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ABSTRACT 

Seasonal peaks in infectious disease incidence put pressures on health services. 

Therefore, early warning of the timing and magnitude of peak activity during 

seasonal epidemics can provide information for public health practitioners to take 

appropriate action. Whilst many infectious diseases have predictable seasonality, 

newly emerging diseases and the impact of public health interventions can result in 

unprecedented seasonal activity. We propose a machine learning process for 

generating short-term forecasts, where models are selected based on their ability to 

correctly forecast peaks in activity and can be useful during the aforementioned 

atypical seasonal activity, in contrast to traditional modelling. We have validated our 

forecasts using typical and atypical seasonal activity, using respiratory syncytial virus 

(RSV) activity during 2019-2021 as an example. During the winter of 2020/21 the 

usual winter peak in RSV activity in England did not occur but was ‘deferred’ until the 

Spring of 2021. 

We compare a range of machine learning regression models, with alternate models 

including different independent variables, e.g. with or without seasonality or trend 

variables. We show that the best-fitting model which minimises daily forecast errors 

is not the best model for forecasting peaks when the selection criterion is based on 

peak timing and magnitude. Furthermore, we show that best-fitting models for typical 

seasons contain different variables to those for atypical black swan seasons. 

Specifically, including seasonality in models improves performance during typical 

seasons but worsens it for the atypical seasons. In conclusion, we have found that 

including seasonality in forecast models can result in overfitting, where the models 

are required to be used out-of-season or during atypical seasons. 
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INTRODUCTION 

Many respiratory and gastrointestinal infectious diseases have a seasonal 

component, resulting in annual peaks in disease incidence. These seasonal 

epidemics create an additional and significant strain on health services through 

increased emergency department (ED) visits, general practitioner (GP) consultations 

and hospital admissions and may require public health interventions to mitigate their 

effects (1, 2). Whilst typical seasonal activity can be modelled using historical data 

there is often variation in the timing and intensity (i.e. maximum number of cases) of 

annual peaks (3). Therefore, accurate short-term forecasts for the timing and 

intensity of seasonal peaks would provide very useful information for public health 

decision makers. 

There is substantial literature on forecasting, particularly for influenza (4-11). 

However, forecast models are usually assessed on whether they can detect 

increased activity associated with outbreaks or the accuracy of daily or weekly 

forecasts, not the accuracy of forecasting peak activity (12). Model selection 

methods that minimise forecast errors or maximise the sensitivity and specificity of 

outbreak detection will not necessarily provide models that are optimised for 

forecasting the timing and intensity of seasonal peaks. Therefore, we have 

developed a selection criterion based on the accuracy of forecasting peaks. By 

contrast, selection criteria that gives equal weight to all forecast errors in the training 

data, may perform well for most of the year but not around the crucial period of an 

annual peak. 

One key motivation for public health surveillance is that infectious diseases do not 

always follow historical seasonal patterns. Emerging diseases can result in dramatic 

‘out of season’ increases in healthcare use activity, such as the 2009 H1N1 influenza 

pandemic and the COVID-19 pandemic. Also, major interventions like the 

introduction of new vaccines or national lockdowns can change the seasonality of 

diseases in unpredictable ways. Thus, when activity diverges from seasonal norms 

and comparison with previous years is no longer informative, real-time forecasts of 

peaks are even more important. 

A model that is trained solely on historical data with consistent seasonality might be 

overfitted to a specific seasonal pattern and perform badly when atypical activity 
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occurs. However, we wish to design forecasts that perform well, even when seasonal 

activity is unprecedented, what we call ‘black swan’ seasons, defined after Nassim 

Taleb’s book, “The Black Swan” (13) about rare and unpredictable events. 

Therefore, we’ve validated our models’ using black swan seasons, comparing 

models trained with and without a seasonal component. 

Respiratory syncytial virus (RSV) has a major impact on health, particularly on young 

children and the elderly and is an example of a seasonal respiratory disease. In 

temperate countries such as the United Kingdom, RSV activity typically peaks in 

December (14, 15), which has been consistently monitored for several decades (16). 

However, recent years have provided examples of ‘black swan seasons’ for RSV. 

Firstly, during the winter of 2020/21 there was no usual seasonal increase and peak 

in activity for RSV. Second, there was a ‘deferred’ out-of-season peak in RSV during 

the spring/summer of 2021 (17). The most likely cause for this change in seasonality 

was the introduction of national lock-down measures during the Covid-19 pandemic 

which changed behaviours, thus reducing transmission during the winter of 2020/21 

(18-20). 

RSV activity is monitored by the UK Health Security Agency (UKHSA) using both 

laboratory surveillance and real-time syndromic surveillance (21). Syndromic 

surveillance involves monitoring health care diagnostic data that is available earlier 

than laboratory results. Thus, UKHSA syndromic surveillance data can be used to 

provide daily forecasts that could give early warning of peak activity (22). As a pilot 

example for our forecasting method, we use the number of calls to a national 

telephone health helpline (NHS 111) for cough in children aged under 5 years as a 

syndromic indicator for RSV (23), since 2013. We validate our approach using the 

black swan seasons for RSV of 2020 and 2021. 

In this paper we present a method for generating real-time short-term forecasts for 

the timing and intensity (or “height”) of seasonal epidemic peaks. We create a novel 

measure for selecting models, based on their specific accuracy in forecasting peaks. 

Furthermore, we use real examples of RSV ‘black swan seasons’ to validate whether 

models trained on historical data are overfitted when seasonality is included as a 

factor. The methods presented, use machine learning techniques to create 
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automated pipelines for generating forecasts, therefore methods are highly 

generalisable and quick to implement in existing surveillance systems. 

METHODS 

Overview 

We used a machine learning approach to create reproducible pipelines for 

generating forecasts. The approach included the following stages: formatting and 

splitting the data into ‘train’ and ‘test’ sets, training alternate models, creating peak 

forecasts, and validating the models. Each stage in the process is described in more 

detail below. The machine learning approach meant many alternative models could 

be compared concurrently, with consistency assured by using the same pipeline for 

training, testing, and validating models. 

Formatting and splitting the data 

Raw data was extracted as daily counts and then smoothed to remove day of the 

week and holiday effects and reveal the underlying epidemic trend. Our forecasting 

approach was to estimate the future development of an epidemic curve by 

considering where we currently are on the epidemic curve. Therefore, predictor 

variables included the current slope of the curve and current daily count, which we 

define in this paper as ‘intensity’. All models included the change in counts between 

the most recent two data points and the second order difference, to estimate both 

current trend and the current rate of change in that trend. The process for formatting 

data included normalising all variables prior to training models. Historical data was 

randomly split into a training and test data set. 80% of the data was used to train the 

models and the remaining 20% was used to independently test and compare the 

models. 

Training alternate models 

We tested a range of popular machine learning methods for our models and further 

expanded the number of models by including several variations. The regression 

learners we used for our models included linear regression, generalised linear 

models with elastic net regularization (with and without internal optimisation of 

parameter lambda), k-Nearest-Neighbour regression, Kriging regression, random 

regression forest, support vector machine for regression, and eXtreme Gradient 
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Boosting regression. Each of these eight different regression methods were applied 

with each of the variants described below. 

Three different approaches to modelling seasonality were tested: firstly, with no 

seasonal predictors, secondly with binary variables for months of the year and thirdly 

using Fourier transformations to model annual seasonality using two sin and two cos 

terms. Similarly, three different variants were used for modelling longer term trends: 

no trend, a linear trend, and a quadratic trend. To model more complex relationships 

than just linear between current intensity and forecast intensity, a variant was 

included in half the models with a quadratic term for intensity. Finally, in case single 

day spikes in activity disproportionately affected forecasts, a variant was included 

that used an average of the past three days, rather than just the most recent activity. 

Combining the different regression methods and the variants, gave 288 alternate 

models to be tested. 

Creating peak forecasts 

The datasets were labelled using the actual activity for the next 28 days as the 

targets that we were trying to forecast. Thus, each of the 288 alternate models were 

trained separately to forecast 1 day, 2 days, etc up to four weeks ahead. For each 

date and model, the highest of the 28 forecasts was then used as the forecast peak 

to be compared with the actual peak in activity over the 28 days. 

The model that is best at predicting one day ahead may not be the best for predicting 

further ahead. Therefore, we created an alternative ensemble peak forecast model 

that used different models for forecasting one day ahead and for longer lead times. 

We also created a third alternate peak forecast model that combined weighted 

forecasts for different forecast leads, i.e. the forecast for tomorrow’s activity, used a 

combination of the 1 day ahead forecast created today, the two day ahead forecast 

created yesterday, etc. The weighting for these weighted ensemble forecasts was 

based on the comparative accuracy of different lead times, so more weight was 

given to the one day ahead forecast which was more accurate than the 28 day 

ahead forecast etc. 

The accuracy of daily forecasts can be easily measured by considering the “forecast 

errors”, i.e. the absolute difference between daily forecasts and the actual labelled 

data. However, the accuracy of forecasting the peak in activity across 28 days is 
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more complex. Firstly, we want the peak forecast to perform well in two dimensions, 

timing and intensity. Secondly, we want to ensure that models perform as well as 

possible during seasonal peaks, with the timeliness of peak forecasts being less 

important when intensity is low across the whole 28 days. Therefore, we created a 

‘peak error’ measure that gives a score between 0 and 1 to all peak forecasts, 

considering timing and intensity. The peak error measure can be described using the 

following equation: 
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Where yd is the peak error on day d, xd is the actual smoothed count on day d, fd is 

the forecast peak intensity on day d, max(x) is the maximum of all actual and 

predicted smoothed counts, td is the difference in days between the date of the peak 

forecast and when the actual peak occurred, id is the difference between the peak 

forecast’s intensity and the actual peak, and max(i) is the maximum error seen in 

predicting forecast intensity. Our peak error measure is zero if the peak forecast 

correctly identifies both the date and intensity of the peak. The measure increases as 

the difference between peak forecast intensity and actual peak intensity increases. 

Also, the measure increases as the difference between the forecast date and actual 

date of peak increases, but this increase is less if both actual and forecast activity is 

low. Table 1 illustrates how this measure would score illustrative examples of counts 

and forecasts. 

RSV example 

For our pilot example we used the syndromic indicator, NHS 111 daily cough calls 

for children aged under 5 years in England. Data was available from the start of the 

NHS 111 service on 28 Sept 2013. The models were trained and tested on data prior 

to, 2019-20, i.e. 28/03/13 – 31/08/19. Forecast models were validated using data 

from three periods: a typical winter season 01/10/19 – 15/01/20, and two atypical 

periods; winter season 01/10/20 – 15/01/21 and 01/03/21 – 30/06/21. The second 

winter season was atypical because there was very little RSV activity, and the Spring 
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of 2021 was unusual because there was a ‘deferred’ peak in RSV activity. Including 

these ‘black swan seasons’ in our validation meant we could check if models were 

being overfitted, especially when seasonality was included as a model variant. 

 

RESULTS 

Between 28/03/13 and 31/08/19 there were 1,060,624 calls to NHS 111 where the 

primary diagnosis was cough in a child aged under 5 years. The daily volume had a 

mean of 489.4 calls, ranging from 52 to 2,609. During the ‘typical’ winter seasons 

peak timing varied from 25 November in 2018 to 27 December in 2014 & 2016, 

whilst peak intensity varied from 1,884 in 2013 to 2,609 in 2014. During the winter of 

2020/21 the peak was just 409 on 18 November. Between 01/03/21 and 30/06/21 

there was a peak of 2,589 on 31 May.  

During training, problems occurred when trying to fit methods using the Kriging 

regression method. This method would not converge due to an inability to invert the 

covariance matrix. Therefore, we used the diagonal inflation method, with a nugget 

set to 1e-8*variance, to overcome this issue. However, this method was considerably 

slower to converge than other methods and overall had a lower forecast accuracy, 

and so was excluded from further analysis. 

Absolute forecast errors were calculated for the test data set. The mean of the 

forecast errors increased monotonically with lead time, so that the overall mean 

forecast error for next day forecasts was 55.0, whilst for 28 day-ahead forecasts it 

was 113.6. Models using random forest regression had the lowest mean forecast 

error of 31.6, with extreme gradient boosting models having the highest average 

forecast errors, 289.6. The best-fitting model, with the lowest overall average 

forecast error was a random forest regression, with Fourier seasonality, a quadratic 

trend and using an average of the last 3 data points. The 12 models with the lowest 

forecast errors were all random forest regressions with Fourier seasonality. When 

stratifying forecast errors by lead time, the best-fitting models are still random forest 

regression with Fourier seasonality, except for the 1 day ahead forecasts. The best 

model for 1 day ahead forecasts, used linear regression with seasonality modelled 

by a variable for month. Supplementary tables 1-3 illustrate the mean peak error by 

regression type, model and the best-fitting models for each forecast lead. 
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An ensemble forecast model was created combining the linear regression model with 

the lowest mean forecast error for 1 day ahead forecasts, and the random forest 

model that performed best for forecasts more than 1 day ahead. Similarly, a 

weighted forecast model was created by combining forecasts made on different 

dates. When validated using the Winter of 2019/20, the ensemble forecast model 

had a mean peak error of 0.086 and the best weighted forecast model had a peak 

error of 0.077. However, when compared to non-ensemble models, some of these 

had lower mean peak errors. Therefore, the ensemble and weighted variants was 

not pursued further. 

When validated against the typical winter season of 2019/20 the model with the 

lowest mean peak error (0.052) was a generalised linear model (GLM) with elastic 

net regularization (with internally optimized lambda), incorporating month of year, a 

quadratic trend and quadratic term for intensity. By comparison, the mean peak 

errors were higher for the atypical seasons of winter 2020/21 and summer 2021. The 

model with the lowest mean peak error (0.138) for the winter of 2020/21 used 

support vector machine regression with a linear trend but no seasonality variables. 

The model with the lowest mean peak error (0.129) for the summer of 2021 used 

linear regression with a linear trend, a quadratic term for intensity and averaging over 

three data points. It was noticeable that the models with the lowest peak errors for 

the typical season included seasonality variables, whilst those for the atypical 

seasons did not. Figure 1 shows violin plots for the mean peak error by validation 

season stratified by seasonality variant. As a sensitivity analysis, table 3 shows the 

mean peak errors for each of the three validation seasons, stratified by regression 

type and model variants. The inclusion of seasonality variables is the single most 

important factor affecting peak errors. 

Models that included a seasonal component, forecast peaks during the Winter 

2020/21 season that did not occur. Similarly, seasonal models during the Summer of 

2021 predicted that activity would fall to usual summer levels whilst activity was still 

rising due to the deferred peak. Figures 2-4 show forecasts for two models, using 

linear regression with a quadratic trend, one model with no seasonal variables the 

other with Fourier transform coefficients to model seasonality. 
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DISCUSSION 

Here, we have used a machine learning approach to train models to forecast 

seasonal epidemics, comparing different regression methods and model variants. 

Interestingly, the models with the lowest daily forecast errors, i.e. differences 

between daily forecasts and actual counts, were not the models that were best at 

predicting the timing and intensity of a seasonal peak. The models with the lowest 

forecast errors were random forest regressions with Fourier seasonality, although 

the best model for one-day ahead forecasts used linear regression with months to 

model seasonality. The best model for predicting the timing and intensity of the 

2019/20 winter peak was a generalised linear model with elastic net regularization, 

incorporating month, a quadratic trend and a quadratic term for intensity. When 

validating using atypical seasons the best models for predicting peak timing and 

intensity did not include any seasonality variables.  

We developed a new peak error measure to validate models based on their ability to 

correctly forecast the timing and intensity of peak activity. Models that were optimal 

in terms of daily forecast errors, were not the same as those selected based on the 

peak error measure. One model may outperform a rival for most of the year when 

there is no epidemic and consequently have a lower mean forecast error, however, if 

it performs worse around an annual peak it will score worse under our measure. Our 

peak error measure will score a model poorly if it misses a seasonal peak or predicts 

a peak when one does not occur. We found that random forest regression models 

had the lowest forecast errors but were outperformed by GLM with elastic net 

regularization and by linear regression in terms of peak errors. Therefore, it is 

important that model selection is not done after the calculation of forecasts, but at 

the later stage after constructing peak forecasts. 

We validated our models using not just the typical winter season of 2019/20 but also 

with two ‘black swan seasons’; winter 2020/21, where there was no peak in activity 

and summer 2021, when there was a deferred peak. As was to be expected, models 

performed better during the typical season, which was like the historic data it was 

trained on. The three validation seasons, each resulted in different models being 

selected as having the lowest peak error. A sensitivity analysis, comparing the 

impact separately of regression type and each of the model variants, found that 
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seasonality had the biggest impact on peak errors across the three seasons. 

Including variables to model seasonality improved peak forecasts during a typical 

winter season. However, during atypical black swan seasons forecasts that did not 

model a regular seasonal epidemic performed better. Overall, models that did not 

include seasonal variables performed better across the three seasons studied. 

It is sometimes argued that machine learning models are more objective than theory-

based models because they are trained solely on the data, without any assumptions 

from the modeller about dynamics or causality. However, relying solely on historical 

data is a weakness when unprecedented or ‘black swan’ events occur. We have 

illustrated the problem of ‘black swan seasons’ using the example of RSV. If our 

forecast models were selected prior to 2020, the best forecast models would have 

included seasonality as RSV had a consistent single annual peak towards the end of 

each year. However, these forecast models would have performed poorly during 

2020 and 2021. With hindsight we can see that a better approach would have been 

to not include seasonality in our models, to allow for the possibility that peaks could 

occur at different times of year to those previously seen. This is an important insight 

into the dangers of overfitting models based solely on historical data. When we have 

reason to believe that unprecedented events could occur, we need to avoid including 

variables that constrain our models to behave as if the past includes all possibilities. 

This is particularly true in epidemiology where emerging diseases and climate 

change mean that the future is going to include more unprecedented events. 

However, to accept this principle means on occasion selecting models that are not 

the best fit to our data. 

One method, developed specifically because the timing of seasonal epidemics varies 

is the Moving Epidemic Method (MEM) (3). MEM is used across Europe and in many 

other countries as a standard way to assess the onset of the influenza season and 

its current intensity, although it is not a forecasting tool.  

Methods of model selection vary depending on the forecasting approach, however 

an accepted minimum standard is that models should be validated using real data 

that was not used in training the forecasts. For example, Zarebski et al, describe a 

method of selecting between mechanistic models which use a Bayes factor 

approach to show which model best fits the actual influenza epidemic forecast (24). 
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Moss et al, used a Bayesian approach to model seasonal influenza epidemics in 

Australia and integrate them into public health practice (8). They acknowledge that 

forecast uncertainty can be reduced by assuming that seasons will stay within 

expected parameters, and initially calibrated their models to reflect the duration, 

timing, and intensity of previous seasons. However, when the 2017 season was 

outside of their model parameters, exceeding both historical data and expert 

estimates, then re-calibration was necessary. The Centers for Disease Control and 

Prevention host an annual influenza season forecasting challenge (25). The 2015-16 

challenge used separate metrics for assessing models’ ability to predict the onset 

week, peak week, and peak intensity of seasonal influenza. Whilst they did not 

consider out-of-season influenza they did note that forecasts were worse where peak 

timing and intensity were atypical. Importantly, forecasts that are trained solely on 

winter data, have not been validated for predicting atypical peaks at other times of 

year. 

We have deliberately tried to adopt a simple, generalisable, easy to apply approach 

that can be extended to other seasonal epidemics, either respiratory or 

gastrointestinal. Therefore, we have not attempted to model specific disease 

characteristics and our forecasts are unlikely to be as accurate as transmission 

models which may consider many factors, such as vaccine effectiveness or weather 

variables. Also, we have focussed on syndromic data, which may predict pressures 

on health care systems but does not necessarily align exactly with community 

incidence of a specific disease. Thus, an emerging respiratory disease may produce 

similar symptoms to influenza or RSV seasons used to train a forecast model, but 

the epidemic curve may well have new characteristics. Furthermore, our approach to 

forecasting is based on short-term forecasts made in real-time, therefore we can only 

realistically provide a short window of early warning of peak activity once an 

epidemic has already started. We have not attempted the much harder task of 

predicting the onset of an epidemic before it has started.  

In practice, the utility of our approach will depend on the usefulness of our forecasts 

for public health decision makers during seasonal and atypical epidemics. Therefore, 

we propose applying our example model as a pilot for RSV surveillance within 

England, and if successful extending to influenza and COVID-19 surveillance. 

Further work, to evaluate the utility of our approach will also require developing 
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methods to communicate the uncertainty around estimates for peak intensity and 

timing to users. 

In conclusion, we have developed a process for training and selecting forecast 

models that can be applied to real-time public health surveillance data. We have 

developed a new selection criterion based on the peak error measure which 

specifically chooses models that are best at identifying the timing and intensity of 

seasonal epidemics. Furthermore, we have demonstrated that although model fit can 

be improved by modelling seasonality this can result in over-fitting when 

unprecedented ‘black swan seasons’ occur.
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FIGURES 

Figure 1: Violin plot of mean peak error by validation season, stratified by 

seasonality variant. 
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Figure 2: Forecasts for NHS 111 cough calls in under 5 years on 30 November 

2019. Blue triangles are forecast with modelled seasonality, red squares without 

seasonality. The black dot and date refer to the actual observed peak of activity 

during the period. 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2023. ; https://doi.org/10.1101/2023.06.29.23291793doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.29.23291793
http://creativecommons.org/licenses/by/4.0/


20 
 

Figure 3: Forecasts for NHS 111 cough calls in under 5 years on 30 November 

2020. Blue triangles are forecast with modelled seasonality, red squares without 

seasonality. The black dot and date refer to the actual observed peak of activity 

during the period. 
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Figure 4: Forecasts for NHS 111 cough calls in under 5 years on 27 May 2021. Blue 

triangles are forecast with modelled seasonality, red squares without seasonality. 

The black dot and date refer to the actual observed peak of activity during the period. 
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TABLES 

Table 1: Illustrative example of peak forecasts for NHS 111 cough calls and peak 

error measures (counts of cough calls and forecasts range 5-1000). 

Date of 

forecast 

Actual peak number of calls 

in next 28 days 

Forecast peak Peak error 

measure 

30 November 
1000 on 28 December 1000 on 1 

December 
0.333 

30 November 
1000 on 28 December 1000 on 15 

December 
0.160 

30 November 
1000 on 28 December 1000 on 28 

December 
0.000 

30 November 
1000 on 28 December 5 on 28 

December 
0.333 

30 November 
1000 on 28 December 500 on 28 

December 
0.168 

30 November 
1000 on 28 December 5 on 1 

December 
1.000 

30 November 
1000 on 28 December 500 on 15 

December 
0.409 

31 May 5 on 28 June 5 on 28 June 0.000 

31 May 5 on 28 June 5 on 1 June 0.002 

31 May 5 on 28 June 500 on 28 June 0.083 

31 May 5 on 28 June 1000 on 1 June 1.000 
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Table 2: Peak intensity and timing of cough calls in children aged less than 5 years 

by RSV season defined as 1 October to 15 January. 

RSV Season Date of peak intensity Peak Intensity 

13/14 21 December 1,884 

14/15 27 December 2,609 

15/16 6 December 2,251 

16/17 27 December 2,091 

17/18 26 November 2,069 

18/19 25 November 1,942 

19/20 1 December 2,152 

20/21 18 November 409 

1 Mar - 30 June 21 31 May 2,589 
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Table 3: Mean peak error by validation season, stratified by regression type and 

model variant. 

 Validation season All 

seasons  Winter 

2019/20 

Winter 

2020/21 

Summer 

2021 

All models    

0.141     0.388     0.239  

   

0.256  

Regression type  

Generalised linear models with 

elastic net regularization (with 

internally optimized lambda) 

   

0.120     0.394     0.195  

   

0.236  

Linear 

   

0.116     0.372     0.223  

   

0.237  

Random Forest 

   

0.132     0.359     0.229  

   

0.240  

Generalised linear models with 

elastic net regularization (without 

internally optimized lambda) 

   

0.138     0.398     0.201  

   

0.246  

Support vector machines 

   

0.174     0.331     0.305  

   

0.270  

Extreme gradient boosting 

   

0.144     0.448     0.221  

   

0.271  

k-nearest-neighbour 

   

0.160     0.415     0.301  

   

0.292  

Seasonality variables included  

None 

   

0.225     0.302     0.188  

   

0.239  

months 

   

0.101     0.398     0.272  

   

0.257  

Fourier 

   

0.096     0.463     0.258  

   

0.273  

Trend variables included 
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None 

   

0.133     0.383     0.232  

   

0.250  

Linear 

   

0.141     0.392     0.236  

   

0.256  

quadratic 

   

0.148     0.388     0.251  

   

0.262  

Quadratic term for intensity included 

Yes 

   

0.137     0.381     0.236  

   

0.251  

No 

   

0.144     0.394     0.243  

   

0.261  

Forecast based on single day or average of three days 

Three days 

   

0.140     0.387     0.239  

   

0.255  

Single day 

   

0.141     0.389     0.240  

   

0.257  
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