Lmper + η2L1 + η3L′
G, (13)

LSRN = LG + LD, (14)

where η1, η2 and η3 are hyperparameters for adjusting
different loss terms. We set η1 = 1, η2 = 1, and η3 = 0.1
across the experiments.

III. EXPERIMENTS

We utilized two unpaired HR/LR MR image datasets to
assess the performance of our proposed method. Specifically,
a private HR dataset (i.e., X(r)

HR) from our institute served as
the reference to guide the super-resolution of the LR images
(Y(r)

LR), which were sourced from the publicly available
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.
In addition, we collected paired LR images corresponding to
our private HR scans to serve as ground truth for validating
the down-sampling ability of the proposed DSN module.
Further details on these datasets are provided below.

A. Experimental setup

ADNI LR image dataset. We include a total of 41 T1-
weighted 1.5T MRI scans from ADNI Phase 1 (ADNI1) for
super-resolution. Although the original resolution of these
images, 256×256×160, is not low compared to clinical MR
scans, this study aims to achieve a higher sampling density
to demonstrate the efficacy of the proposed SR framework.
In addition, ADNI1 data is generally considered to have
lower image quality compared to the later ADNI phases
(i.e., ADNIGO/2 and ADNI 3). Therefore, it motivates
us to use ADNI1 images as real LR data and apply our
proposed methods to them for both image denoising and SR
tasks. From these scans, we extract 3, 520 sagittal images
from 22 subjects used for training (as real LR), and 3, 040
images from 19 subjects for testing. Detailed data acquisition
protocols can be accessed at adni.loni.usc.edu.
Private HR/LR paired image dataset. Four volunteers
underwent both HR and LR MRI scanning on a 3.0T GE
scanner at our site using a 3D T1-w MP-RAGE sequence.
These collected real HR images serve as source references
for ADNI LR SR, while our private LR images are used
exclusively for DSN validation. The HR scans feature a slice
thickness/gap of 1/0 mm, spatial resolution of 1.0×1.0×1.0
mm, TE of 3.444 ms, TR of 2737.62 ms, and a scanning
time of 6 min 48s. The same sequence is used for the LR
scanning with a reduced TE of 1.66 ms and scanning time of
4 min 28s. The resolutions of the private HR and LR MRI

are 512× 512× 388 and 256× 256× 388, respectively. As
HR and LR MRI share the same field of view (FOV), HR
is defined by higher sampling density, whereas LR by lower
sampling density. The private HR dataset is divided into the
training and testing sets with a ratio of 8 : 2, resulting in
1, 241 images for training and 311 images for testing.
Evaluation metrics. In the absence of ground truth (e.g., real
ADNI HR images are not available), natural image quality
evaluator (NIQE) [31] and blind/referenceless image spatial
quality evaluator (BRISQUE) [32] are employed to assess
the performance of our proposed DDASR framework. Here,
NIQE evaluates image quality by analyzing the structure and
content to simulate the perceptual quality of the human visual
system. BRISQUE quantifies image quality by analyzing
statistical features within the spatial domain of the image.

When ground truth is present (e.g., the private LR images
are available for comparing the down-sampling performance
), we use the peak signal-to-noise ratio (PSNR) [33] and
the structural similarity index (SSIM) [34] to evaluate the
performance of our proposed DSN (Sec.III-C). Specifically,
PSNR quantifies image quality by comparing the signal-to-
noise ratio between the real and synthetic images, while
SSIM evaluates similarity from three key aspects: luminance,
contrast, and structure.

Comparison with prior work. We compare the pro-
posed SR framework with a benchmark method Bicubic,
and three state-of-the-art methods including ESRGAN [14],
RealSR [35], and RealESRGAN [5]. We further compare our
proposed DSN framework with the state-of-the-art DS ap-
proaches utilized in ESRGAN, RealSR, and RealESRGAN.
Specifically, ESRGAN employs the k-space DS method,
RealSR utilizes a degradation framework to estimate blur
kernels, and RealESRGAN adopts a high-order degradation
modeling method.

To ensure a fair comparison, all compared methods were
retrained on our dataset using the same model architectures
and optimal hyperparameters as described in their papers.
The mean and standard deviation computed across all testing
samples are reported for each evaluation metric.
Implementation details. Our proposed model is trained
on 2 NVIDIA GeForce RTX 3090 GPUs with 48 GB
memory using the PyTorch framework. The DSN is trained
for 300,000 iterations with a batch size of 3 and a hidden
dimension of 512. For the SRN, a cosine annealing with
warm restarts learning rate optimization strategy is employed
with a minimum learning rate of 1e-7, and the total number
of iterations is set to 250,000.

B. Comparison with the state-of-the-arts

We apply the proposed SR framework on the real ADNI
LR data, acknowledged to have lower image quality. Non-
reference metrics (NIQE and BRISQUE) are used to evaluate
the performance. As illustrated in Table I, our method
significantly outperforms others in terms of the NIQE score
and achieves the second-best BRISQUE index score. Among
the compared SR methods, Bicubic upsampling yields the

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2024. ; https://doi.org/10.1101/2023.06.29.23292026doi: medRxiv preprint 

adni.loni.usc.edu
https://doi.org/10.1101/2023.06.29.23292026


(a) real LR image
HRA real ADNI LR image

(c) Bicubic (e) RealSR (f) RealESRGAN(b) Ours (d) ESRGAN
HR HR HR HRLR

Fig. 3. Visual comparison of the SR results from different methods.

TABLE I
PERFORMANCE COMPARISON OF ADNI LR IMAGES SR.

Methods NIQEstd ↓ BRISQUEstd ↓

Real LR 5.18±0.89 68.56±6.22
Bicubic 4.91±0.71 61.31±3.91

ESRGAN 6.00±0.24 60.87±3.92
RealSR 5.34±0.16 57.03±2.13

RealESRGAN 5.01±0.16 40.43±9.43
DDASR (ours) 4.25±0.15∗ 44.67±3.21

Best results are in bold. The second-best results are underlined. Results
with ‘*’ indicate that our model is significantly better (p < 0.05) than
the suboptimal method when using the independent t-test.

poorest BRISQUE scores, likely because it simply interpo-
lates the image without considering quality improvement.
ESRGAN shows the worst NIQE scores, potentially because
it does not take the domain gap into consideration.

We further perform a visual comparison of several SR
results. As shown in Fig. 3, our proposed method effectively
enhances MR image quality by simultaneously preserving
structural integrity and recovering biologically significant
texture information. RealSR delivers good visual outcomes
in certain regions but introduces serious structural alterations
and unnecessary texture in many other regions. Although
RealESRGAN achieves the best BRISQUE scores, it signifi-
cantly compromises texture details and suffers from artifacts.
Notably, it expands the cortical surface thickness, reduces
the depth of brain sulci, and results in unclear boundaries
between the cortex and medulla, which may hinder the
detection of small lesions.

C. Ablation study

We conducted a series of ablation studies to evaluate the
effectiveness of the proposed SR framework, the DSN and
SRN modules, as well as the key components designed for
the SRN. Below, we describe the details of each ablation
design and present the corresponding results.
DSN: more realistic synthesized LR image.

We compare our proposed DSN framework with the DS
approaches utilized in RealSR and RealESRGAN, as well
as with the k-space method employed by ESRGAN. PSNR
and SSIM are used to quantitatively measure the differences
between the synthesized LR images and the ground truth
(i.e., the real LR images from our site).

As shown in Table II and Fig. 4, our proposed DSN
achieves the best performance in terms of PSNR and real-
synthetic image distance (i.e., heatmaps in the bottom panel
of Fig. 4) and yields the second-best SSIM score. Although
k-space obtains the highest SSIM, it actually generates
many artifact texture details (see the top panel of Fig. 4(c)
and corresponding heatmap). Our DSN outperforms both
RealSR and RealESRGAN across all metrics. RealESRGAN
produces the poorest PSNR and SSIM scores, possibly due
to its down-sampling strategy being optimized for natural
images.

TABLE II
PERFORMANCE COMPARISON OF THE DOWN-SAMPLING METHODS ON

THE REAL PRIVATE LR IMAGES.

Methods PSNRstd ↑ SSIMstd ↑

K-space 20.52±4.57 0.71±0.10
RealESRGAN 19.98±7.53 0.46±0.21

RealSR 20.79±4.37 0.64±0.08
Ours 21.65±4.21∗ 0.68±0.09

Best results are in bold. The second-best results are underlined. Results
with ‘*’ indicate that our DSN is significantly better (P < 0.05) than
the suboptimal method when using the independent t-test.

Super-resolution network evaluation. We feed the down-
sampled LR images generated by each of the benchmark
methods into our SRN to examine whether our proposed SR
method surpasses the performance of the others. The evalu-
ation is conducted on the ADNI data, employing NIQE and
BRISQUE metrics for performance comparison. As shown in
Table III, our SRN demonstrates superior performance than
the other SR methods regardless of the synthetic LR inputs.
This demonstrates the generalizability and stability of our
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Figure 4. Comparison of the down-sampling methods.

(a) Real LR image (b) Ours (c) K-space (d) RealESRGAN (e) RealSRA real ground-truth LR 
image from our site LR LR LR LR LR

Fig. 4. Comparison of the down-sampling methods. A lower heatmap value indicates a smaller distance between the synthesized LR image and the real
LR image.

proposed SRN.

TABLE III
PERFORMANCE EVALUATION OF THE PROPOSED SRN ON ADNI LR

IMAGE SR.

Methods NIQEstd ↓ BRISQUEstd ↓

Bicubic 4.91±0.71 61.31±3.91
Bicubic# 4.33±0.14 52.12±3.83

ESRGAN 6.00±0.24 60.87±3.92
ESRGAN# 5.08±0.55 103.23±4.30

RealSR 5.34±0.16 57.03±2.13
RealSR# 4.75±0.16 54.87±4.32

RealESRGAN 5.01±0.16 40.46±9.43
RealESRGAN# 4.51±0.14 35.35±2.83

All method utilize their specific downsampling strategy. Methods
marked with superscript # employ our proposed SRN module,
while those without the superscript use their own SRN modules.

Evaluation of GAN key components. We further evaluated
the effectiveness of the key components designed for the
GAN. We accordingly remove the multi-layer perceptual loss
(Lmper) from the generator and replace the attention U-Net
architecture with the relativistic discriminator (D(RA)) [36].
Ablation experiments are conducted to super-resolve ADNI
LR images, utilizing NIQE and BRISQUE metrics for per-
formance comparison. The results, presented in Table IV,
indicate that removing the multi-layer perceptual loss leads
to a 17.9% reduction in NIQE and a 15.4% reduction in
BRISQUE. We also observe that the attention-based U-Net
discriminator demonstrates significant advantages, achiev-
ing the best results across both evaluation metrics (13.2%
BRISQUE and 14.5% NIQE reductions).

IV. CONCLUSION

We propose a novel domain-distance adapted super-
resolution framework for MR brain images SR. Our approach
combines a transformer-based domain adaptation network, an
encoding-decoding generator architecture, an attention UNet-
based discriminator for SR, and multi-layer perceptual loss to
preserve brain structural and texture information effectively.
Experimental results demonstrate the superiority of our pro-
posed model compared to state-of-the-art SR methods in both

TABLE IV
ABLATION STUDY OF THE MULTI-PERCEPTUAL LOSS AND THE

ATTENTION U-NET MECHANISM ON ADNI LR IMAGE SR.

Methods NIQEstd ↓ BRISQUEstd ↓

w/o Lmper 5.01±0.21 51.54±3.22
w/ Lmper 4.25±0.15∗ 44.67±3.21∗

D(RA) 4.87±0.23 50.58±4.44
D(Attention U-Net) 4.25±0.15∗ 44.67±3.21∗

Best results are in bold. Results with ‘*’ indicate that the key
component shows significant improvement (t-test p < 0.05).

quantitative evaluation and perceptual quality assessments.
This indicates that our proposed framework is a reliable solu-
tion for restoring outdated MRI images and has the potential
to enhance clinical MR images. The proposed approach has
wide applicability to various medical imaging tasks and can
assist medical professionals in obtaining more accurate and
detailed diagnostic information from 1.5T MR brain images.
Therefore, our work has noteworthy contributions to the field
of medical imaging and could have a positive impact on
patient care.
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