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Abstract1

Exome-sequencing association studies have successfully linked rare protein-coding variation to2

risk of thousands of diseases. However, the relationship between rare deleterious compound3

heterozygous (CH) variation and their phenotypic impact has not been fully investigated. Here,4

we leverage advances in statistical phasing to accurately phase rare variants (MAF ∼ 0.001%)5

in exome sequencing data from 175,587 UK Biobank (UKBB) participants, which we then6

systematically annotate to identify putatively deleterious CH coding variation. We show that7

6.5% of individuals carry such damaging variants in the CH state, with 90% of variants occurring8

at MAF < 0.34%. Using a logistic mixed model framework, systematically accounting for9

relatedness, polygenic risk, nearby common variants, and rare variant burden, we investigate10

recessive effects in common complex diseases. We find six exome-wide significant (𝑃 <11

1.68 × 10−7) and 17 nominally significant (𝑃 < 5.25 × 10−5) gene-trait associations. Among12

these, only four would have been identified without accounting for CH variation in the gene. We13

further incorporate age-at-diagnosis information from primary care electronic health records,14

to show that genetic phase influences lifetime risk of disease across 20 gene-trait combinations15

(FDR < 5%). Using a permutation approach, we find evidence for genetic phase contributing to16

disease susceptibility for a collection of gene-trait pairs, including FLG-asthma (𝑃 = 0.00205)17

and USH2A-visual impairment (𝑃 = 0.0084). Taken together, we demonstrate the utility of18

phasing large-scale genetic sequencing cohorts for robust identification of the phenome-wide19

consequences of compound heterozygosity.20

Main21

Thousands of independent genetic variants have been robustly associated with common, com-22

plex human diseases, leading to important advancements in therapeutic development1. Naturally23
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occurring variants that disrupt protein-coding sequences are of interest in the context of drug24

discovery as they modulate potential biological targets with measurable effects on human phys-25

iology2,3. Thus, individuals who carry loss-of-function (LoF) variants on both the maternal and26

paternal copy of a gene, are in principle ‘experiments of nature’ and their identification can help27

to determine causality between gene function and phenotype4–6.28

Coding variants in a gene can either be homozygous, when both gene copies harbor the same29

variant, or CH when both copies harbor different variants, usually at distinct genetic locations30

within the same gene locus. Alternatively, when two variants are located on a single gene31

copy, they are said to be ‘in cis’. Although both copies of a gene are disrupted in two-32

hit (CH or homozygous) carriers, analyses of the phenotypic impact of coding variation have33

typically ignored genetic phase information, that is, the separation or ‘phasing’ of an individual’s34

genome into maternally and paternally derived alleles7,8. Large-scale studies of bi-allelic35

damaging variation have generally been restricted to homozygotes in populations with excess36

homozygosity, such as Icelanders9, Finns10,11, and consanguineous populations12. In contrast,37

CH are expected to be more common in outbred populations, but are largely under-studied38

outside of rare disorders13–17.39

Various methods exist to infer the genetic phase of two variants. ‘Phasing by transmission’ em-40

ploys family member genotyping and Mendelian inheritance principles18, while ‘read-backed41

phasing’ utilizes physical relationships among variants within sequencing reads19. In large-scale42

biobanks, extensively genotyping family members is impractical, and short-read sequencing43

technologies only allow read-backed phasing for variants in close proximity. Therefore, ‘sta-44

tistical phasing’, which models the generative process of newly arising genetic data subject to45

recombination and mutation18,20–23, is typically used to phase haplotypes in genetic biobank46

data. Obtaining high-quality statistically phased genetic data requires large sample sizes, (105-47
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106 individuals), and tends to require large reference panels21. Furthermore, statistical phasing48

is more error prone for rare variants, which are precisely the collection of variants that we49

would like to investigate as they are a priori more likely to be deleterious variants of large effect50

under purifying selection. This difficulty in the accurate statistical phasing of rare variation has51

historically deterred the analysis of CH variants in biobanks. However, recent advancements52

in statistical phasing24, achieved by combining common variation across genotyping arrays and53

exome sequencing to create haplotype ‘scaffolds’22, enables accurate phasing of rare variants.54

By using this new accurate phase information which extends down into rare allele frequencies,55

we can identify damaging CH variants to expand the pool of identifiable two-hit carriers and56

screen for phenotypic consequences.57

We describe and apply a systematic analytical approach to test for autosomal bi-allelic effects,58

gene-by-gene, across 311 traits in the UKBB 200k exome sequencing (ES) release, combining59

both CH and homozygous variation. We iteratively refine the candidate associations by adjusting60

for polygenic background, nearby common variant risk, and rare variant burden within the61

analyzed gene. Our approach identifies both known and novel bi-allelic-trait associations,62

providing important insights into the phenotypic impact of gene knockout in humans.63

Results64

Accurate phase inference and validation using parent-offspring trios and65

short-read sequences66

We identified 13,377,336 high-quality variants in 176,935 individuals exome sequenced in the67

UKBB (Methods). To identify variants co-occurring on the same haplotype (in cis) or on68

opposite haplotypes (in trans) gene-by-gene, we jointly phased ES and genotype array data in69

the UKBB using SHAPEIT525 (Methods) following an investigation into the performance of70

current phasing software (Supplementary Table 4). Rare variants (MAF < 0.001) are assigned71
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a posterior probability (PP) of true haplotype assignment, known as the phasing confidence72

score. Confidence in our ability to accurately statistically phase variants decreases with MAF73

(Supplementary Fig. 5). However, we a priori expect a disproportionate recessive damaging74

signal to reside in CH variants with at least one rare variant, and as a result, choosing a PP cutoff75

represents a trade-off in the signal to noise ratio. Following phasing, we restrict to 176,58776

individuals of genetically-ascertained non-Finnish European (NFE) ancestry (Methods).77

To assess statistical phasing quality, we benchmarked against phasing determined with parent-78

offspring trio data and read-backed phasing. We quantified phasing quality before and after79

filtering by PP ≥ 0.9 in 96 parent-offspring trios by calculating switch error rates (SER),80

estimated using Mendelian transmission, across 2,044,234 unique variants stratified by minor81

allele count (MAC) (Fig. 1a, Supplementary Fig. 6, Supplementary Tables 5-6). Across the82

96 children, 93.1% of protein coding genes contained variants that were phased without switch83

errors (Supplementary Table 7). SERs among singletons (MAC=1) and variants with 2 ≤ MAC84

≤ 5 were 12.1% (95% CI = 8.42 − 17.2) and 0.27% (0.13–0.53), respectively (Fig. 1a).85

Although calculation of SER using trios is the gold-standard approach for phasing quality86

estimation21, it is limited by the number of parent-offspring trios available. For this reason, we87

also performed read-backed phasing of 62,762 unique pairs of variants using UKBB short read88

sequences on chromosomes 20-22 in 176,586 NFE individuals using WhatsHap26 (Methods).89

While read-backed phasing only permits ascertainment of genetic phase among pairs of variants90

spanning one or a few overlapping short read sequences (with typical lengths of 150-300 bp),91

read-backed phasing accuracy is independent of allele frequency, and therefore represents an92

orthogonal approach for evaluating the quality of statistically phased variation. Consistent93

with trio-SER, we observed increasing agreement between pairs of statistically and read-backed94

phased variants with increasing MAC (Supplementary Fig. 7, Supplementary Table 8). Filtering95
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to phased variants with PP ≥ 0.9, singletons and variants with 2 ≤ MAC ≤ 5, agreement between96

read-backed phasing and statistical phasing was 85.1% (95% CI = 83.7 − 86.3%) and 99.1%97

(95% CI = 98.98 − 99.16%) respectively (Supplementary Table 8, Supplementary Fig. 8).98

Taken together, our benchmarking suggests that statistical phasing of the UKBB dataset is of99

high quality for rare to ultra-rare variants, increasing our confidence in the identification of100

damaging CH variation. Given our observations of well-calibrated PP, and the distribution of101

phasing confidence binned by MAC, we selected the empirical cutoff of PP ≥ 0.9 to retain102

8,616,236 variants (43% of which are singletons) for downstream characterization and testing103

(Supplementary Fig. 5).104

Identification and examination of CH variation in the UKBB105

To interrogate the functional role of mono- and bi-allelic variation in the population, we anno-106

tated 8,616,236 variants with PP ≥ 0.9 and MAF ≤ 5% across 17,998 autosomal protein-coding107

genes. We enriched our search for variants with putatively large effect sizes by restricting analyses108

to two categories of predicted damaging variation: first, we annotated 289,981 high-confidence109

protein truncating variants, including stop-gain, essential splice and frame-shift variants iden-110

tified as high-confidence by Loss-Of-Function Transcript Effect Estimator (LOFTEE)27, which111

we refer to as ‘putative loss-of-function (pLoF) variants’. Second, we annotated 444,804 mis-112

sense variants classified as damaging by both REVEL score ≥ 0.6 and Phred scaled Combined113

Annotation Dependent Depletion (CADD) score ≥ 20, or LOFTEE low confidence (LC) protein114

truncating variants; we refer to these variants collectively as ‘damaging missense/protein alter-115

ing’ (Supplementary Fig. 9, Supplementary Table 9). For each individual, we then determined116

the set of genes predicted to be affected by pLoFs+damaging missense/protein-altering variants117

in a CH, homozygous or in cis state on the same haplotype.118

As we a priori expected that essential genes would be less permissible to bi-allelic damaging vari-119
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Fig. 1: CH variants composed of at least one ultra-rare variant (MAC ≤ 10) can be robustly
identified in large scale biobanks. a) Trio SER depicted on 𝑦-axis as a function of MAC bin
(𝑥-axis) for phased variants with MAF ≤ 5%, stratified by phasing confidence score PP ≥ 0.5
or PP ≥ 0.9. b) Counts of samples harboring different classes of variation with at least two
variants in UKBB. Each set of three bars depicts the number of individuals with at least one
CH variant, homozygous variant, or multi-hit (cis) variant, respectively. Here, we define a
CH pLoF+damaging missense variant as any combination of pLoF and/or damaging missense
variation on opposite haplotypes. A qualifying carrier for each bar occurs according to the
configuration displayed above the bars, and is grouped by variant consequence according to the
color legend. c-d) Number of CH or homozygous carriers per gene. e) 1 - cumulative fraction
(𝑦-axis) of homozygous (dashed line) and CH carriers as a function of lowest MAF (𝑥-axis)
in bi-allelic variant pairs for which both variants phased at PP ≥ 0.9 (solid line), stratified by
variant consequence according to the color key.
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ants when compared to non-essential genes, we investigated tolerance towards predicted bi-allelic120

pLoF and pLoF+damaging missense/protein-altering variants across the genome. As some genes121

carry bi-allelic variants more often than others (owed to a variety of factors such as gene length122

and baseline mutation frequency28), we fit counts of the number of individuals carrying bi-allelic123

variants per gene using a Poisson regression model accounting for variation in gene length124

and mutation rate (Methods, Supplementary Tables 10-11). Both pLoF and pLoF+damaging125

missense/protein-altering bi-allelic variants (homozygous and CH) were significantly depleted126

in five of the six analyzed essential gene-sets (𝑃 < 0.05
6 ≈ 0.0083) (Supplementary Fig. 12).127

Conversely, across three non-essential gene-sets, bi-allelic pLoFs+damaging missense/protein-128

altering variants were enriched among LoF tolerant genes27 (𝑃 ≤ 0.05
3 ≈ 0.0167). We found129

that the degree and direction of effects were consistent across CH, homozygous bi-allelic, and130

heterozygous variants (Supplementary Fig. 12).131

In founder9 and bottle-necked10 populations, some alleles are enriched to high frequency by132

chance, resulting in better powered association studies for the subset of variant alleles that are133

inherited from the parental population6 at higher frequency. To explore the diversity of bi-allelic134

variation in UKBB, a largely outbred population, we enumerated two-hit carriers across 176,587135

individuals. We observed complete bi-allelic ‘knockout’ of 1,174 unique genes strictly owed136

to pLoF variants, identifying 1,431 (0.8%) CH and 8,582 (4.8%) homozygous individuals with137

bi-allelic pLoF variants in at least one gene (Fig. 1b). Across genes, 307 (26.1%) CH and 560138

(47.7%) homozygous ‘knockouts’ were observed only in a single individual (Fig. 1c-d). We139

reasoned that inclusion of damaging missense/protein-altering variants in addition to pLoFs,140

would expand the number of identifiable damaging bi-allelic variants compared to assessing the141

two categories independently. Across 3,288 unique genes, we observed 11,491 (6.5%) CH and142

17,863 (10.1%) homozygous carriers of pLoF+damaging missense/protein-altering variants. Of143

these, 1,112 (0.6%) CH and 436 (0.2%) homozygotes were carriers of bi-allelic pLoF+damaging144

8
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missense/protein-altering variants in genes linked to traits with autosomal recessive mode of145

inheritance in Online Mendelian Inheritance in Man (OMIM)29. We generally observed a higher146

prevalence of carriers with variants in cis compared to CH, with over a third of individuals147

(64,555, 36.6%) carrying ≥2 pLoF+damaging missense/protein-altering variants on a single148

haplotype (Fig. 1b).149

To better understand the evolutionary dynamics giving rise to pathogenic variants in trans, we150

examined the spectrum of allele frequencies of the constituent variants among our confidently151

called damaging CHs variants. CHs variants tend to comprise of two variants where one resides152

on a common haplotype, while the other on a rare haplotype, with a median difference in MAC153

of 1,181 (Supplementary Fig. 13-14). Approximately 90% of CH-constituent variants have154

MAF ≤ 0.0038, compared to homozygotes in which 90% are detected at MAF ≥ 0.0022 (Fig.155

1d), suggesting that identifying deleterious bi-allelic CH variants requires phasing of rare alleles156

(Supplementary Fig. 15-16).157

Multiple studies have assessed the prospects of ascertaining bi-allelic LoF variation at larger158

sample sizes in consanguineous, bottle-necked, and outbred populations6,12. To investigate em-159

pirically how the number of unique genes with bi-allelic variants scales in an outbred population,160

we performed down-sampling of UKBB participants. Consistent with previous literature, ad-161

ditional CH and homozygous variants can be inferred by considering both pLoF and damaging162

missense/protein-altering variation at even larger sample sizes (Supplementary Fig. 19).163

Systematic evaluation of bi-allelic effects on common disease164

We performed a series of association analyses using Scalable and Accurate Implementation165

of GEneralized mixed model (SAIGE)30, a generalized mixed model that uses a saddle-point166

approximation to provide accurate 𝑃-values for traits with extreme case-control ratio imbalance.167

This allowed us to investigate the effects of bi-allelic variants in 176,587 individuals across168

9
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311 phenotypes with varying population prevalence identified from primary and secondary care169

electronic health records (EHRs) (Methods). We restricted to 952 protein-coding genes with170

at least 5 individuals carrying bi-allelic variants in the same gene, which allowed us to detect171

odds ratio (OR) ≥ 10, for traits at approximately 2% population prevalence, with 80% power172

at exome-wide significance (Bonferroni 𝑃 < 0.05
952×311 ≈ 1.68 × 10−7) (Methods, Supplementary173

Fig. 20). Using simulations, we confirmed our ability to detect recessive signals of association174

with well-calibrated false positive rates across a range of effect sizes (Methods, Supplementary175

Fig. 21a-c). We tested a total of 299,854 gene-trait combinations, and identified 30 gene-176

trait associations at nominal significance (𝑃 < 0.05
952 ≈ 5.25 × 10−5), of which seven remained177

significant following stringent Bonferroni correction (𝑃 < 1.68 × 10−7) (Supplementary Table178

14, Supplementary Fig. 10).179

A recessive gene-trait association may be driven by a variety of genetic factors unrelated to CH180

or homozygous status, such as polygenic background or through genetic tagging of a nearby181

common variant association. To mitigate these factors, we created a pipeline to condition on182

external genetic effects within the gene-trait regression model (Methods). First, we trained183

polygenic risk scores (PRS) for 111 significantly heritable traits (ℎ2
snp 𝑃 < 0.05 and 𝑛eff ≥ 5000)184

using LDPred231 (Methods, Supplementary Table 12), a tool that allows PRS derivation based185

on summary statistics and linkage information. To control for polygenic risk and potentially186

boost power for association32, we included the off-chromosome PRS as an additional covariate187

(Supplementary Table 14). While the resulting P-values were altered by less than a single order of188

magnitude with the incorporation of PRS (Supplementary Fig. 11), controlling for PRS resulted189

in the abrogation of four nominally significant (𝑃 < 5.25 × 10−5) gene-trait associations. To190

capture the effects of any causal common variants in linkage disequilibrium (LD) with the pLoF191

or damaging missense/protein-altering variants constituting the CH or homozygous variant, we192

further conditioned on nearby (within 1 mega base pairs (Mb) of the associated gene) common193

10
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(MAF > 1%) variant association signals (Methods, Supplementary Table 13), which abrogated194

(𝑃 > 0.05) the signal of two gene-trait pairs.195

Lastly, we investigated whether any of the identified, putative recessive, associations could196

be accounted for by assuming an additive genetic architecture. To do this, we counted the197

number of gene copies affected by pLoF+damaging missense/protein altering variants in each198

individual. For each putative recessive association, we re-ran the analysis while simultaneously199

conditioning on the number of affected haplotypes. We also employed a complementary variant-200

level approach and repeated the analysis, conditioned on all low-frequency (MAC > 10, MAF <201

5%) and ultra-rare (MAC ≤ 10) damaging variants (pLoF+damaging missense/protein-altering),202

including those that constitute the bi-allelic variant in question. Conditioning on the additive203

effects abrogated the signal of a single nominally significant gene-trait pair (𝑃 < 5.25 × 10−5)204

(Supplementary Table 14).205

Together, these analyses refined the list of putative gene-trait associations to 23 nominally206

significant associations out of which six are significant after correcting for multiple testing207

(conservative Bonferroni 𝑃 < 1.68 × 10−7) (Fig. 2a-2b, Supplementary Table 14) comprising208

17 unique genes and 22 traits. Notably, only six of the 23 associations remained nominally209

significant (𝑃 < 5.25 × 10−5) when restricted to only CH variant-carriers, and just four of210

23 remained nominally significant when testing homozygous variants alone, underscoring the211

power of jointly analyzing these variant sets.212

We observed recessive gene-trait relationships across multiple organ systems (nervous, respira-213

tory, circulatory, and genitourinary among others). All six associations that met the significance214

threshold after Bonferroni correction (𝑃 < 1.68 × 10−7) have previously been reported in the215

literature. For example, individuals with bi-allelic variants in MUTYH, a gene involved in ox-216

idative DNA-damage repair33, are at significantly increased risk of developing colorectal cancer217

11
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(log10(OR) = 4.7 (95% CI = 3.38−6.01), 𝑃 = 2.2×10−12). We also find that bi-allelic variants218

in FLG increase risk of both asthma34 (log10(OR) = 0.33 (0.26 − 0.39), 𝑃 = 2.09 × 10−22) and219

dermatitis35 (log10(OR) = 0.28 (0.22 − 0.33), 𝑃 = 2.65 × 10−20). In addition, we observe that220

bi-allelic variants in GJB2 increase the risk of hearing loss29 (log10(OR) = 1.66 (1.05 − 2.26),221

𝑃 = 9.93 × 10−8). At nominal significance (𝑃 < 5.25 × 10−5), 10 of 23 associations have previ-222

ously been reported. For example, bi-allelic variants in USH2A, linked to retina homeostasis36,223

increase risk of visual impairment (log10(OR) = 5.77 (2.93−8.62), 𝑃 = 3.5×10−5). For the re-224

maining unreported hits, we observe gene-trait associations with plausible mechanistic insights.225

For example, we observe that putatively damaging bi-allelic variation in FAAH, a fatty acid amide226

hydrolase37, are associated with increased risk of dementia (log10(OR) = 22.92 (12.35−33.48),227

𝑃 = 1.06×10−5), consequently offering evidence supporting the hypothesis that lipid metabolism228

dysfunction is central to dementia pathogenesis38.229

Boosting power in gene-level regression models through rare variant hap-230

lotype collapsing231

Complementary to the recessive models described above, rare variant burden testing, which232

involves the aggregation of rare variants within a gene, has proven to be a robust method to233

collectively assess the phenotypic impact of rare variation across individuals. Rare variants are234

aggregated due to their low allele frequency leading to lack of statistical power for detection235

of single-marker associations. However, these frameworks generally ignore the genetic phase236

within each individual, and therefore do not differentiate between scenarios in which multi-237

ple damaging variants reside on the same (in cis) or opposite (in trans) haplotypes, despite238

these two forms having potentially distinct functional and phenotypic effects. We conducted239

additive genome-wide association analyses by testing for associations between the the num-240

ber of disrupted gene copies (across 16,363 protein-coding genes with at least 10 haplotypes241
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carrying pLoF+damaging missense/protein altering variation) in an individual and case status242

(across 311 phenotypes) (Methods, Fig. 2c-2d). After adjusting for polygenic contribution,243

we found 38 nominally significant gene-trait associations (Nominal 𝑃 < 0.05
16363 ≈ 3.05 × 10−6),244

among which 12 were significant associations after multiple-testing correction (Bonferroni245

𝑃 < 0.05
16363×311 ≈ 9.8 × 10−9, Supplementary Table 15). Among the significant hits are previ-246

ously reported associations, including association between the number of putatively damaged247

copies of BRCA2 (𝑃 = 6.16 × 10−15) and CHEK2 (𝑃 = 3.34 × 10−15), and breast cancer.248

Permutation testing to establish the impact of genetic phase on disease risk249

It is commonly accepted that compound heterozygosity drives recessive disease risk by disruption250

of both copies of an implicated gene13–15. However, this notion has not been well studied in a251

large-scale population cohort. To assess the degree to which compound heterozygosity, rather252

than co-occurring variants on the same haplotype, drives disease risk, we permuted the genetic253

phase of observed pLoF+damaging missense/protein-altering variants within a gene to generate254

an empirical distribution of 𝑡-statistics corresponding to disease-association strength in the255

absence of phase information (Fig. 3a-b). To ensure a sufficiently large sampling distribution,256

we restricted our analysis to 5 nominally significant (𝑃 < 5.25 × 10−5) gene-trait combinations257

with at least ten individuals that are either CH variant-carriers or with two or more pLoF or258

damaging missense/protein-altering variants on the same haplotype (Methods).259

We found evidence for significant (Bonferroni 𝑃 = 0.05/5 = 0.01) compound-heterozygous260

specific effects in three of the five analyzed gene-trait combinations: CH variants in FLG are261

associated with increased risk of both asthma (𝑃 = 0.00205) and dermatitis (𝑃 = 0.0084), while262

CH variants in USH2A are associated with increased risk of visual impairment and blindness (𝑃 =263

0.00286) (Fig. 3c). We identified an additional gene-trait association at nominal significance264

(𝑃 < 0.05), namely CH variants in SEPTIN10 associated with hyperplasia of prostate (𝑃 =265

13
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Fig. 2: Conditional recessive and additive modeling of gene copy disruption in 311 pheno-
types across 176,587 participants. a) Recessive Manhattan plot depicting log10-transformed
gene-trait association P-values against chromosomal location. Associations are colored red or
orange based on whether they are Bonferroni (𝑃 < 1.68× 10−7) or nominally (𝑃 < 5.25× 10−5)
significant. Transparent coloring represents the resulting P-value when conditioning only on
PRS, whereas solid coloring with black outline represents the P-value derived after conditioning
on off-chromosome PRS, nearby (500 kb) common variant association signal, and rare variants
within the gene when applicable (methods). The Bonferroni and nominal significance thresholds
are also displayed as orange and red dashed lines respectively. A gene may appear multiple
times if it is associated with more than one phenotype. A qualifying example of the recessive
inheritance pattern is shown in the top right: disruption of both gene copies result in an effect
on the phenotype (y). b) QQ-plot for genes with bi-allelic damaging variants after conditioning
on off chromosome PRS. The shaded area depicts the 95%CI under the null. Gene-trait associa-
tions passing Bonferroni significance are labeled accordingly. c-d) Additive Manhattan plot and
corresponding QQ-plot for genes with mono and bi-allelic damaging variants associated with at
least one phenotype after conditioning on off chromosome PRS when applicable (methods). No
additional conditioning was performed in this analysis. Gene-trait associations are colored red
and orange based on whether they are respectively Bonferroni (𝑃 < 9.8 × 10−9) or nominally
(𝑃 < 3.05 × 10−6) significant. The additive inheritance model is depicted in the top right: each
affected haplotype result in a incremental effect on the phenotype (y).
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Fig. 3: In-silico permutation of genetic phase provides evidence for CH-specific effects. a)
Overview of the permutation pipeline. To be sufficiently powered to detect effects, we considered
five significant (𝑃 < 0.01) gene-trait pairs from the genome-wide analysis that have at least
ten individuals harboring pLoF or damaging missense/protein-altering variants on the same
haplotypes or CH carriers. Then, we shuffled CH trans and cis labels across samples and re-ran
the association analysis, resulting in a null distribution of permuted 𝑡-statistics corresponding to
the association strength in the absence of phase information. We derive the one-tailed empirical
𝑃-value by comparing the observed 𝑡-statistics with the empirical null distribution. b) The
resulting distributions of permuted (white and black box plots) and observed 𝑡-statistic (red
dot) for each gene-trait and the resulting empirical 𝑃-value. 𝑃-values shown in bold indicate
Bonferroni significance (𝑃 < 0.05/05 = 0.01). Box and whisker plots display the quartiles of
the empirical null distribution.

0.011). Of these, FLG-asthma, FLG-dermatitis, and USH2A-visual impairment associations266

have previously been linked to disease in the CH state39–41. These observations demonstrate,267

on a large scale, the effect of compound heterozygosity in driving disease susceptibility, and by268

extension, how appropriately integrating genetic phase can lead to increased power to discover269

gene-trait associations.270
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Non-additive effects of compound heterozygous variants elevate lifetime risk271

of disease272

Bi-allelic effects may be associated with earlier age at onset of disease, which is also often cor-273

related with disease severity. We therefore explored whether CH and homozygous variants had274

longitudinal effects by evaluating age-at-diagnosis of 278 phenotypes with Cox proportional-275

hazards models. To identify effects owed to disruption of both gene copies, as opposed to276

haploinsufficiency, we compared bi-allelic variant carriers against a reference group comprising277

carriers of a single heterozygous variant for each gene. We tested 267,400 gene-trait combina-278

tions with at least five bi-allelic variants (homozygotes or CH) and 100 heterozygotes (Fig. 4a).279

After adjustment for polygenic risk via off-chromosome PRS, we identified seven gene-trait asso-280

ciations with significantly earlier age-at-diagnosis in bi-allelic variants compared to heterozygous281

carriers of pLoF+damaging missense/protein-altering variants (𝑃 < 0.05
952×278 ≈ 1.89× 10−7, Fig.282

4b-c, Supplementary Tables 16-17). Beyond these seven associations, we also identified 13283

additional gene-trait relationships at a false discovery rate (FDR)< 5% (4b, Supplementary284

Fig. 22). For six out of the seven Bonferroni significant gene-trait combinations, we found no285

evidence (𝑃 > 0.05/7 ≈ 0.00833) that carrying a single heterozygous variant altered lifetime286

disease risk compared to carrying two copies of the reference allele.287

We further sought to disentangle the effects of homozygous and CH variants on lifetime disease288

risk from that attributable to multiple damaging rare variant effects on a single haplotype.289

To do this, we analyzed such effects in the three gene-trait pairs with both (1) at least five290

CH and/or homozygous variants and (2) at least five individuals harboring ≥2 variants on the291

same haplotype (Fig. 4d, Supplementary Table 18). Compared to individuals with a single292

disrupted haplotype, both homozygous and CH carriers of pLoF+damaging missense/protein-293

altering variants in ATP2C2 were at increased lifetime risk of developing chronic obstructive294

pulmonary disease (COPD) (homozygote HR = 6.65 (95% CI = 4.5–8.8); 𝑃 = 0.084, CH295
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HR = 8.98 (7.79–10.17); 𝑃 = 0.00028). Similarly, both homozygous and CH variants of296

FLG were at increased lifetime risk of asthma (homozygote HR = 1.97 (1.1–2.84); 𝑃 = 0.126,297

CH HR = 2.44 (1.61 − 3.26); 𝑃 = 0.033) and dermatitis (homozygote HR = 1.7 (0.88–2.5);298

𝑃 = 0.20, CH HR = 1.16 (0.38–1.94); 𝑃 = 0.7) (Fig. 4c). For these gene-trait relationships,299

information encoded in genetic phase influences the risk of disease, with mono-allelic disruption300

leading to virtually unaltered risk while bi-allelic disruption may result in dramatic increase in301

lifetime risk of disease.302
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Fig. 4 (previous page): Age-at-diagnosis modeling reveals novel recessive effects driven
by damaging bi-allelic variants. a) Flow diagram of our approach. To investigate whether
homozygous and/or CH effects are associated with a difference in lifetime risk of disease
development, we perform Cox proportional-hazards modeling for gene-trait combinations in
which ≥ 5 samples are two-hit carriers (CH or homozygotes) and ≥ 100 samples that are
heterozygotes. Among Bonferroni significant associations (𝑃 < 1.89 × 10−7), we filter to
gene-trait pairs for which at least five samples carry multiple variants disrupting the same
haplotype, and test for an association between CH or homozygous carrier status and lifetime
disease risk (corresponding to HRs>1). b) HRs when comparing CH and homozygous status
versus heterozygous carrier status. Throughout, we display hazard ratios and corresponding
𝑃-values with (circles) and without (triangles) taking the polygenic contribution into account by
conditioning on off-chromosome PRSs for heritable traits that pass our quality control cutoffs.
𝑃-values following inclusion of polygenic contribution to disease status are provided where
PRS are predictive. HRs for gene-traits with two or more individuals with multiple cis variants
on the same haplotype are displayed in pink. Associations that pass Bonferroni significance
(𝑃 < 1.89 × 10−7) and FDRs < 5% cutoff are illustrated in the top and bottom respectively.
c) HRs when comparing bi-allelic status versus heterozygous carrier status for gene-trait pairs
with ≥ 3 individuals harboring variants disrupting the same haplotype, allowing ascertainment
of confidence intervals. c) HRs when comparing wildtype, heterozygous, CH and homozygous
status against individuals that harbor two damaging variants on the same haplotype. 95% CIs
are shown in the figure. Abbreviations: CC (colorectal cancer), COPD (chronic obstructive
pulmonary disease).

Biological insights into common complex disorders implicated by CH vari-303

ation304

Six of the seven gene-trait combinations for which we identify Bonferroni significant associations305

with lifetime disease risk are also significant in our cross-sectional recessive association analysis306

(Supplementary table 19). All six have previously been reported in the literature, albeit without307

age-at-onset effects. These include MUTYH and colorectal cancer, GJB2 and hearing loss, and308

a pleiotropic association of FLG with both dermatitis and asthma. ATP2C2-COPD is a novel309

candidate association with plausible mechanistic effects.310

MUTYH-associated polyposis is considered a highly penetrant Mendelian cancer syndrome311

leading to adenomatous polyposis42. We link bi-allelic variants of MUTYH to elevated risk312
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of benign neoplasms of the colon, with bi-allelic carriers having a median age of diagnosis at313

age 53.7 years (interquartile range (IQR) = 47.9 - 56.3 years), as compared to heterozygotes314

(median age-at-diagnosis = 61.7 (56.2 - 66.7) years) and wildtypes (61.1 (54.6 - 66.5) years); as315

well as malignant neoplasms of the colon (median age at diagnosis for bi-allelic carriers = 52.1316

(IQR = 48.6 - 53.4) years, heterozygotes = 63.2 (57.7 - 67.0) years, and wildtypes = 62.9 (57.2317

- 67.9) years) (Fig. 5a-b). Because benign growths can be precursors to malignant neoplasms,318

and since risk of both disorders was elevated in MUTYH bi-allelic carriers (benign HR = 18319

(95% CI = 17.72–18.9); 𝑃 = 4.7 × 10−22, malignant HR = 31.4 (95% CI = 30.57–32.3);320

𝑃 = 5.2×10−15), we examined the co-occurrence of variants across colorectal cancer outcomes.321

The same set of CH and homozygous variants are involved in the pathophysiology of benign322

and malignant neoplasms of the colon, suggesting that MUTYH-variant composition alone in323

insufficient to explain the dichotomy between malignant and benign polyposis (Supplementary324

Fig. 17).325

ATP2C2, a calcium-transporting ATPase linked to surfactant protein D levels43 (a causal risk326

factor for COPD), is associated with COPD in our gene-trait analyses (HR = 8.3 (95% CI =327

7.54–9.05); 𝑃 = 3.56×10−8). As we did not observe any nearby (1 Mb upstream or downstream)328

common variants in ATP2C2 associated with cross-sectional COPD (all 𝑃 > 5 × 10−6), the329

association between bi-allelic variants of ATP2C2 and COPD is potentially driven by the unique330

configurations of damaging-missense (𝑛 = 7) and pLoF (𝑛 = 1) variants that primarily reside in331

functional protein domains (Fig. 5e, Supplementary Fig. 18, Supplementary Table 20). 7 of 8332

(87.5%) identified bi-allelic carriers of ATP2C2 (6 CH and 2 homozygous) were diagnosed with333

COPD (median age of diagnosis = 54.1 (IQR = 46.2 - 67.5) years) (Fig. 5c-d). In contrast, only334

6.9% of individuals harboring multiple pLoF+damaging missense/protein-altering variants on335

the same ATP2C2 haplotype were diagnosed with COPD, and at the same median age (60.8336

(53.7 - 67.9) years) as heterozygotes (58.0 (48.5 - 64.1) years) and wildtypes (59.2 (51.3 - 65.1)337
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years).338

FLG plays a pivotal role in the differentiation and maintenance of skin barriers34. FLG variants339

have been selectively associated with individuals with both asthma and atopic dermatitis, but not340

with those who have asthma without atopic dermatitis35. The exact nature of this relationship341

remains unclear. Our findings indicate that individuals carrying a single deleterious FLG allele342

face increased risk of dermatitis (𝑃 ≈ 7.2 × 10−5), but not asthma (𝑃 = 0.018), when compared343

to wildtypes. In contrast, individuals carrying two variant alleles have an increased risk of344

developing both dermatitis (𝑃 = 5.27 × 10−15) and asthma (𝑃 = 4.47 × 10−27), suggesting a345

recessive mode of inheritance for FLG-related asthma and a semi-dominant inheritance pattern346

for FLG-related dermatitis29. This implies that the loss of a single FLG copy can result in347

dermatitis, while the loss of both copies can lead to asthma. Together, this may help clarify why348

FLG-related asthma is seldom observed without the presence of FLG-related dermatitis.349
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Fig. 5 (previous page): Trajectories of haplotype disruption in common disease. a-b)
Kaplan-Meier survival curves for CH (red), homozygous (orange), heterozygous carriers (blue),
single disruption of haplotypes (pink) owed to pLoF or damaging missense/protein-altering
mutations. Wildtypes and bi-allelic variants (CH or homozygous) are shown with green and
black lines respectively. Both CH and homozygous MUTYH-variant carriers are at elevated
lifetime risk of developing benign neoplasm of the colon compared to heterozygous carriers and
wildtypes. c-d) Kaplan-Meier survival curves for ATP2C2 mono and bi-allelic variant carriers.
Carriers of CH variants develop COPD more early compared to heterozygotes carriers and
wildtypes. Moreover, individuals who harbor a single putatively disrupted haplotype owed to
≥2 damaging variants develop COPD at the same frequency as heterozygotes and wildtypes. e)
Gene plots for ATP2C2, displaying protein coding variants for samples that carry ≥ 2 pLoF or
damaging missense/protein-altering variants stratified by exon or intron. CH variants, multiple
variants in cis, and homozygous variants are highlighted by lines joining the positions of co-
occurring variants in a sample. Lines are colored by number of cases for the shown variant
configurations, with gray lines indicating no observed samples are cases; orange lines indicating
some some samples are cases; red lines indicate that all observed samples are cases. Variants
are labeled by position (GRCh38) and according to inferred consequence (missense, stop gain,
splice acceptor/donor). Protein domains are highlighted accordingly44.

Discussion350

In this large biobank-scale effort, we systematically interrogate the role of bi-allelic coding351

variants in genes conferring risk for common complex diseases. In the cross-sectional and352

longitudinal analysis we identify 20 nominally significant (𝑃 < 5.25 × 10−5) and 23 significant353

(FDR < 5%) gene-trait associations, respectively. Together, we find 36 unique gene-trait354

associations, that both replicate established relationships and identify previously unreported355

gene-trait associations for a range of binary phenotypes across the common disease spectrum.356

We show that the 90% of deleterious CH variants occur at MAF < 0.34%. Given that phasing357

quality is directly correlated with allele frequency, it is essential to filter to the set of variants358

phased at high confidence to eliminate false positive identifications. Here, we quantified the359

increase in phasing quality using Mendelian inheritance logic in parent-offspring relationships360

and compared pairs of statistically phased variants to read-backed phased variants using short361
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read sequences. While read-backed phasing is computationally expensive and restricted to362

variants in close proximity, we demonstrate that it can be employed to evaluate statistical363

phasing quality in cohorts that lack trio relationships, with error rates comparable to that of trio364

switch error rates.365

CH disease associations have mainly been explored in rare disorders13–17, but are seldom366

investigated in the study of common disease. This is due to the low prevalence of variants in the367

CH state and the genetic architecture of common complex traits, which are typically influenced by368

environmental factors and numerous loci with low to modest contribution to risk. In this study, we369

address these challenges and offer multiple lines of evidence to demonstrate the role of CH effects370

in driving disease risk for common traits. We employed two complementary analyses to detect371

gene-trait associations: a genome-wide logistic association analysis and a time-to-event model.372

Through these methods, we identified associations in which variants in the homozygous or CH373

state resulted in increased disease risk compared to wildtypes and individuals carrying multiple374

pathogenic variants on the same haplotype. Our findings show that for certain gene-trait pairs,375

individuals with a single disrupted gene copy have a risk of developing disease that is virtually376

indistinguishable from that of wildtypes, suggesting non-additive gene dosage effects. Further,377

by permuting the genetic phase, we find evidence that incorporation of confidently phased CH378

variants can boost power to detect recessive associations in common disease. Collectively, our379

results emphasize the importance of considering each individual’s specific genetic context when380

assessing their genetic risk in a clinical setting. Simply identifying the presence of multiple381

pathogenic variants in a gene, disregarding the phase, may not be sufficient to fully understand382

an individual’s risk profile.383

Many common complex traits have polygenic architectures, which should be accounted for when384

performing gene-trait association testing. The presence of bi-allelic variants in individuals with385
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such diseases might be coincidental and not causally related to the trait, which may instead386

be a result of a high polygenic risk. However, across the significant recessive genome-wide387

associations, we observed that inclusion of PRS as a covariate, affected the resulting association388

P-value by less than single order of magnitude for the binary traits we analyzed. While we389

were only able to account for the polygenic contribution to disease development for 111 diseases390

with significant common variant heritability in the UKBB, due to low case numbers, these391

observations suggest that incorporation of polygenic background has limited influence on the392

degree of association when evaluating ultra-rare variation across binary traits.393

We found that the majority of bi-allelic gene-disease associations are driven by variant com-394

binations containing at least one missense variant, which would have been excluded under a395

stricter high-confidence pLoF criterion. Although our less stringent inclusion threshold enabled396

us to identify a greater number of bi-allelic variants, it is likely that some damaging missense397

or protein-altering variants would incorrectly be predicted as damaging, or may exhibit gain-398

of-function rather than loss-of-function effects, consequently reducing the signal-to-noise ratio399

in our analyses. Even ‘knockouts’ by bona fide pLoF variants may only result in partial gene400

inactivation, and not necessarily complete gene knockdown. Additionally, pLoF variants may401

be ‘rescued’ and not lead to complete or even partial loss-of-function. While we show that402

including damaging missense/protein-altering variants to define bi-allelic variants can improve403

power for certain phenotypic associations, further manual curation and experimental validation404

will be required to demonstrate that these variants truly result in loss-of-function.405

The likelihood of damaging alleles occurring on the same haplotype is influenced by a com-406

plex interplay of factors, including population structure and balance between selection, drift,407

mutation, and recombination. We and others45 find that damaging CH variants occur less fre-408

quently than multiple damaging variants affecting the same haplotype, suggesting that in certain409
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circumstances, natural selection operates on a haplotype level. Once a LoF variant occurs and410

expands in the population, the affected haplotype has no selection against additional acquisition411

of damaging mutations. This has implications for association studies investigating CH effects412

by counting the number of damaging variants in a gene while attributing equal probability to413

each of affecting each haplotype8, as such frameworks may overestimate the frequency of CH414

events.415

‘Human knockouts’ have been extensively discussed in the context of therapeutic development.416

Examining both bi-allelic and mono-allelic carriers can help assess the safety of therapeutic in-417

terventions by analyzing how varying degrees of target modulation affect biological response3,6.418

We showcase several gene-trait relationships where the number of affected haplotypes influ-419

ences the lifetime risk of disease, potentially representing the manifestation of ‘adverse events’420

which are important endpoint in clinical trials. The absence of adverse events in mono-allelic421

carriers can potentially imply that partial pharmacological inhibition of a target may be a safe422

and effective approach. However, adverse effects observed in bi-allelic carriers of damaging423

variation within the same locus could indicate potential risks associated with complete target424

inhibition. A natural extension of this work could involve investigating mono and bi-allelic425

effects on quantitative outcomes, such as serum proteins. Changes in biomarkers (or other426

continuous outcomes) may reflect direct or indirect consequences of gene modulation and could427

serve as potential pharmacodynamic biomarkers commonly used to assess target engagement in428

clinical trials.429

This work showcases the value of statistical phasing of damaging rare variants, and that asso-430

ciation analyses that account for compound heterozygosity can be better-powered for gene-trait431

discovery. We show that this approach can be employed to discover well-established and novel432

non-additive and additive gene-trait relationships across a wide range of disease etiologies. From433
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a clinical perspective, we demonstrate the importance of interrogating the genetic phase when434

dealing with CH variants in traits with recessive mode of inheritance. This is an important step435

towards uncovering the phenome-wide consequences of bi-allelic disruption across the human436

genome.437

Code availability438

The code required to reproduce our analyses are publicly available at https://github.com/439

frhl/wes_ko_ukbb. Data produced in the present study are available upon reasonable request440

to the authors.441
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11. Lim, E. T., Würtz, P., Havulinna, A. S., et al. Distribution and Medical Impact of Loss-of-
Function Variants in the Finnish Founder Population. en. PLoS Genetics 10 (ed Cutler, D.)
e1004494 (July 2014).

12. Saleheen, D., Natarajan, P., Armean, I. M., et al. Human knockouts and phenotypic analysis
in a cohort with a high rate of consanguinity. en. Nature 544, 235–239 (Apr. 2017).

13. De Rosa, M., Fasano, C., Panariello, L., et al. Evidence for a recessive inheritance of
Turcot’s syndrome caused by compound heterozygous mutations within the PMS2 gene.
en. Oncogene 19, 1719–1723 (Mar. 2000).

28

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.29.23291992doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23291992
http://creativecommons.org/licenses/by/4.0/


14. Hague, S., Rogaeva, E., Hernandez, D., et al. Early-onset Parkinson’s disease caused by
a compound heterozygous DJ-1 mutation. en. Annals of Neurology 54, 271–274 (Aug.
2003).

15. Robinson, J. P., Johnson, V. L., Rogers, P. A., et al. Evidence for an Association between
Compound Heterozygosity for Germ Line Mutations in the Hemochromatosis ( HFE )
Gene and Increased Risk of Colorectal Cancer. en. Cancer Epidemiology, Biomarkers &
Prevention 14, 1460–1463 (June 2005).

16. Maffei, L., Rochira, V., Zirilli, L., et al. A novel compound heterozygous mutation of the
aromatase gene in an adult man: reinforced evidence on the relationship between congenital
oestrogen deficiency, adiposity and the metabolic syndrome. en. Clinical Endocrinology
67, 218–224 (Aug. 2007).

17. Wang, X.-H., Xie, L., Chen, S., et al. Identification of Novel Compound Heterozygous
MYO15A Mutations in Two Chinese Families with Autosomal Recessive Nonsyndromic
Hearing Loss. eng. Neural Plasticity 2021, 9957712 (2021).

18. Delaneau, O., Zagury, J.-F., Robinson, M. R., et al. Accurate, scalable and integrative hap-
lotype estimation. en. Nature Communications 10. Number: 1 Publisher: Nature Publishing
Group, 5436 (Nov. 2019).

19. Maestri, S., Maturo, M. G., Cosentino, E., et al. A Long-Read Sequencing Approach for
Direct Haplotype Phasing in Clinical Settings. en. International Journal of Molecular
Sciences 21. Number: 23 Publisher: Multidisciplinary Digital Publishing Institute, 9177
(Jan. 2020).

20. Li, N. & Stephens, M. Modeling Linkage Disequilibrium and Identifying Recombination
Hotspots Using Single-Nucleotide Polymorphism Data. Genetics 165, 2213–2233 (Dec.
2003).

21. Loh, P.-R., Danecek, P., Palamara, P. F., et al. Reference-based phasing using the Haplo-
type Reference Consortium panel. en. Nature Genetics 48. Number: 11 Publisher: Nature
Publishing Group, 1443–1448 (Nov. 2016).

22. Barton, A. R., Sherman, M. A., Mukamel, R. E., et al. Whole-exome imputation within
UK Biobank powers rare coding variant association and fine-mapping analyses. en. Nature
Genetics 53. Number: 8 Publisher: Nature Publishing Group, 1260–1269 (Aug. 2021).

23. Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new de-
velopments. en. Nature Reviews Genetics 12. Number: 10 Publisher: Nature Publishing
Group, 703–714 (Oct. 2011).

24. Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S., et al. Accurate rare variant phasing of
whole-genome and whole-exome sequencing data in the UK Biobank en. Oct. 2022.

25. Delaneau, O., Zagury, J.-F., Robinson, M. R., et al. Accurate, scalable and integrative
haplotype estimation. en. Nat. Commun. 10, 5436 (Nov. 2019).

26. Martin, M., Patterson, M., Garg, S., et al. WhatsHap: fast and accurate read-based phasing
en. Nov. 2016.

29

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.29.23291992doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23291992
http://creativecommons.org/licenses/by/4.0/


27. Karczewski, K. J., Francioli, L. C., Tiao, G., et al. The mutational constraint spectrum
quantified from variation in 141,456 humans. en. Nature 581. Number: 7809 Publisher:
Nature Publishing Group, 434–443 (May 2020).

28. Samocha, K. E., Kosmicki, J. A., Karczewski, K. J., et al. Regional missense constraint
improves variant deleteriousness prediction. BioRxiv (2017).

29. Hamosh, A., Scott, A. F., Amberger, J. S., et al. Online Mendelian Inheritance in Man
(OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research
33, D514–D517 (Jan. 2005).

30. Zhou, W., Nielsen, J. B., Fritsche, L. G., et al. Efficiently controlling for case-control
imbalance and sample relatedness in large-scale genetic association studies. en. Nature
Genetics 50, 1335–1341 (Sept. 2018).
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68. Privé, F., Aschard, H., Ziyatdinov, A., et al. Efficient analysis of large-scale genome-wide
data with two R packages: bigstatsr and bigsnpr. en. Bioinformatics 34, 2781–2787 (Aug.
2018).
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Methods

Exome sequencing quality control summary

We perform a series of hard-filters on genotype, sample, and variant metrics (Table 1, Table

2-3). We confirm genetic sex with reported sex, and restrict analysis to genetically ascertained

samples of NFE ancestry, using random forest (RF) classifiers (Fig. 2-3). Finally, we filter

based on a second collection of sample and variant filters (Tables 2-3). We used Hail 0.246 and

PLINK 1.947 to perform all QC steps, and use R (4.0.2) scripts for plotting and filtering. Data

was manipulated in R using data.table (1.14.2) and dplyr (1.0.7), random forest classifiers were

trained using the randomForest (4.6-14) library, and plotting was performed using a ggplot2

(3.3.5).

Exome sequencing quality control, full details

Sample filters We evaluated sample-level quality control (QC) metrics on the 200,643 UKBB

ES multi-sample project level variant call format (VCF) call-set files46, Supplementary Table 1.

All metrics were calculated for bi-allelic single nucleotide polymorphisms (SNPs), except for

metrics involving insertions and deletions. We regressed out the first 21 principal components

(PCs)48, and filtered out sample outliers of the residuals for each metric based on MAD (median

absolute deviation) thresholds (Supplementary Table 1). Samples without PC data were subject

to more stringent thresholds (Supplementary Table 1).
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Metric Metric residual (w/ PCs) Raw (w/o PCs)
call rate [24, ∞) [4, ∞)
n insertion [8, 8] [4, 4]
n deletion [8, 8] [4, 4]
r insertion deletion [8, 8] [4, 4]
n het [12, 12] [4, 4]
n hom var [12, 12] [4, 4]
r het hom var [16, 16] [4, 4]
n non ref [8, 8] [4, 4]
n singleton (-∞, 16] (-∞, 4]
n snp [8, ∞) [4, 4]
n transition [8, 8] [4, 4]
n transversion [8, 8] [4, 4]
r ti tv [8, 8] [4, 4]

Supplementary Table 1: Sample filtering: MAD Intervals. The interval [𝑎, 𝑏] represents
median(𝑋) + MAD(𝑋) [−𝑎, 𝑏] for the metric, 𝑋 . Samples with metrics outside these intervals
were removed.

Genotype filters Multi-allelic variants were split into bi-allelic variants and insertions and

deletions (indel) were left-aligned49. Genotype calls meeting any of the following criteria were

set to missing:

1. Genotype quality (GQ) ≤ 20

2. Total sequencing depth (DP) ≤ 10

3. Heterozygous calls:

(a) SNPs: 1-sided binomial test of alternate allele depth related to total read depth

𝑃 < 1 × 10−3

(b) Indels: alternate allele read depth / total read depth < 0.3

4. Homozygous indel calls: alternate allele read depth / total read depth < 0.7

Variant-level filters Retain variants satisfying all of the following conditions:
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1. Not in a low complexity region (LCR)50.

2. In sequencing target regions ±50 base pairs.

3. MAF > 0 following genotype QC.

4. Excess heterozygosity (ExcessHet < 54.69) filter: Phred-scaled 𝑃-value for exact test of

excess heterozygosity51 in founders as determined by relatedness estimates and recorded

ages of UKBB participants48. Variants were retained as recommended in genome analysis

toolkit (GATK)51

Additional ES quality control

To perform further QC we use Hail, an open-source Python library which focuses on the analysis

of large-scale genetic data sets. We used Hail to create our own methods, and we take advantage

of the functionality that has been rewritten to enable fast and scalable analysis of large exome

and genome sequencing projects. Unless otherwise stated, all of the following the data curation

and quality control steps were performed in Hail46.

Briefly, we apply a collection of hard-filters on sample metrics. We confirm genotypic sex with

reported sex, remove samples with excess glsplurv, and restrict analysis to samples of genetically

ascertained NFE ancestry. Finally we apply a second collection of sample and variant hard filters.

As an initial pass to remove low quality and contaminated samples, we filter out samples with

call rate < 0.95, mean DP < 19.5× or mean GQ < 47.8 (Fig. 1).

Sex imputation

To confirm participant sex and calculate PCs, we extracted high quality common variants (allele

frequency between 0.01 to 0.99 with high call rate (> 0.98)) and LD prune to pseudo-independent

SNPs using --indep 50 5 2 in PLINK 1.9. When reported sex does not match genotypic sex,
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Supplementary Fig. 1: Distributions of sample metrics following initial restriction to
variants, lying outside LCRs and inside the padded (50 bp) target intervals, and prior to
the initial hard sample filters (call rate > 0.95, mean depth > 19.5, mean GQ > 47.8). In
each plot, jittered scatters display the distribution for each UKBB recruitment center, colored
according to sequencing batch. Box-plots behind the scatter display the median and interquartile
range for each sequencing batch. Hard-filtering thresholds are denoted by the dashed vertical
line.
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Filter Samples Batch 1 Batch 2 %
Initial samples in raw UKBB VCF 200,643 NA NA 100.0
Initial samples in filtered VCF 199,795 49,759 150,036 99.6
Sample call rate <0.95 7,400 4,780 2,620 3.7
Mean DP <19.5 3,253 511 2,742 1.6
Mean GQ <47.8 2,123 834 1,289 1.1
Samples with sex swap 85 24 61 0.0
Samples with excess ultra-rare variants (URVs) 76 6 70 0.0
PCA based filters 13,537 3,390 10,147 6.7
Within batch Ti/Tv ratio outside 4 standard deviations (SDs) 13 3 10 0.0
Within batch Het/HomVar ratio outside 4 SDs 251 46 205 0.1
Within batch Insertion/Deletion ratio outside 4 SDs 9 4 5 0.0
n singletons >175 19 2 17 0.0
Samples after all sample filters 176,935 41,371 135,564 88.2

Supplementary Table 2: Summary of sample filters. Moving down through the rows of the
table, we move through QC filtering steps.

Filter Variants %
Initial variants in raw UKBB VCF 15,922,704 100.0
Variants removed in initial filters 2,883,660 18.1
Invariant sites after sample filters 2,744,044 17.2
Overall variant call rate <0.97 1,122,987 7.1
Variants failing HWE filter 5,237 0.0
Variants remaining after all filters 9,169,408 57.6

Supplementary Table 3: Summary of variant filters. Moving down through the rows of the
table, we move through QC filtering steps.
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it may signal potential sample swaps in the data. Using the 𝐹-statistic for each sample using the

subset of the non-pseudo autosomal region on chromosome X, we identify and remove samples

where reported sex information is not confirmed in the sequence data (Fig. 2). Specifically, we

remove samples satisfying at least one of the following criteria:

• Sex is unknown in the phenotype files.

• 𝐹-statistic > 0.6 and the sex is female in the phenotype file.

• 𝐹-statistic < 0.6 and the sex is male in the phenotype file.

• 𝐹-statistic > 0.6 and number of calls on the Y chromosome is < 100.

Defining a set of samples with non-Finnish European ancestry

To ensure adequate case-control for as many traits as possible, we restricted our analysis to

a set of genetically ascertained NFE samples. To do this, we perform a number of principal

component analysis (PCA) steps to ensure that we have subset down to NFE. We first run PCA

on the 1000 Genomes (1KGP) samples (minus the small subset of related individuals within

the 1KGP) using subsetting to LD pruned autosomal variants. We then project in the UKBB

samples, ensuring that we correctly account for shrinkage bias in the projection52. Next, we

removed samples outside of the European population (EUR) using a RF classifier: we train a

RF on the super-populations labels of 1KGP and predict the super-population for each of the

UKBB samples (Fig. 3). We denote strictly defined European subset as those with probability

> 0.99 of being European according to the classifier. Another RF classifier is trained following

restriction of the 1KGP samples to Europeans to determine NFE, using a classifier probability

of 0.95. RF classifiers were trained using the randomForest (4.6) library in R. Samples not

assigned to the NFE cluster were removed from downstream analysis.
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Supplementary Fig. 2: Histogram and scatter-plots of X chromosome 𝐹-statistic by col-
lection. Samples lying to the left and right of the dashed line were called as female and male
respectively, according to the imputed sex colorings in the upper histogram. Reported sex, split
by UKBB recruitment center are shown in the lower jittered scatter-plots: red if the sample is
reported as female, and blue if the sample is reported as male.
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Supplementary Fig. 3: Scatter-plots of PCs of UKBB genotype data projected into the
PC space defined by 1KGP samples. Points are colored according to sample collection, with
1KGP samples colored in blue. 1KGP super-populations labels were used to train a random
forest classifier.
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Final hard filters

For our final variant filtering step, following restriction to the NFE subset, and removal of

incorrectly defined sex or unknown sex, and run variant QC. We then filter out variants with

call rate < 0.97, variants out of Hardy-Weinberg equilibrium (HWE) (𝑃 < 1 × 10−6), and

remove invariant sites following the previous sample based filters. After restricting to these

high quality variants, we perform a final set of sample filters to finalize the quality controlled

data. We evaluate a collection of sample metrics and remove samples falling outside four SDs

of the sequencing batch mean (Ti/Tv, Het/HomVar, Insertion/Deletion ratios), and remove the

collection of samples with over 175 singletons. The resultant curated analysis ready data set

consists of 176,935 samples, and 9,169,408 variants (Supplementary Table 2-3).

A summary of sample and variant filters are provided in Supplementary Tables 2-3. The high

quality ES call-set consisted of 176,935 samples and 9,169,408 variants.

Phasing
Combining ES data with genotype array data

We combined genotyping array (UK BiLEVE Axiom array and UKBB Axiom array) and exome

chip (IDT xGen Exome Research Panel v1.0) variants after general ES quality control using

Hail46 and BCFtools53 (1.12). For variants in both data sets, we preferentially retained those on

the ES data. For variants on the genotyping array we excluded variants missingness > 5% after

performing a liftover to GRCh38 using Hail46. To avoid biasing the phasing quality estimates,

we excluded parents among trio relationships prior to phasing. We first created a common

variant scaffold by phasing variants in the combined (exome sequencing and genotyping array)

data with MAF > 0.1% and otherwise default parameters using SHAPEIT5 PHASE COMMON

module. We then phased the remaining rare variants using the common variant scaffold using the

SHAPEIT5 PHASE RARE with recommended parameters. To ensure computational tractability,
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Supplementary Fig. 4: Distributions of variant metrics before and after the removal of
invariant sites, variants with call rate < 0.97, and variants out of HWE (𝑃 < 1 × 10−6).
In each plot, jittered scatters display the distribution for each sequencing batch colored by
sequencing batch. Box-plots behind the scatter display the median and interquartile range for
each sequencing batch. Points shown are following variants hard-filters and prior to removal of
variants with metrics outside four standard deviations of the sequencing batch mean.

42

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.29.23291992doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23291992
http://creativecommons.org/licenses/by/4.0/


we phased overlapping chunks of 100,000 variants with ≥ 50, 000 variant overlap between

consecutive chunks using Hail46. Following chunk phasing, we then removed the initial and

final 22,500 variants from each chunk, so that 5,000 overlapping variants remained between

contiguous phased chunks. We then combined the phased chunks, matching haplotype phase

using bcftools53 (1.12) with the --ligate option. We then restrict this phased genetic dataset to

the set of samples and variants present in the analysis ready NFE subset (Supplementary Tables

2-3).

Trio-switch error rates

We assessed phasing quality by comparing statistically phased genotypes to those implied in

96 trios using Mendelian inheritance logic. Switch errors are determined by traversing the

statistically phased and parent-offspring transmitted haplotypes simultaneously and scanning

for inconsistencies in phase between pairs of contiguous variants. This method only allows

us to consider sites in which the one parent is heterozygous and the other is homozygous

for the reference or alternate allele, and thus do not consider de novo variants or Mendelian

inconsistencies in the trio data. To assess switch error in a site-specific manner, we modified and

recompiled bcftools53 (1.12) to output errors by genomic position. We then used the modified

version to assess switch by variant categories, for example by genetic data modality (genotyping

array or ES), or by MAF bins. To evaluate switch errors across different phasing confidence

thresholds, we filtered VCF using Hail46 and then repeated the switch error calculation step.

We calculated binomial 95% confidence intervals (CIs) for SERs using the R-package HMisc54

(4.7).
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number of variants retained after imposing PP cut-offs of 0.9 and 0.99, respectively.
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Supplementary Fig. 6: Trio switch error rates by chromosome. Parent-offspring trios are
used to determine switch error rates for variants that originate from the genotyping array (a)
and exome sequencing data (b). We stratify by phasing confidence (PP) according to the color
legends. Mean switch error rates are plotting, with whiskers enclosing the 95% binomial CI.

45

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.29.23291992doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23291992
http://creativecommons.org/licenses/by/4.0/


Read-backed phasing

We performed read-backed phasing with UKBB ES short paired-end read sequences using

.cram files provided by UKBB. As WhatsHap is computationally expensive, we restricted

our analysis to pairs of variants on chromosomes 20-22 in 176,586 genetically ascertained

NFEs. We phased both single nucleotide polymorphism (SNV) and indel with WhatsHap26

using the default recommended parameters. WhatsHap outputs lists of phased variants within

‘phased sets’. We carried forward reads overlapping no more than two variants, for which phase

could be inferred. We combined these phased variants with statistically phased variants from

SHAPEIT5 using Hail46, and determined agreement between estimated phasing in WhatsHap

and SHAPEIT5 (Fig. 7).

Phenotype curation

We considered a collection of 282 binary quality controlled and publicly available common

complex phenotypes for analysis55. To complement these, we also considered 28 common

complex phenotypes that were obtained through manual curation, resulting in a total of 311 binary

phenotypes for analysis. To increase our power for analyses for binary traits, we amalgamated a

collection of phenotypes where possible: combining the phenotype curation of Censin et al.56,

with the primary care mappings file provided by UK Biobank all lkps map v3.xlsx and our

own manual curation. We aggregated across ICD-10, ICD-9, operating codes, nurses interview

reports, and self-reported diagnosis by doctor from the main phenotype file, as well as v2 and v3

read codes in the primary care data. As in Censin et al., we made use of the careful definitions of

Eastwood et al.57, subsequently applied by Udler et al.58 for diabetes subtype curation. Briefly,

the algorithm developed in Eastwood et al. bins individuals into putative diabetes status using

a collection of phenotypes in the UK Biobank data including self-reported diabetes diagnosis,

age of diagnosis, medications, start of insulin within a year of diagnosis. We defined cases as
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Supplementary Fig. 7: Agreement between read-backed and statistical phase estimation.
Genetic phase was estimated using WhatsHap (read-backed phasing) and SHAPEIT5 (statistical
phasing) in 176,586 individuals on chromosomes 20-22. We only carried forward pairs of
variants close proximity in which phase could be inferred using WhatsHap. We combined with
statistically phased counterparts derived from SHAPIET5 and determine % disagreement of
phase estimation of variant pairs on the 𝑦-axis, when filtering to phased pairs of variants where
the minimum PP > 𝑝 for 𝑝 ∈ {0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99} according to the
color legend. We stratify pairs of variants into bins based on the minimum MAC in the variant
pair, on the 𝑥-axis. Mean disagreement rates are plotted on 𝑦-axis with whiskers enclosing the
95% binomial CI
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Supplementary Fig. 8: Agreement between read-backed phasing and statistical phasing.
We plot the disagreement between WhatsHap (read-backed phasing) and SHAPEIT5 (statistical
phasing) in UKBB on the 𝑥-axis against switch error rate in SHAPEIT5 phase estimates implied
by trio-based phasing in UKBB on the 𝑦-axis. For each comparison, bin pairs of variants
according to the minimum MAC in the variant pair according to the color legend. Horizontal
and vertical lines enclose 95% binomial CIs around mean estimates. The dotted line is included
to display 𝑦 = 𝑥.
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those placed in the probable and possible case categories in the algorithms output. Controls

were defined as samples labeled as ‘diabetes unlikely’ by the algorithm.

Variant annotation masks

We annotated coding variation using Variant Effect Predictor (VEP)59 (v95) using the worst

consequence by gene within ‘canonical’ transcripts. We classified variants into four categories:

protein truncating variants (PTVs), missense variants, synonymous variants, and other variants

(Supplementary Table 9). We then split PTVs into putative loss of function (pLoF) (HC)

and LC loss-of-function variants using LOFTEE60, and labeled missense variants with both

Rare Exome Variant Ensemble Learner (REVEL)61 score ≥ 0.6 and CADD62 score ≥ 20

as ‘damaging missense’ or otherwise as ‘other missense’. Finally, we combine the resultant

‘damaging missense’ category with LC loss-of-function variants, which we denote as ‘damaging

missense/protein-altering’.

Bi-allelic encoding and recessive association modeling

Using custom Hail scripts, we define and annotate individuals as being ‘bi-allelic’ for a gene

if they harbor at least one pLoFs or damaging missense variant with MAF < 5% on both

inherited copies of the gene. For each sample, we encoded the presence and absence of

a damaging bi-allelic variant for each gene as zero and two, respectively. We encode this

information in a .vcf file and test for an association between presence of a damaging bi-allelic

variant in a gene and a trait using SAIGE63, adjusting for sex, age, sex × age, age2, UKBB

centre, genotyping batch and the first 10 PCs. We took relatedness into account using a sparse

genetic relatedness matrix (GRM) fitted on NFE. We restrict analysis to (gene, trait) pairs with

at least five bi-allelic variants in the curated ES with non-missing corresponding phenotype

data (corresponding to a minimum MAC ≥ 10), and adjust for multiple testing at Bonferroni
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Supplementary Fig. 9: Distribution of variant annotation categories before and after
broad consequence categorization. We annotate variants using VEP and by the most severe
consequence in the canonical transcript. Panels (a) and (b) display the total number of unique
variants observed across a set of variant consequences colored by degree of predicted impact,
before and after broad variant consequence categorization. In each panel, green, orange and red
colored bars indicate low, medium and high impact respectively, according to the color legends.
Singleton variation within the variant class is stacked and displayed in a lighter shade. Counts
of variant within each annotation category are displayed above the bars. Note that all counts
shown here are before filtering to accurately phased variants.
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Supplementary Fig. 10: Recessive analysis of 311 phenotype without accounting for PRS.
Recessive Manhattan plot depicting log10-transformed gene-trait association P-values versus
chromosomal location. Associations are colored red or orange based on whether they are
Bonferroni (𝑃 < 1.68 × 10−7) or nominally (𝑃 < 5.25 × 10−5) significant. No additional
conditioning was carried out in this analysis.

significance (𝑃 < 0.05/gene-trait pairs).

Gene copy dosage encoding and additive association modeling

We define annotate individuals as being ‘mono-allelic’ for a gene if they harbor at least one

pLoFs or damaging missense variant with MAF < 5% on a single copy of the gene. Furthermore,

if they harbor at least one pLoF or damaging missense variant on both inherited copies of the

gene, we annotate them as ‘bi-allelic’. Using custom Hail scripts, we encode wildtypes, mono-

allelic and bi-allelic carriers as 0, 1 and 2 respectively, thus representing the number of affected

gene copies in an individual. We test for association using SAIGE63, adjusting for sex, age,
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Supplementary Fig. 11: Association P-values before and after inclusion of PRS as a covari-
ate. The scatter plot depicts the association P-values both before and after PRS was included
as a covariate. The y-axis represents the P-value prior to PRS adjustment, while the x-axis
demonstrates the P-value afterPRS adjustment. On the right, the difference in log-transformed
P-values before and after PRS adjustment is displayed. The plot exclusively showcases gene-trait
associations that were considered nominally significant in the recessive analysis.
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sex×age, age2, UKBB centre, genotyping batch and the first 10 PCs. Again, we took relatedness

into account using a sparse GRM fitted on NFE. We restricted to gene-pairs with at least 10

disrupted haplotypes (corresponding to a minimum MAC ≥ 10), and adjust for multiple testing

at Bonferroni significance (𝑃 < 0.05/gene-trait pairs).

Polygenic risk scores
Curation of array-based genetic data

We generated PRSs using imputed genotypes provided by UKBB48. In the following, we make

the distinction between training and testing data. The first represents the samples that are

used for fitting LDPred264 weights and parameters while the latter represent the samples with

bi-allelic variant (with homozygous or CH status) information in which we use to assess the

predictive accuracy the fitted LDPred based PRS. For the training data, we took the genetically

ascertained NFE and filtered to 246,152 unrelated samples (kinship coefficient < 2−4.5) that did

not have quality controlled ES data available. NFE samples with high quality ES and imputed

genotype data available were used for testing. Where predictive (nominal significant ℎ2
snp and

𝑛𝑒 𝑓 𝑓 ≥ 5000), we include PRS as a covariate for downstream biallelic association testing to

account for common variant polygenic risk for the trait under investigation.

Genotype variant filtering

We followed best practices from Privé et al.64, and filtered to common Haplotype Map 3 (HM3)

SNPs65. Additionally, we exclude any variants with genotyping proportion < 1% and MAF <

1%, resulting in a total of 1,165,296 common autosomal variants for fitting PRS weights. To

reduce the likelihood of spurious correlations between low-frequency variants in traits with low

case or control count, we restricted to binary phenotypes with at least 1,250 cases and controls.

Additionally, we imposed a phenotype specific MAF filter based on the number of cases and
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controls in a trait, specifically:

MAF > max (0.01, 2 × min(𝑛cases, 𝑛controls)) , (1)

where 𝑛cases and 𝑛controls are the numbers of cases and controls with high quality imputed sequence

data available, respectively, to guard against non-causal variants that are overrepresented in cases

or controls leading to false positive associations.

Common variant association testing

We tested for associations between the 1,165,296 common autosomal HM3 variants and phe-

notypes using Hail46, running logistic regression (logistic regression rows) adjusting for

sex, age, sex× age, age2, UKBB assessment centre, genotyping batch and the first 10 PCs, using

a Wald test.

Estimating heritability

We generated LD-scores for HM3 variants in sample, using a random subset 10,000 of 246,152

unrelated genetically ascertained NFEs without haplotype information. Using the genome-wide

association study (GWAS) summary statistics and LD-scores, we estimated SNP heritability

ℎ2
snp and standard errors (SEs) using LD score regression (LDSC)66,67. We evaluated PRS for

phenotypes with nominal significant ℎ2
snp estimates (𝑃 < 0.05) and restricted to phenotypes with

nominally significant (𝑃 < 0.05) LDSC based SNP heritability estimates and effective sample

size 𝑛eff ≥ 5, 000, where:

𝑛eff =
4

1
𝑛cases

+ 1
𝑛controls

. (2)

Generating PRS using LDPred2

For a given phenotype, we trained a PRS predictor with LDPred2-auto64, using marginal effect

size estimates evaluated on the 246,152 unrelated NFE samples (defined by kinship coefficient
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< 2−4.5) without ES data in the 200k ES UKBB release), ℎ2
snp as estimated by LDSC, and

in-sample reference panel to evaluate local LD, as input. We removed any invariant sites and

mean-imputed missing genotypes, before training the predictor. Following PRS training, we

then predict into the 176,266 samples with ES and high-quality imputed genotype data.

Validation of polygenic risk scores

We assessed the ability of the resulting PRS to discriminate between case status by evaluating

area under the curve (AUC) on the held-out unrelated set of samples with both HM3 SNPs and

phased exome data. We used the function AUCBoot from the R package bigstatsr68 (1.5.6) to

extract 10,000 bootstrap replicates of individuals and compute the 95% CIs for AUC.

Conditional analysis
Off-chromosome PRS conditional analysis

For each chromosome, 𝐶, we evaluated ‘off-chromosome’ PRS by setting weights on chromo-

some 𝐶 to 0. We repeated this for each phenotype with PRS available and fit SAIGE63 models

while controlling for off-chromosome PRS by including it is as a covariate in the null SAIGE

model.

Common variant conditional analysis

To assess whether a putative signal in a gene is driven by nearby common variation, we filtered

to samples that have both ES and imputed genotypes with MAF > 1% and imputation INFO

score > 0.5. Then, for each gene that passed exome wide significance in the primary analysis

(𝑃 < 5 × 10−6), we tested for common variant associations in the region (1 Mb upstream and

downstream of the gene). For each of these regions, we took an iterative approach, testing for

common variant associations using SAIGE63, conditioning on the lead variant and repeating

the regression until the conditional 𝑃 for the newly included variant dropped below 5 × 10−6,
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allowing up to 25 ‘independent’ associations in the region. We used the same covariates as in

the primary analysis. For every variant that passed exome-wide significance (𝑃 < 5 × 10−6),

we encoded the genotypes as dosages and embedded them alongside pseudo variants (bi-allelic

variants) in a VCF. We then re-ran the primary analysis twice (with and without controlling for

off-chromosome PRS), while conditioning on any nearby common variant signals of association

with the phenotype of interest.

Rare and ultra-rare variant conditional analysis

For each significant (𝑃 < 1.68× 10−7) gene-trait associations in the genome-wide analysis after

conditioning on PRS and nearby common variants association signals, we considered a further

conditioning step. We sought to determine whether the residual signal of association could be

explained by additive rare variant effects within the associated gene. To do this, ran further

conditioned on rare (MAC≥ 10, MAF≤ 0.05) and ultra-rare (MAC≤ 10) variants annotated

as either pLoF or damaging missense within each gene. Because conditioning on ultra-rare

variation can lead to convergence issues, we performed a gene-wide collapsing of ultra-rare

(MAF≤ 10) variants, thus aggregating them into a single ‘super’ variant to represent burden of

ultra-rare damaging variation in the gene. Following this collapsing, we were able to condition

on the ultra rare and rare variant contribution using SAIGE, while also conditioning on PRS and

nearby common variant association signals when applicable.

Permutation of genetic phase

To test whether a putative gene-trait association is driven by compound heterozygosity, we

designed a permutation-based pipeline that could be systematically applied and scaled across

phenotypes and genes. To do this, we label samples that are either CH variants or heterozygous

cis carriers and then randomly shuffle these labels a series of times. For each permutation, we
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re-run the association analysis conditioning on covariates as previously discussed (including

off chromosome PRS and nearby common variants), and determine the resultant association

strength under this label shuffling. Applying this permutation procedure multiple times, we can

determine an empirical null for the association strength in the absence of phase information.

The result is an empirical distribution of 𝑡-statistics and corresponding 𝑃-values that reflect the

degree of association that would be expected given that the phase is random. We evaluate the

one-sided empirical 𝑃-value, specifically:

𝑃empirical =
1
𝑛

𝑛∑︁
𝑖=1

1(𝑡𝑖 ≥ 𝑡observed) (3)

where 𝑛 is the number of permutations, 𝑡𝑖 is the 𝑡-statistic under the 𝑖th random label shuffling,

and 𝑡observed is the observed 𝑡-statistic determined using the observed genetic phase. To ensure

sampling of 𝑡-statistics at a sufficiently large number of configurations of the genetic phase,

we analyzed gene-trait pairs with at least ten compound heterozygotes and/or samples with

multiple variants on the same haplotype. We permuted up to 100,000 times. To control

for multiple testing, we corrected for 5 gene-traits tested (Bonferroni significance threshold

𝑃 < 0.05/5 = 0.01).

Gene-set enrichment of bi-allelic variation
Analyzed gene-sets

We included the following gene lists in our gene-set enrichment analyses: essential in mice69,

essential gnomAD27, essential ADaM70, essential in culture71, essential CRISPR72, genes with

pLI > 0.9 in gnomAD27, non-essential in culture71, homozygous LoF tolerant27, and non-

essential gnomAD27.
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Poisson regression to assess enrichment of CH variants in gene-sets

We test for depletion and gene-set enrichment using poisson regression. We model the count

of bi-allelic variants across samples as a function of gene-set and mutation frequency using the

glm function in R.

|samples with > 1 variant of class 𝑥 in gene| ∼ I(gene-set) + mutation rate (4)

where 𝑥 is a pair (𝑥1, 𝑥2): 𝑥1 ∈ {pLoF, damaging missense, pLoF and/or damaging missense,

other missense, synonymous}, 𝑥2 ∈ {heterozygote, CH, bi-allelic variants}. For each annotation

category we use the transcript-specific mutation rate28. 95% confidence intervals are determined

using confint.glm from the MASS-package (v7.3-58.1).

Homozygote and CH down-sampling

To investigate the number of identifiable CH or homozygous events across varying sample sizes

and variant annotations, we performed down-sampling across the total population of 176,587

individuals. To do this, we defined a set of 35 regularly spaced cutoffs between 1,000 and 176,587

samples using increments of 5000. To determine uncertainty in our estimates of the number of

unique genes implicated as a homozygote and/or CH, we randomly sampled individuals for each

down-sampling 100 times, with replacement. We calculated the 95% CI by taking the 2.5% and

97.5% quantiles for the number of unique genes affected at a given sample size, and repeated

across annotations (Fig. 19).

Power analysis for bi-allelic association

We perform a power analysis based on bi-allelic (including both CH and homozygous) variant

frequencies in the population. To do this, we adopted code73 allowing us to determine the

effective effect size on the OR scale across candidate configurations of binary case-control counts
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Supplementary Fig. 12: Gene-set depletion/enrichment modeling. Poisson regression to
model mono- and bi-allelic variant (heterozygous, CH, homozygous or both) depletion and
enrichment across essential and non-essential gene-sets. Rate ratios are shown for synonymous
(green), other missense (yellow), damaging missense (orange) and pLoF (red) variants. The
dashed line depicts a rate ratio of 1.
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Supplementary Fig. 13: Allele frequencies of variants in the CH state. Heatmap of allele
counts for variants in CH state stratified by predicted variant consequence (damaging missense,
pLoF or pLoF+damaging missense). We plot the MAC for variants residing on the most common
haplotype (y-axis) versus the rarest haplotype (x-axis).
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Supplementary Fig. 14: Allele frequencies of variants in cis. Heatmap of allele counts for co-
occurring variants on the same haplotype stratified by predicted variant consequence (damaging
missense, pLoF or pLoF+damaging missense). The most common variant on the haplotype
versus the least common are plotted.
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Supplementary Fig. 15: Distribution of observed variants across samples by allele fre-
quency. Histogram of unique bi-allelic variant (CH and homozygotes) prevalence across the
allele frequency spectrum. For a qualifying CH variant, the allele frequency corresponding to
the alternate allele on the rarest haplotype are plotted.
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Supplementary Fig. 16: Distribution of unique variants observed by allele frequency.
Histogram of bi-allelic variant (CH and homozygotes) count for all gene-samples pairs in the
analysis. For a qualifying CH variant, the allele frequency corresponding to the alternate allele
on the rarest haplotype are plotted.
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Supplementary Fig. 17: Co-occurrence of deleterious MUTYH-variants across colorectal
cancer outcomes. Bi-allelic variant occurrence in MUTYH for benign neoplasm of the colon,
rectum and anal canal (left) and primary malignancy of the colon (right). The constituent
variants are shown alongside the variant consequence and involved exon or intron. Each cell
indicates that number of individuals that are cases out of the total bi-allelic carriers identified.
Homozygous cases and carriers are indicated with a star (*)
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Supplementary Fig. 19: Count of unique genes affected by a homozygous and homozygous
or compound heterozygous variants as a function of sample size. Starting with the full
data, and down-sampling, we plot counts number of unique genes harboring homozygous and
homozygous or compound heterozygous variants as a sample size is decreased. Class of variants
in each count are denoted according to the key. Each facet indicate a specific variant annotation.

by substituting alternate allele frequencies with bi-allelic variant frequencies. We calculated

effect sizes at 80% power at Bonferroni significance (𝑃 < 1.7 × 107) for a hypothetical traits

with 823 (0.5%), 1766 (1%), 3532 (2%), 5298 (3%), 8829 (5%) cases of 176,587 total samples.

Simulation
Simulation of synthetic phenotypes using real genotypes

We performed a series of simulations to test that our pipeline would detect a CH effect in the

presence of a true signal. We sampled 100,000 genetically-ascertained NFEs in the UKBB data,

and extract chromosome 22 which we then use to simulate phenotypic data with a recessive

genetic architecture. To emulate a scenario in which defects in protein coding genes lead to

disease, we annotated the filtered UKBB genetic data and determined the collection of samples

harboring damaging bi-allelic variants in each gene (compound heterozygous and homozygous,
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Supplementary Fig. 20: Power analysis to determine the required number of bi-allelic
variants to detect specific ORs at 80% power at bonferroni significance (𝑃 < 1.7 × 10−7).
We repeat the analysis while varying trait population prevalence assuming 823 (0.5%), 1766
(1%), 3532 (2%), 5298 (3%), 8829 (5%) cases out of 176,587 total individuals. The dashed red
lines in the plot demonstrate the required number of bi-allelic variants to detect an OR ≥ 10.
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comprised of variants annotated as pLoF or damaging missense). We then define a 𝑛 samples ×

𝑚 genes matrix B̃ with entries:

B̃𝑖, 𝑗 =

{
1, if a damaging bi-allelic variant is present in sample 𝑖 at gene 𝑗

0, otherwise
(5)

We then simulated liability under the following model:

𝑦𝑖 =

𝑚∑︁
𝑗=1

B𝑖, 𝑗𝜃 𝑗 + 𝜀𝑖 (6)

where B𝑖, 𝑗 is the (𝑖, 𝑗)th entry of B after standardizing the columns of B̃, 𝐸 [𝜃 𝑗 ] = 𝑏
𝑚

, Var[𝜃 𝑗 ] =
ℎ2

𝑚
, and 𝜀𝑖 ∼ N

(
0, 1 − ℎ2) . Here, we implicitly assume that presence of at least one homozygous

or CH variant of any type within a given gene contributes the same risk to disease, whose average

across genes is set by the parameter 𝑏. The resultant liability 𝑦𝑖 has mean 0 and variance 1. Note

that the standardization of B imposes a frequency dependent relationship between prevalence

of bi-allelic damaging variants in a gene and variance explained. We simulated under the

spike-and-slab model:

𝜃 𝑗 ∼
{
N( 𝑏

𝑚𝜋𝜃
, ℎ2

𝑚𝜋𝜃
), if 𝑝 𝑗 < 𝜋𝜃

0, otherwise
𝑝 𝑗 ∼ Bernoulli(𝜋𝜃)

in which 𝜋𝜃 ∈ [0, 1] is the proportion of causal genes with a recessive contribution to the

phenotype. Finally, to obtain binary traits we used the liability threshold model assuming a case

prevalence of 10%. In the following simulations, we set 𝜋𝜃 = 0.25, and considered ℎ2 values of

ℎ2 ∈ {0, 0.01, 0.02, 0.05, 0.10} and 𝑏 values of 𝑏 ∈ {0, 0.5, 1, 2, 10}.
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Supplementary Fig. 21 (previous page): Simulation study to test our ability to detect bi-
allelic effects in the presence of true effects. We simulate phenotypic data applied to 100,000
genetically-ascertained NFE on chromosome 22 (Methods) under the liability-threshold model
assuming a spike and slab genetic architecture. We assume a 10% disease prevalence and 25%
causal genes, and consider varying levels of phenotypic variance explained by these effects
∈ {0, 0.01, 0.02, 0.05, 0.10}. We then apply SAIGE to the simulated phenotypes, testing for an
association between presence of a bi-allelic variant in each gene and case status. a) Each panel
indicates a set of simulations assuming varying levels of heritability and average effect as labeled
in the subtitles. In each panel, we plot the true effect size in the simulation for a given gene on
𝑥-axis against the corresponding − log10(𝑃) value of association. Areas of circles correspond to
the number of samples harboring bi-allelic damaging variants in the 100,000 samples according
to the legend. b) To assess the sensitivity and specificity of our approach, we created ROC-AUC
curves for each combination of increasing phenotypic variance explained (facet) and increasing
average affect (red lines). c) For each ROC-AUC curve from b, we calculate the AUC. White
indicates low AUC and red indicates higher AUC.

Longitudinal effects
Time-to-event data curation

We curated age-at-diagnosis for 278 binary phenotypes from the UKBB-linked primary care and

hospital record data. 251 phenotypes were curated using the mapping tables generated by Kuan

et al.55, excluding any codes related to “history of...” events for which accurate age-at-diagnosis

could not be extracted. The remaining 27 phenotypes individuals’ records were left-truncated at

the age of first record (of any code) in either the primary care or hospital data, and right-censored

at the age of the last record.

Cox proportional-hazards modeling

For each gene-trait combination to test, we performed Cox-proportional hazards modeling to

estimate differences in lifetime risk of developing the phenotype between heterozygous carriers

of pLoF + damaging missense variants in the gene (reference group) and individuals who are

bi-allelic carriers (compound-heterozygous or homozygous), multi-hit cis-heterozygous carri-

ers, and wildtypes. All effects were adjusted for sex, the first 10 genetic PCs, birth cohort (in
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ten-year intervals from 1930-1970), and UKBB assessment center. For phenotypes with a signif-

icantly heritable PRS, we additionally adjusted for off-chromosome PRS. We visualized survival

probabilities using Kaplan-Meier curves74. Finally, for gene-trait combinations where we were

powered to detect differences between compound-heterozygous and multi-hit cis heterozygous

carriers of variants, i.e. where each group contained at least five cases of the phenotype, we

repeated the above analysis with multi-hit cis heterozygous carriers as the reference group.

Cox proportional-hazards regression was performed using the R package survival 3.3.175 and

Kaplan-Meier plots drawn with the R package survminer 0.4.976.
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Supplementary Fig. 22: Cox proportional hazards modeling with and without polygenic
effects. HRs when comparing CH and homozygous status versus heterozygous carrier status.
Throughout, we display hazard ratios with (circles) and without (triangles) taking the polygenic
contribution into account by conditioning on off-chromosome PRSs for heritable traits that pass
our quality control cutoffs. HRs for gene-traits with one or more individuals with multiple cis
variants on the same haplotype are also displayed in pink. Associations that pass Bonferroni
significance (𝑃 < 1.89 × 10−7) and FDRs < 5% cutoff are demarcated by the dashed line in
the top and bottom half respectively. Abbreviations: CC (colorectal cancer), COPD (chronic
obstructive pulmonary disease). 71
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Supplementary Fig. 23: Kaplan-Meier survival curves for carriers of bi-allelic vari-
ants. Trajectories for wildtypes and bi-allelic (CH or homozygous) carriers of damaging
missense/protein-altering mutations are shown with green and black lines respectively. For
traits where over 50% of cases are left-censored, the confidence interval estimates cannot be
accurately determined using Kaplan-Meier curves, and thus, these should be disregarded. Con-
sequently, wildtype confidence intervals for FLG-Asthma and FLG-Dermatitis are not displayed
in the figure.
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Supplementary Fig. 24: Kaplan-Meier survival curves for carriers of CH, homozygous,
heterozygous variants. Kaplan-Meier survival curves for CH (red), homozygous (orange),
heterozygous carriers (blue), single disruption of haplotypes (pink) owed to pLoF or damaging
missense/protein-altering mutations. Wildtypes are shown in green. For traits where over 50% of
cases are left-censored, the confidence interval estimates cannot be accurately determined using
Kaplan-Meier curves, and thus, these should be disregarded. For this reason, wildtype confidence
intervals for FLG-Asthma are not displayed in the figure. Wildtype and CH confidence intervals
are also not shown for FLG-Dermatitis.
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Supplementary Tables
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Supplementary Table 4: Comparative analysis of SER point estimates for phasing Meth-
ods: SHAPEIT4, SHAPEIT5 (pre and post-filtering by phasing confidence), and Eagle2.
This table presents a comparison of the SER point estimates for various phasing methods,
including SHAPEIT4, SHAPEIT5 (both before and after filtering by phasing confidence), and
Eagle2. It is important to note that we employed the full phased set of autosomes for SHAPEIT5,
while for SHAPEIT4 and Eagle2, we limited our analysis to chromosomes 20, 21, and 22. The
table presents 95% confidence intervals for each method.

Supplementary Table 5: Trio-SER across final reconstituted chromosomes for variants
originating from ES and genotyping array data before and after filtering by PP ≥ 0.90. All
confidence intervals are 95% binomial confidence intervals.

Supplementary Table 6: Trio-SER by MAC bin for 96 parent-offspring trio relationships
before and after filtering by PP ≥ 0.90. All confidence intervals represent the 95% binomial
confidence interval.

Supplementary Table 7: Number of trio-switch errors binned by genes before and after filtering
by PP ≥ 0.90 using 93 trio-offspring relationships.

Supplementary Table 8: Comparative analysis of predicted phase Using SHAPEIT5 vs.
read-backed phasing with Whatshap, subsetting by PP ≥ 0.90. This comparison focuses
on the predicted phase generated using SHAPEIT5 after subsetting by PP ≥ 0.90 against the
read-backed phased variants determined through Whatshap. The comparison is limited to pairs
of variants within a read. The analysis was conducted across chromosomes 20, 21, and 22,
utilizing approximately 176,000 genetically ascertained NFE samples. In the ‘Errors’ column,
errors are defined as discrepancies between the genetic phase of statistically phased variants
(processed with SHAPEIT5) and read-backed phased variants (determined with Whatshap).
Binomial confidence intervals are used throughout.

Supplementary Table 9: Annotation of the most severe consequence for variants in canon-
ical transcripts across 22 autosomes for quality-controlled variants and samples, pre- and
post-filtering to PP ≥ 0.90. The table enumerates the most severe predicted consequences of
variants located in canonical transcripts, analyzed across 22 autosomes for variants and samples
that underwent stringent quality control, both before and after filtering to PP ≥ 0.90 .

Supplementary Table 10: Results of the Poisson regression analysis used to evaluate the
enrichment (rate ratios) of both mono- and bi-allelic variants within gene-sets. We applied
this model to assess both the depletion and enrichment of gene-sets using Poisson regression.
The count of bi-allelic variants across samples is modeled as a function of the gene-set and
mutation frequency.

Supplementary Table 11: Tally of predicted carriers among 176k individuals classified as
CH, homozygous, on the same haplotypes (cis), or bi-allelic (either CH and/or homozygous)
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Supplementary Table 12: Estimation of heritability and computation of polygenic risk by
applying LDSC and LDPred2 to HapMap3 SNPs to a dataset of 246k samples without
phase information. This is followed by prediction of polygenic risk for each individual within
a subset of 176k phased samples. PRS that satisfy our filtering criteria (based on LDSC 𝑃-value
and effective sample size) are subsequently incorporated (Methods). Evaluation of accuracy is
performed through a non-parametric bootstrap method, involving calculation of the AUC and
its associated standard errors.

Supplementary Table 13: Systematic search and conditional analysis of common variants
around significant gene-trait associations. This table presents the results of our systematic
search for common variants (MAF > 1%) located within 1 MB upstream and downstream
of any significant gene-trait associations (𝑃 < 5.25 × 10−5). Upon identifying a significant
common variant (𝑃 < 5 × 10−6), a conditional analysis was performed using that variant. If
other significant variants remained, they were included in subsequent iterations of the analysis
until either the signal was exhausted, or 25 iterations were completed. The table enumerates all
the resulting gene-traits and variants upon which we have conditioned.

Supplementary Table 14: Overview of significant results obtained before and after con-
ditioning on off-chromosome PRS, nearby common variation, and the burden of rare
variation. The analysis was also carried out for compound heterozygotes and homozygotes in-
dependently while conditioning on PRS when applicable (methods). In addition, we aggregated
rare variants by haplotype and modeled the number of affected haplotypes in each individual.
Subsequently, we performed two analyses: (1) an additive association analysis using the haplo-
type encoding, and (2) a recessive association analysis, conditioned on the additive encoding of
haplotypes.

Supplementary Table 15: Overview of nominally significant (𝑃 < 3.05 × 10−6) and
Bonferroni-corrected significant hits (𝑃 < 9.8× 10−9) hits from additive association analy-
sis by modeling the number of putatively disrupted haplotypes per individual. We restrict
to genes in which there are at least 10 total disrupted haplotypes in the population. Throughout
the analysis, we condition on off-chromosome PRS when applicable.

Supplementary Table 16: Significant associations (FDR<5%) in Cox proportional-hazards
models when comparing compound heterozygous and homozygous carriers against het-
erozygous carrier status. We take the polygenic contribution into account by conditioning on
off-chromosome PRS for heritable traits that pass our quality control cutoffs (Methods).

Supplementary Table 17: Cox proportional-hazards ratios when comparing compound
heterozygous and homozygous multiple variants on the same haplotype and wildtype
status versus heterozygous carrier status. We take the polygenic contribution into account
by conditioning on off-chromosome PRS for heritable traits that pass our quality control cutoffs
(Methods).
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Supplementary Table 18: Cox proportional-hazards ratios when comparing compound
heterozygous and homozygous, heterozygous and wildtype status against carriers of mul-
tiple variants on the same haplotype. We take the polygenic contribution into account by
conditioning on off-chromosome PRS for heritable traits that pass our quality control cutoffs
(Methods).

Supplementary Table 19: Median age of diagnosis across for pLoF+damaging missense
carriers that are heterozygous, homozygous, compound heterozygous, bi-allelic (homozy-
gous and/or compound heterozygous) and have multiple variants on the same haplotype
(cis).

Supplementary Table 20: Overview of variants co-occurring in significant (FDR < 5%)
Cox-proportional hazards gene-trait combinations
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