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ABSTRACT

A timely diagnosis of autism is paramount to allow early therapeutic intervention in preschoolers. Deep Learning (DL) tools
have been increasingly used to identify specific autistic symptoms, and offer promises for automated detection of autism at an
early age. Here, we leverage a multi-modal approach by combining two neural networks trained on video and audio features
of semi-standardized social interactions in a sample of 160 children aged 1 to 5 years old. Our ensemble model performs
with an accuracy of 82.5% (F1 score: 0.816, Precision: 0.775, Recall: 0.861) for ASD screening. Additional combinations of our
model were developed to achieve higher specificity (92.5%, i.e., few false negatives) or sensitivity (90%, i.e. few false positives).
Finally, we found a relationship between the neural network modalities and specific audio versus video ASD characteristics,
bringing evidence that our neural network implementation was effective in taking into account different features that are currently
standardized under the gold standard ASD assessment.

Introduction
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by a wide range of symptoms
across two main dimensions: social and nonsocial. The social dimension spans the domains of verbal and nonverbal social
communication, interpersonal interactions, and socio-emotional reciprocity. The symptoms in the nonsocial dimension include
the repetitive and restricted patterns of behaviors and sensory issues exerting various levels of impairment in the everyday social
functioning and autonomy of the individual1. ASD can be present with or without cognitive and language delay, widening
the breadth of clinical presentations. In absence of any reliable biomarker identified to date, the ASD diagnosis depends on
precisely identifying entangled behavioral patterns. The current gold-standard diagnostic procedure is the product of convergent
clinical and research work over the past four decades aimed at standardizing the clinical practice of accurately detecting and
measuring symptoms2–5. The heterogeneity of ASD manifestations is a major obstacle to timely diagnosis and personalized
medicine in autism6. Despite the diagnosis now being possible at ages younger than 2, the latency between the first observable
signs of autism and the age of diagnosis usually spans years7. Convergent findings established the efficiency of early and
intensive behavioral intervention in improving outcomes of individuals with autism8–10. According to current clinical guidelines,
early diagnosis is a crucial catalyst for early intervention11, which in turn is found to be most efficient when applied during the
period of enhanced brain plasticity12. As such, an efficient and reliable screening is a critical first step to provide access to
individualized and adequate support for the children who might need it.

Machine learning and computer vision models have been increasingly used to implement objective and reliable detection of
autism to eventually overcome the shortcomings of the classical questionnaire-based screening tools13, 14. The first computer
vision (CV) models to detect autism focused mostly on nonsocial, motor symptoms15. These models have the advantage
of being relatively context-independent and thus, they are easier to operationalize than the symptoms in the social domain
with a more contextual ontology. Social symptoms often transcend the isolated instances of behaviors and arise from specific
mismatches in the dynamic between agents and their social context. In the search for potential biomarkers of ASD disorder,
previous studies investigated behaviors such as postural asymmetry16, gait patterns17, gesture motion energy18, or frequency of
stereotyped behaviors19, 20. These results have validated the possibility of automating the measurement of known behavioral
features in autism. For social symptoms, the development of automatized measures has often implied standardization of the
social conditions. For example, in the response to name paradigm, the child was engaged on a tablet screen while her/his name
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was being called21. Given the complexity of social symptoms, over-standardization seems a necessary first step to allow a
precise readout by carefully controlling the feature context at the expense of less ecological feature presentation. Unsurprisingly,
there have been fewer attempts to automatize behavior measures of autism in the context of free social interactions. Using
segments of free-play interactions, Budman and colleagues22 measured instances of approach/avoidance behaviors in children
with ASD. Similarly, a laboratory task measuring the dyadic synchrony23 highlighted a specific “synchrony signature” in
dyads involving at least one individual with ASD. The finding of reduced interpersonal synchrony was corroborated by an
observational study using a more ecological approach of semi-standardized interactions24. In previous work25, we developed a
machine learning approach that considers behaviors in their natural (unconstrained) context of social interaction with an adult
during semi-structured diagnostic assessment (ADOS)4. The focus was on nonverbal social interaction features through pose
estimation26. The classifier is sensitive to temporal social interaction features in a low dimension domain and distinguishes
between ASD and TD children with an accuracy of 80%25. Thus, the unconstrained, dynamic, nonverbal features of social
interaction hold promise for developing novel automated screening tools for ASD diagnosis.

The above-mentioned studies focused on social interaction analyses from a computer vision perspective, considering mostly
visual aspects of the social exchange. A line of research delved into another dimension of information that can be analyzed
with automatized measures, namely vocal and verbal features. Indeed, atypicalities in vocal and verbal production were
noted in the first descriptions of the disorder27, 28 and still are considered one of the core diagnostic features of the disorder1.
Individuals with ASD often present language delay, which, historically, has constituted one of the principal defining features
of the disorder29. Longitudinal studies have shown that, throughout their development, around 80% of autistic individuals
develop functional language. Nevertheless, atypicalities in acoustic language features, particularly prosody, remain a salient
feature of their verbal production. Indeed, alteration of specific acoustic features of vocal productions, such as pitch mean and
variability, have been consistently reported in autistic individuals of all ages30, 31. As altered prosody can also be measured
without phrase speech, measuring specific acoustic vocal features could become a reliable marker of autism, even early on:
Santos et al.32 have achieved an impressive accuracy of 97% in detecting autism at only 18 months old. Most studies use
either manual diarization protocols or voice extraction fostered by using a child-worn device (such as LENA33), to analyze the
characteristics of the child’s voice. The tedious process of manual voice identification, or the need to use a specific child-worn
device, limits the possibility of analyzing video recordings that would have been collected without the specific device in
diverse clinical or research contexts, thus restraining scalability. Also, focusing only on the child’s vocal productions alone,
without analyzing them in the context of social interaction, inherently reduces the richness of the information that can be
extracted. Several studies have shown the promising potential of analyzing reciprocal features of the conversation, such as
turn-taking34, 35. Finally, prosodic features of the adult interacting with the child have also been shown to be very informative,
as caregivers or psychologists tend to attune their prosody to the child that they are addressing and align the complexity of their
verbal production to the child’s language structure36, 37. As such, one could hypothesize that the entire audio soundtrack of a
social interaction contains a rich set of information about both the characteristics of the child’s vocal production as well as a
signature of the mutual vocal & verbal choreography that has the potential to represent a powerful autism screening tool. To
our knowledge, no study has tried to use a global acoustic pattern of social interaction (without explicit separation of speaker
channels) for autism diagnosis prediction.

The present study builds upon our previous work that focused on the nonverbal features of social interaction to identify
preschoolers with autism25. Here we assess the possibility of yielding an accurate classification of autism spectrum disorder
based on the acoustic information from the semi-structured social interaction between a child and an adult. We adopt a
comprehensive strategy for the audio analysis as in our video analyses. We consider the entire audio band of the social
interaction session recorded in the context of the diagnosis session (Autism Diagnosis Observation Schedule-ADOS3, 4). We
preserve the natural flow of social interaction acoustics features and test if this global acoustic pattern is predictive of ASD
diagnosis. We then test the prediction accuracy achieved by video and audio neural networks alone could be improved if the
results of the two networks were combined. Finally, we analyzed the relationship between the audio and video neural networks
concerning measures of autistic symptoms to cross-validate their clinical relevance. In the present study, we used a sample
of 160 participants (80 typically developing (TD) children and 80 children with ASD, aged from 1.1–5.1 years old) who had
undergone a video-recorded ADOS assessment. Our video neural network distinguished children with ASD with an accuracy
of 80%, while the accuracy of the audio network was 79%. The combination of both networks yielded a prediction accuracy of
83%.

Results
Autism Prediction Using Video Features
To predict autism diagnosis solely from ADOS video features, we used a slightly modified approach compared to the one used
in our previous study25 (see Methods). We used pose estimation on the ADOS recordings and subsequently divided them into
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5-second segments, then implemented a modified version of the Convolutional Network VGG1638 Long Short-Term Memory
(LSTM) recurrent neural network architecture39 (see Figure 1). We then trained the neural network using an 80-20 validation
split.

Our model achieved an 80% prediction accuracy and an F1 score of 0.789 (see Table 1), confirming previous results using a
smaller dataset25.

Figure 1. The Imagenet pre-trained Convolutional Network VGG16 is used to extract high dimensional features from 5-second segment
frames and fed into a Long Short-Term Memory (LSTM) network operating with 512 units. Finally, the output of the LSTM is followed by
512 fully connected ReLU-activated layers and a softmax layer yielding two prediction outputs for the given segment. The segment-wise
classification is aggregated for the video’s duration to obtain a final prediction value (ranging from 0 to 1) that we denote as “ASD
probability.”. The entire video is classified as belonging to a child with ASD if the mean value of ASD probability is superior to 0.5.

Autism Prediction using Audio Features
We then explored the potential of accurately predicting autism from the full audio band of the ADOS assessment. After
normalizing the audio recordings and splitting them into 10-second segments, we extracted several acoustic features40–44 that
were then passed through a convolutional neural network (see Figure 2 and Methods). Following standard model hyperparameter
tuning procedure, we deployed the 80-20 training validation split. This model yielded a final accuracy of 78.8% (F1 score:
0.779) in identifying autism solely on the audio track of the ADOS assessment (see Table 1).

Autism Prediction using Combined Video and Audio Modalities

Parameter Video Model Audio Model Ensemble Model OR Model AND Model
Accuracy 0.8 0.788 0.825 0.825 0.763
Precision (Positive Predicted Values) 0.833 0.811 0.861 0.783 0.889
Recall (Sensitivity) 0.75 0.75 0.775 0.9 0.6
Specificity 0.85 0.825 0.875 0.75 0.925
Negative Predicted Values 0.773 0.767 0.796 0.882 0.698
F1 Score 0.789 0.779 0.816 0.837 0.716

Table 1. Confusion Matrix representing the accuracy, precision, recall, specificity, negative predicted values, and F1-score for Audio, Video,
and Ensemble Neural Network Models on a testing set of 80 videos. We also report on two other models for which we take the final
prediction as ASD if either audio or video model predicts a subject as ASD (OR Model) and we take the final prediction as ASD only if both
models predict a subject as ASD (AND model).

We explored the potential of combining the two modalities (Audio & Video) to tune the properties of our final prediction model
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Figure 2. Audio neural network architecture. We used Librosa to extract Mel Frequency Cepstral coefficients, Mel Spectrogram, Tonal
Centroid, Chromagram, and Spectral Contrast features. The neural network takes mean along the time axis for these features and inputs them
into a convolutional neural network consisting of two one-dimensional convolutional layers. The segment-wise classifications are aggregated
for the duration of the audio to obtain a final prediction value (ranging from 0 to 1), which refers to ASD probability. The entire audio band is
classified as belonging to a child with ASD if the mean value of ASD probability is superior to 0.5.

regarding sensitivity, specificity, or accuracy (see Table 1). The OR Model yielded the highest sensitivity (0.9), with the lowest
specificity (0.75). Such a model with a low rate of false negative results could prove useful as a screening tool, especially
provided its high accuracy (82.5%) (see Supplementary Figure S4 A). Conversely, the AND Model gave a low rate of false
positives, with the highest specificity (0.925), lowest sensitivity (0.6) and low accuracy (76.3%) (see Supplementary Figure
S4 B). The best trade-off between the sensitivity and specificity was obtained using a decision tree (see Figure 3), where we
retained the prediction from the video-neural network when the confidence was higher than 60%, otherwise replaced by the
prediction from the audio neural network. This approach yielded an accuracy of 82.5% over the 80 videos from the testing
sample (see Table 1). In only 8.75% of the cases, both neural networks failed to correctly predict autism spectrum disorder in
children (see Supplementary Figure S5).

Figure 3. Decision tree combining predictions from combined video and audio neural networks. If the confidence of the video neural
network is less than 60%, the model uses predictions provided by the audio neural network.
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Audio and Video Neural Network derived ASD Probability in the light of the Clinical Phenotype
Relating the accuracy of the neural network with specific ASD characteristics associated with better discrimination audio and
video modalities, we used a random forest regression model45 for each modality to estimate the contribution of each of the
27 ADOS items to the confidence of the ASD prediction. For the video neural network, we found that the ADOS items that
were more strongly associated with the ASD probability were the Initiation of Joint Attention, Quality of Social Overtures, the
presence of Unusual Eye Contact as well as the occurrence of Pointing Gestures (see Figure 5 C & D). For the audio neural
network, the ADOS items that were most strongly related to the ASD probability were the occurrence of Showing Behavior (to
share interest), Pointing Gesture, Unusual Sensory Exploration, and Hand Mannerisms (see Figure 5 C & D).

Figure 4. Residuals obtained after running the regression model over the 27 ADOS-2 items and computing the Increased Mean Square
Error with respect to them predicting the confidence of the video or audio neural network in the random forest. The ADOS items included
were: Frequency of Spontaneous Vocalization, Intonation of Vocalizations/Verbalizations, Immediate Echolalia, Stereotyped/Idiosyncratic
Use of Words or Phrases, Pointing, Gestures, Unusual Eye Contact, Facial Expressions Directed at Others, Integration of Gaze and Other
Behaviors during Social Overtures (SO), Shared Enjoyment in Interaction, Response to Name, Requesting, Showing, Giving, Spontaneous
Initiation of Joint Attention (IJA), Response to Joint Attention (RJA), Quality of Social Overtures, Amount of Social Overtures/Maintenance
of Attention: Examiner, Quality of Social Response, Quantity of Social Communication, Overall Quality of Rapport/Relation, Functional
Play with Objects, Imagination / Creativity, Unusual Sensory Interest in Play Material/Person, Hand and Finger, and Other Complex
Mannerisms, Unusually Repetitive Interests or Stereotyped Behaviors. The most discriminant features for video neural network are IJA,
Quality of Social Overtures, and visual contact. Moreover, Sensory Interests, Showing, and Hand mannerisms are the 3 most discriminant
features for the audio neural network.

Finally, we created a third random forest model to normalize and compare the Increased Mean Square Error obtained from
the audio and video neural network for the 27 items of ADOS. These normalized values were then used to create a regression
model46 to segregate ADOS items that were dependent on video, audio, or both the neural network’s confidence (see Figure 4).
Our results show that the 3 most discriminant items based on video predictions were Initiating joint attention (IJA), Quality
of social overtures (SO), and Visual contact. For the audio predictions, the 3 most discriminant items were Sensory interests,
Showing, and Hand mannerisms. The least consistent items across audio and video predictions were Showing, Initiating
Joint Attention (IJA), Giving, and Gestures. Strikingly, a large body of the ADOS items was consistent across both audio and
video predictions (i.e., close to the regression line in Figure 4). Indeed, with a few exceptions, all ADOS-derived measures of
symptoms are multimodal and reflect a cumulative (for the session duration) appreciation of behavioral patterns. This result is
promising as it shows that our neural network implementation effectively considered different features currently standardized
under the gold standard ASD assessment.

Discussion
We presented a multi-modal approach to the automated detection of autism based on semi-structured interaction between a
child and an examiner. The present work extends our previous work on the automated identification of autism in young children
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Figure 5. A. Sorted values of increase in Mean square error (%IncMSE) of the 27 ADOS-2 items against the confidence of the audio neural
network predictions. B. A multi-way importance plot highlighting the 10 most important ADOS-2 items for estimating the confidence of the
audio neural network via random regression forest modeling. C. Sorted values of increase in MSE for the 27 ADOS-2 items against the
confidence of video neural network predictions. D.A multi-way plot highlighting the 10 most important ADOS-2 items for estimating the
confidence of the video neural network via random regression forest modeling.

using spatiotemporal features from the pose estimation applied to videos of semi-structured social interaction25. Here, using the
late fusion approach47, we combine the results from the neural network using the pose estimation with the model operating
on the acoustic features of the same interaction scenes used for training the video neural network. Relying on only visual
information, we obtain an accuracy of 80% over a larger sample and further strengthen the evidence that autism diagnosis
can be robustly identified from pose estimation in preschoolers. Using solely the audio information, we obtained a similarly
high prediction accuracy (78.8%). While combining the video and audio models did not significantly improve the prediction
accuracy, we found that different combinations of the predictions from the neural networks could result in models with either
higher sensitivity (0.9) or higher specificity (0.925), bringing flexibility for adapting screening models depending on the needs.
For further validation, we examined which ADOS items better discriminate autism diagnosis depending on the modality used
for automated classification. We found that the quality of eye contact, as well as social overtures, are better captured in the
visual neural network. Sensory interests and mannerisms were better captured in the audio neural network

Our results are intriguing because using only acoustic features or combining them with video features yields a high accuracy
(i.e., ≈ 80%), comparable to video features only. The high accuracy of the audio neural network is particularly striking because
the audio recordings used for classification contained the full, unedited, acoustic recording of the ADOS examination, including
the child’s vocal productions, but also those from the psychologist, as well as from the parents together with the ambient
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noise. In our recent publication, we showed that the duration of a preschooler’s vocal productions that could be identified by a
diarization algorithm over the entire ADOS assessment was, on average, 3 minutes48, which corresponds to only 5-8% of the
ADOS duration. The total duration of the child’s vocalizations was twice as lower for children who did not yet develop phrase
speech. The low amount of child’s speech in our ADOS recorded with preschoolers suggests that, in addition to relying on the
child’s voice features, our model considered a more broad acoustic signature of social interaction. Indeed, social interaction is a
highly dynamic phenomenon; what each agent does or does not do will inevitably affect its quality. Bone and colleagues36

have shown that trained psychologist attune their prosody depending on the severity of autistic symptoms of the child while
performing the ADOS with children aged 5-17 years old. The authors even reported that the psychologist’s prosodic cues better
predicted the child’s autistic symptom severity than the prosody of the child himself. Additionally, an aspect of non-vocal
information that might have helped the neural network to discriminate between children with and without autism resides in
the presence of peculiar non-vocal acoustic features (i.e., ambient sound), such as any repetitive sound that would reflect an
increased need for sensory stimulation in autistic children (e.g., repeatedly dropping objects or banging them, or perseverating
on a musical toy...). The fact that we observed that sensory interests are the ADOS item that correlated the most with the
diagnostic prediction based on the audio information would support the hypothesis that these non-vocal sounds played a role in
the classification. The observation that autism can be accurately classified based solely on acoustic recordings of the ADOS
assessment holds great potential for scaling autism screening. Indeed, in a context where the use of diarization pipelines to
isolate speech from child and adult is not yet performing perfectly, and particularly when trying to discriminate between an
adult female and a child’s voice48, the use of machine learning over audio recordings from segments of interactive play could
not only prove to be a faster and more scalable option but also one that holds potential to reveal insightful information on the
patterns of socio-communicative interaction between the child and an adult.

Given that the two neural networks achieved similar performance, the simple ensemble model did not outperform the results
of any of the two networks taken separately. We would have expected each modality to capture different aspects of the
broad autism spectrum symptoms uniquely. This was the case for some symptoms, such as sensory interests more related to
audio prediction or the initiation of joint attention more related to video prediction. However, most autistic symptoms were
relatively similarly predicted by both modalities, concordant with their complex and multimodal nature. Future work will
be required to leverage better the different features that each neural network discriminates to combine them more efficiently.
In the present work, we explored two ways of late fusion to achieve a combination that is either more specific (92.5%) or
more sensitive (90%). In a context where early identification of children with autism is of utmost importance to provide them
access to adequate intervention for supporting their development49, 50, a highly sensitive screening tool would be most useful
to minimize the number of children who would miss the opportunity of a further comprehensive assessment and opportunity
for accessing intervention when needed. Our results strongly advocate for the feasibility of such a sensitive screening test
exploiting naturalistic excerpts of the child’s social interactions in the natural environment. Unlike previous approaches32, 51,
the hereby solution does not require the child to wear any specific device, opening avenues for even more flexible and scalable
screening solutions based on home video recordings. On the contrary, in circumstances when one might want to favor specificity
over sensitivity, for instance, in the case of a primary practitioner concerned about a child’s development and who would like
to confirm a prior suspicion of autism before referring the family for further in-depth assessment. As such, we suggest that
using neural networks that combine audio and video information from naturalistic excerpts of social interaction is a promising
direction for developing adaptive screening tools for low-cost, large-scale screening of autism spectrum disorder.

Advocating for combining information from different modalities should come as no surprise for clinicians involved in the
diagnostic process. Indeed, actual best practices for diagnosis of autism recommend that the information obtained from the direct
assessment of symptoms should be combined with detailed developmental history, cognitive and adaptive functioning measures,
as well as genetic, medical, psychiatric, and behavioral conditions52. This inherently multi-modal process of clinician’s
decision-making however remains yet to be more often exploited in the machine learning models aiming at the detection of signs
of autism. Given the need for scalable tools that can be applied in less standardized contexts, the complementarity characteristic
of multi-modal information could be an asset, especially in the contexts of lower validity47, 53. In other domains, such as brain
imaging, combining different modalities has shown to represent a promising manner to increase classification accuracy54–56. A
recent study that used acoustic analyses combined with a computer vision approach applied in the context of the paradigm
of response to name has achieved 92% consistency with clinical ground-truth ratings57. Recently a large, multi-site study
implemented a multi-modal, app-based approach to screening for autism signs that significantly outperformed the traditional
parent-report screening questionnaires58. The multimodality approach shows tremendous potential not only in early detection
but also in the successful stratification of subtypes of autism. Indeed, a recent study using a wide array of patient health data,
such as electronic health records, healthcare claims, familial whole-exome sequences, and neurodevelopmental expression
patterns, together with state-of-the-art AI methodology, managed to successfully isolate a subtype of autism characterized by
dyslipidemia59. Future studies should be conducted to explore whether multimodal assessments automatically extracted from
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simple audio-video recordings of social interactions hold a similar potential for identifying reliable and meaningful autism
subgroups, which would represent a critical step toward precision medicine for autism.

The constant growth seen in the development of novel technologies and their scalability holds a true potential to radically
change the landscape of psychiatry in the years to come. The ability to efficiently integrate meaningful features into a coherent
pattern, characterizing the thought process of highly skilled clinicians, is now possible on an ever-increasing scale. In the case
of a disorder as heterogeneous as autism, the possibility to efficiently extract and combine huge amounts of meaningful features
is a critical step towards much-needed more reliable screening, diagnosis, and progress monitoring.

Methods
Ethics
The study and protocols conducted in this research were approved by the Ethics Committee of the Faculty of Medicine at
the University of Geneva, Switzerland. The methods employed in this study strictly adhered to the relevant guidelines and
regulations set forth by the University of Geneva. Informed written consent was obtained from a parent and/or legal guardian
for all children participating in the study. Children diagnosed with Autism Spectrum Disorder (ASD) met the clinical criteria
outlined in DSM-51, and their diagnosis was further supported by employing gold standard diagnostic assessments (refer to the
Supplementary section for more details). Typically developing (TD) children underwent screening to ensure the absence of any
known neurological or psychiatric conditions and no history of ASD in any first-degree relatives.

Participants
Participants were enrolled as part of the Geneva Autism Cohort, a longitudinal project aiming to better understand the early
development of children with autism spectrum disorder (ASD)60–62. The dataset is composed of 80 children with ASD (2.68 ±
0.89 years old; 48 males, 32 females) as well as 80 typically developing (TD) children matched for age (2.46 ± 0.98 years old)
and gender (48 males, 32 females). Children were included in the ASD group following expert clinical diagnosis using the
DSM-5 criteria63, and upon confirmation by gold standard diagnostic assessment (see below). TD children were screened for
the presence of any known neurological or psychiatric disorder and had no known first-degree relative with ASD.

All children underwent the Autism Diagnosis Observation Schedule (ADOS)3, 4, which was video recorded. All autistic children
included in the current study had ADOS scores superior to the threshold for autism. As in our previous work25 for the measure
of the cognitive level, we used Best Estimate Intellectual Quotient64, 65, a measure that amalgamates the most pertinent cognitive
assessment measures for each child. In addition, adaptive functioning was estimated using the Vineland Adaptive Behavior
Scales, second edition (VABS-II)66.

A detailed description of the sample characteristics can be found in Supplementary Table S1). All participants or their legal
guardians gave written permission following relevant regulations and guidelines set forth by the Faculty of Medicine Ethics
Committee of Geneva University, Switzerland.

Video and Audio Datasets
To obtain a training and testing sample we used a 50-50 split of the sample of 160 individuals. Both training and testing samples
included 40 children with Autism Spectrum Disorder (ASD) and 40 typically-developing children matched for age, sex, and the
ADOS module that was used (see Supplementary Table S1).

Video Neural Network
For the analyses of the visual features from the ADOS videos, we adopted an approach similar to the one used in previous
work25. We first proceeded to dimensionality reduction by applying pose estimation26 on the ADOS session to isolate body
movements and gesture-based interactions. The extracted skeletal key points were plotted over a plain black background
preserving a visual gist of the social interaction between the examiner and the child. The reduced-dimensionality videos were
further down-scaled into 320x240 resolution – similar to UCF-10167. Videos were then split into 5-second segments to avoid
over-fitting (see Supplementary Table S1). The resulting processed dataset consisted of 43633 five-second video clips in
training (Average Video Length: 45.45 min; Total Duration: 60.601 hours) and 44796 video clips in the testing set (Average
Video Length: 46.66 min; Total Duration: 62.22 hours) for the video classifier.

Our model architecture takes the 5-second video clips as inputs. It uses an ImageNet pre-trained VGG16 convolutional neural
network to extract high-dimensional features from each frame of the inputted segment. This was done by removing the fully
connected dense layers in the VGG16 architecture. These high dimensional features were input to 512 hidden layered LSTM
RNN68 followed by 512 fully connected Dense Layers. We trained the neural network using an 80-20 training validation split.
We carried out hyperparameter tuning and observed the best configuration for the VGG16 LSTM RNN to be at 625 batch size
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and 100 epochs. To reduce overfitting, we introduced a dropout of 0.5 followed by a softmax classification layer69 that gives an
output of 2 classes ASD and TD. To compute the loss we use categorical cross entropy70 with a rmsprop optimizer71.

We then used the trained model to carry out predictions over the pre-processed 5-second video clips from the testing set to
obtain segment-wise predictions (see Supplementary Figure S3). In the next step, we only retain the predictions that have a
confidence of more than 90% which on average removes 29% of the segment-wise predictions across the testing dataset, yet at
a lower confidence by the video neural network.

This approach of retaining only segments predicted with more than 90% confidence ensures prediction performance stability.

Finally, the segment-wise predictions are further averaged for the duration of the entire video. When the averaged prediction
confidence for ASD is above 50%, the video is assigned to the ASD class, otherwise the predicted class is TD (see Figure 1).

Audio Neural Network
Upon extraction of the audio track from the ADOS recording, audio files were converted to a 2-channel, 44kHZ sample rate,
and 192k bitrate format. This standardized format was chosen to homogenize the audio format from different microphones
used for ADOS recordings and match the parameters of audio samples in the Urban8K dataset72, a dataset used to benchmark
several audio neural networks73. We then split the audio files into segments of 10 seconds each, as this duration proved optimal
for training the model (see Supplementary Table S3). The resulting dataset consisted of 22′466 10-second audio clips for the
training (Average Length: 46.804 min; Total Duration: 62.41 hours) and 22430 clips for the testing set (Average Length: 46.73
min; Total Duration: 62.3 hours).

The neural network architecture is inspired by the 1-dimensional Convolutional Neural Network (1D-CNN)74 with different
audio features extracted from audio clips added to enhance classification75. These features include mean Mel Frequency
Cepstral Coefficients (MFCCs)41, Mean Chromagram44, Mean Mel Spectrogram40, Mean Spectral Contrast43 and Mean Tonal
Centroid42. The features are concatenated into a one-dimensional vector by taking a mean along the time axis for each of the
10-second segments. This vector is then used as an input for convolution and classification. In the CNN, the vector is passed
through two 1-dimensional convolutional layers followed by a Maxpooling layer76 and another 1-dimensional convolutional
layer. To decrease overfitting a dropout of 0.5 is used followed by flattening77 of the output. This is then passed through 512
fully connected dense layers and a softmax classification layer to get the final output of two classes, ASD and TD. We used
categorical cross-entropy with an Adam optimizer78 to compute the loss. A procedure similar to the video neural network was
applied to train the audio CNN. The training data was divided into an 80-20 split (80% of the dataset being used for training
and 20% for validation). We found that the optimal set of MFCC features to input into the CNN is 150. We proceeded to
hyperparameter tuning and established 512 as the batch size and 30 epochs respectively (see Figure 2).

After training the model, we made predictions over 80 audio files of the testing set. The pre-processing steps were consistent
with the training data in which each audio file was converted into an optimized format and splitting the audio files into 10-second
segments. We then used the trained model to carry out segment-wise predictions over these audio clips using CNN. The
predictions for each audio clip are aggregated by taking the average confidence across all segments subject-wise. The median
of the average confidence decides the overall audio file classification as ASD or TD.

Combining Video and Audio Neural Network
Different approaches were investigated regarding the combination between the audio and the video neural networks for
classification algorithms with the highest 1) sensitivity, 2) specificity, and 3) classification accuracy. To obtain a classifier with
the highest sensitivity, we created a model where the final prediction would be ASD if either neural network resulted in a
classification of ASD (that we denoted OR model). By doing so, we expected that our classifier would yield less false negatives
diagnoses (thus being more sensitive), at the cost of lower specificity. We also explored the possibility to get a more specific
classifier, for which the final prediction would be ASD only if both neural networks resulted in a classification of ASD (that we
denoted AND model). This classifier is expected to yield less false positives (thus being more specific), at the cost of sensitivity.
Finally, we explored different combinations of the two neural networks to optimize the accuracy. For this purpose, we manually
applied different thresholds to combine both predictions, depending on the confidence in the prediction of each network, to
yield an ensemble network that would have the highest accuracy.

Analysis of Video-Audio Neural Network Predictions with ADOS scales
To test the clinical relevance of the machine learning algorithm, we independently verified that our results align with the
standardized clinical measures of autistic symptoms, as measured with the 27 individual ADOS items (see Supplementary Table
S3).). Specifically, we examined whether the accuracy in identifying ASD by either modality (i.e., audio vs video) depended
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upon the child’s profile. To that end, we tested how the ASD prediction from each of our neural networks relates to the ADOS
items assessed on a scale ranging from 0 (least evidence of autistic signs) to 3 (marked presence of autistic signs).

Of note, the ADOS manual prescribes coding specific behavioral features that may have clinical relevance but are not of the
autistic quality with codes that are not comprised between 0 and 3. For instance, a code of 7 is used when the behavior shows
an abnormality, but its quality is not obviously autistic. A code of 8 is given when the behavioral level necessary for assessing
the symptom is not attained at the time of the assessment (e.g. the child’s language level is too low to assess the stereotyped
quality). Finally, a score of 9 is given when the specific social press was not correctly administered. According to the ADOS,
coding guidelines scores 7-9 are recoded as 0 in the final diagnosis algorithm to not bias the final score by measures that do not
reflect autistic symptomatology. In the present study, to distinguish these cases from clearly typical behavior that is denoted
with a 0, we recoded scores 7-9 as -1.

For each modality (audio & video), we then used a random regression forest model45 with the 26 items of the ADOS as
predictors and the confidence of the neural network as the dependent variable. We calculated how much the mean square error
(MSE) increased when a specific ADOS item was omitted from our model to determine each item’s importance. The higher the
percentage increase in MSE (%IncMSE), the higher the contribution to the prediction79.

For each modality, we delved deeper into a more detailed multi-way importance estimation80 by using %IncMSE (mse_increase),
increase in node purity (node_purity_increase), and p-value to hierarchize the importance of each ADOS item in predicting
neural network confidence. An increase in node purity translates into higher predictor importance. The predictor is considered
significant if the p-value is less than 0.05.

Finally, we compared the strength of the association between the ADOS items and the prediction confidence between the two
modalities (audio vs video), considered separately. As the %IncMSE could not be directly compared from one Random Forest
Regression Model to another, we calibrated another Random Forest Regression Model wherein the averaged confidence scores
from both of the neural networks were used as the value to be predicted, and items from ADOS-2 were used as predictors. The
%IncMSE values obtained from the average confidence Random Regression Forest Model were then used to normalize the
%IncMSE values of the audio and video neural networks by subtracting and dividing their %IncMSE values with the %IncMSE
values obtained from the average confidence model. We thus obtained standardized %IncMSE values for both the audio and the
video neural network Random Regression Forest Models. These standardized %IncMSE values were then used to create a
linear regression model with residual scores for the audio and video cases. These residual scores were then plotted against each
other to visualize the relationship between different ADOS-2 items and the two neural networks (see Figure 4).

Data Availability
Code used for developing video and audio neural network is available by the corresponding author upon request. The ADOS
clinical examination recordings from which the video and audio data were extracted represent sensitive data and thus cannot be
shared.
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