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Abstract: Interleukin-6 (IL6) and Interleukin-8 (IL8) are cytokines related to general immune   

function, but within Sickle Cell Anemia (SCA) patients, their overproduction tends to cause auto-

immune reactions. These vital cytokines engage in the pathophysiology of SCA, but the extent to 

which they are associated with the genetics of the disease requires further exploration. This research 

paper seeks to further the study of IL6 and IL8 in SCA patients as well as the possibilities to predict 

their presence in patients based on Haptoglobin alleles and various other hematological factors us-

ing artificial neural networks. This was done through a cross-sectional study of 60 sickle anemia 

patients and 74 healthy individuals who provided the basis for the data of this study. The deep 

learning model found a non-linear correlation between the Haptoglobin alleles and the production 

of IL6 and IL8, predicting their over presence in SCA patients with an accuracy of 90.9% and r-

squared value of 0.88 based on the given inputs. The machine learning models built in this paper 

have the potential to accelerate the development of targeted treatments and diagnoses to those suf-

fering from Sickle Cell Anemia and its specific immune complications. 
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1. Introduction 

Sickle cell anemia (SCA) is a hereditary blood disorder that affects millions of people 

worldwide. It affects historically marginalized groups such as African Ameri-cans, where 

1 in 500 African Americans carry the autosomal recessive mutation in addition to the 

300,000 infants who are born every year with sickle cell anemia (Aziza & Kondamudi, 

2022). It is caused by a mutation in the beta-globin gene, which leads to the production of 

abnormal hemoglobin molecules. The abnormal hemoglobin molecules can cause red 

blood cells to become stiff, sticky, and misshapen, leading to a range of symptoms, includ-

ing pain, fatigue, and organ damage (Li, Xuejin, et al, 2017). 

In the context of Sickle Hemoglobin (Hb S), it is caused by the aforementioned mu-

tation of a single nucleotide (HBB glu(E)6Val(A); GAG>GTG; rs334; HBB:c.20A>T; MIM: 

#603903) in the beta globin gene (#603903 - sickle cell disease - OMIM, n.d.). The result 

leads to Hb S being polymerized as well as glutamic acid being interchanged by valine at 

position 6 of the beta globin chain. This polymerization leads to acute and chronic vascu-

lar occlusion that ultimately leads to acute chest syndrome, strikes, chronic hemolytic ane-

mia, inflammation, cell adhesion, tissue hypoxia, organ ischemia, and tissue infarctions 

(Kato, Gladwin, & Steinberg, 2006). 

In addition, it’s been reported that the level of cytokines in patients with SCA is 

higher than those of healthy patients. These include higher levels of Interleukin-1β, IL-6, 

IL-8, and tumor necrosis factor alpha (TNF-α) (Saylor et al., 1995; Lanaro et al., 2009) ac-

cession numbers. If the accession numbers have not yet been obtained at the time of These 

pro-inflammatory cytokines pose health risks to the human body as they cause chronic 

endothelium activation and adhesion of sickled red cells. This, in turn, causes constant 

local tissue ischemia and necro-sis that is often attributed to SCA. 
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 The presence of Hb S and cytokines ties back together because the secretion of in-

terleukins such as IL-6 and IL-10 is stimulated by haptoglobin (Hp), an acute phase pro-

tein that increases in production in   response to inflammation. While this is how Hp 

plays a role in IL-6 and Il-8, it also binds itself to plasma Hb in a process known as hemol-

ysis. This forms a soluble complex known as the Hb-Hp complex, effectively   filtering 

Hb out of the plasma. This is demonstrated in figure 1, where Hemoglobin and Haptoglo-

bin combine to form the complex. The Hp 1 allele binding to free Hb in particular has been 

studied fairly extensively (Guetta et al., 2007). Hp acts as the first line of defense against 

the effects of free Hb previously discussed. While this is just one allele of Hp, Hp is poly-

morphic, with Hp 1-1, Hp 2-1, and Hp 2-2 being the three possible genotypes of Hp in 

humans.  

The role of Hp genotype in regulating cytokine expression in patients with SCA, a 

disease marked by chronic and acute inflammation and hemolysis, has not been exten-

sively researched, and present research has not found a conclusive correlation between 

the two. However, this project seeks to examine the link between different Hp polymor-

phisms and the pro-duction of cytokines IL-6 and IL-8 in SCA patients from Brazil com-

pared to healthy individuals from the same area. This is done through building neural 

networks and other machine learning models that can accurately examine non-linear cor-

relations between the two based on data sets of patients. Using artificial intelligence, this 

project hopes to build a model that can not only find a correlation through present data 

but find future correlations in other patients with SCA to expedite the process of diagnosis 

and development of treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Material and Methods 

2.1. Data Collection 

The data collected in this study came from a pool of 134 individuals who participated 

in a separate study conducted by the Hereditary Anemia Outpatient Clinic of the Hema-

tology and Blood Transfusion Unit, Universidade Federal de São Paulo (UNIFESP), Brazil. 

The subsequent data points were gathered by the authors of this paper in collaboration 

with UNIFESP, and the blood samples drawn were not drawn exclusively for this project. 

In addition, all blood drawings were done under a verified laboratory setting at UNIFESP. 

 Of the 134 individuals whose data was used, 60 were diagnosed with SCA and the 

remaining 74 individuals were healthy. The 74 healthy individuals were age and gender 

matched Hb AA volunteers who came from approximately the same area as the 60 other 

Figure 1: Model of Haptoglobin (Hp) binding with Hemoglobin (Hb) to form the 

Hp-Hb complex. Also demonstrates the secretion of Interleukin-6, but it does not 

depict the secretion of other previously mentioned cytokines. (Dennis, 2001) 
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individuals. Participants were all aged 13 and up, and informed consent was gathered 

from each individual, with parental consent being gathered from adolescent participants. 

Furthermore, the data collection has gotten the approval of UNIFESP’s own Research Eth-

ics Committee. 

To determine the plasma levels of IL-6 and IL-8 cytokines in the patient sample, blood 

samples were collected from the antecubital veins of the patients. This was done under a 

tourniquet with minimal pressure applied. The high sensitivity enzyme-linked immuno-

sorbent assays (ELISA) were used to measure cytokine levels in plasma. The normal range 

for IL-6 was 2.2 to 12.1 pg/mL, with a limit of detection of 2.2 pg/mL. The normal range 

for IL-8 was 10.2 to 34.3 pg/mL, with a limit of detection of 0.8 pg/mL.   

 To extract DNA from buffy-coat samples, the stored samples were defrosted and 

subjected to red blood cell lysis with saponin. Leukocytes were washed with Solution A, 

followed by DNA extraction using Solution A without saponin and Solution B containing 

proteinase K. After incubation and purification, DNA was obtained using the Phenol:chlo-

roform:isoamyl alcohol (25:24:1) method. The entire procedure was performed at the Mo-

lecular Biology Laboratory of UNIFESP, Brazil under professional and adult supervision. 

Haptoglobin (Hp) genotyping was carried out by a polymerase chain reaction (PCR) tech-

nique, which involved two protocols. The first was Protocol 1, which amplified the 1757 

bp allele-1 specific sequence and the 3481 bp allele-2 specific sequence. The PCR products 

were then separated to confirm the presence of the haptoglobin genotype in the patients. 

This was done via the use of agarose gel electrophoresis. 

 

2.2. Data Cleaning 

The end values were analyzed using a variety of statistical tests. The average plasma 

levels of interleukins between cases and controls were analyzed using an independent 

sample t-test. The p-values calculated in Table 1 were done through three tests, that being 

the Chi-square test, Mann-Whitney test, and the independent sample t-test. The gender, 

Haptoglobin alleles, and Haptoglobin genotypes’ p-values were all calculated with the 

Chi-square test. The age in years’ p-value was calculated with the Mann-Whitney test. 

And finally, the Plasma IL levels’ p-value was calculated with the independent sample t-

test. 

 

Table 1 – Demographics, haptoglobin genotypes, and plasma levels of IL-6 and IL-8 

between Sickle Cell Anemia (SCA) patients and controls. 

Variables SCA Group  

(n=60) 

Control Group  

(n=74) 

p-value 

Gender n (%)    

Male 32 (53) 39 (53) 1.00 

Female 29 (47) 35 (47)  

Age in Years    

Median 26.00 29.00 0.29 

Range 15-50 17-60  
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3. Machine Learning Models 

3.1. Data Collection 

This project seeks to use machine learning to delve deeper and find real correlations 

between the Haptoglobin alleles and the levels of IL-6 and IL-8. This is done using a type 

of machine learning known as artificial neural networks. Artificial neural networks 

(ANNs) are a type of artificial intelligence that mimics human information processing into 

a program that can then be used for predictive purposes. These networks consist of algo-

rithms that are modeled after the way human neurons work. ANNs use nodes that are 

similarly modeled after neurons in order to communicate signals with each other, and by 

linking multiple nodes together, they can recognize patterns and make predictions based 

on data. This application best suits the needs of predicting IL-6 and IL-8 levels based on 

subject data. This section seeks to describe the mathematics behind the ANNs used in this 

paper, including important concepts such as the activation function and learning rate. 

 

Plasma IL  

(pg/ml)  

mean ± SD 

   

IL-6 15.9 ± 9.1 4.4 ± 7.4 <0.0001 

IL-8 20.5 ± 15.2 4.9 ± 7.4 <0.0001 

Haptoglobin    

Alleles           

n (%) 

   

Hp-1 54 (45.0) 81 (54.7) 0.113 

Hp-2 66 (55.0) 67 (43.5)  

Haptoglobin   

Genotypes         

n (%) 

   

Hp 1-1 10 (16.7) 25 (33.8)  

Hp 2-1 34 (56.7) 31 (41.9) 0.07 

Hp 2-2 16 (26.6) 18 (24.3)  
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3.2. Structure of an ANN 

The specific ANN used in this project is a multi-layered perceptron (MLP) feedfor-

ward neural network. Its structure consists of an input layer, hidden layers, and output 

layers. In this case, the input layers are the various alleles and factors regarding the indi-

viduals, and the IL-6 and Il-8 cytokine levels will be the output layers. The hidden layer 

is where the variables of the input layers are passed through weights and bias in the 

nodes. The actual algorithm works through a process known as backpropagation, a dia-

gram of which is shown in figure 2.  

 

 

 

 

 

 

 

 

 

 

Backpropagation is defined as a neural network algorithm used for computing the 

gradient of the error with respect to the weights and updating the weights accordingly 

(Goodfellow, Bengio, & Courville, 2016). This is a supervised method of machine learning 

where the algorithm works by first making a forward pass through the network, 

 

Table 2 – The hematological profile of the 60 patients who were diagnosed with Sickle Cell Disease 

Hematological 

Parameters 

Overall 

Mean 

(SD) 

Hp 1-1 

Mean (SD) 

Hp 1-2 

Mean (SD) 

Hp 2-2 

Mean (SD) 

F Test p-value 

Hemoglobin (g/dL) 8.1 (1.0) 7.7 (0.9) 8.3 (1.0) 8.0 (1.2) 1.143 0.326 

Hematocrit (%) 23.4 (3.1) 21.9 (2.2) 23.9 (3.2) 23.2 (3.0) 1.643 0.202 

Mean 

Corpuscular 

Volume (fL) 

91.6 (8.2) 89.8 (8.2) 92.9 (6.9) 89.8 (10.3) 1.081 0.346 

Leukocyte count 

(×1009/L) 

11.2 (2.8) 11.1 (2.1) 11.4 (3.0) 10.9 (2.6) 0.146 0.865 

Platelet count 

(×1009/L) 

428.4 (143.0) 482.5 (158.5) 403.8 (143.8) 446.9 (127.2) 1.368 0.263 

Reticulocyte count 

(×1009/L) 

190.4 (134.0) 196.9 (114.4) 204.5 (113.7) 156.9 (180.9) 0.643 0.530 

Hemoglobin F (%) 7.5 (6.2) 8.6 (6.1) 8.0 (6.7) 5.5 (4.9) 0.970 0.386 

Figure 2: Backpropagation Neural Network with only one hidden layer. (Lu, 2000)
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computing the output of each neuron as a function of its inputs, weights, and bias. The 

difference between the predicted output and the actual output is then computed, and af-

terwards, the difference is mapped into a gradient that the algorithm will learn from to 

make a more accurate prediction for the second pass of input layers. This gradient is 

known as a gradient descent, and it’s shown in figure 3. (Mizutani, Dreyfus, & Nishio, 

2000).             

 When delving even deeper into how each ‘neuron’ works within the neural network, 

there’s a strong use of applied mathematics. For each neuron in the neural network, the 

weights in a neural network represent the strength of the connection between neurons. 

These will determine how much influence the input will have on the neuron's output. In 

this case, the inputs will be the various alleles and values regarding a patient’s hemato-

logical profile. Drawing from a concept in linear algebra, the neural network takes the dot 

product of the input values while simultaneously adding weights and bias to shift the 

activation function left or right, allowing the end model to more accurate predict cytokine 

levels after each training epoch (Dasaradh, 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Programming, Training, and Testing the Neural Network 

The model within this research paper is built on Python using publicly available li-

braries such as TensorFlow, Sci-Kit Learn, pandas, and many others. The build environ-

ment for this neural network was Jupyter Notebooks, which is an open-source computing 

platform where all the Python code lives. It was integrated with Anaconda, which is a 

Python distribution / data discovery & analytics platform that allows this project to man-

age its packages better.            

 As for training the neural network, the total data was split into partitions of 70% and 

30%. The 70% portion would be used to initially train the neural network and have it learn 

from the real-world inputs. The model was trained on 64 hidden nodes, and it was trained 

over 500 epochs. After much fine-tuning, 500 epochs allowed the model to get accustomed 

to the data of alleles and hematological profiles, but it wasn’t so much that the model 

started overfitting the data. The learning rate was set to 0.001 and the momentum was set 

to 0.9 as these values were found to give the neural network the best loss values. 

Figure 3: Three-dimensional representation of a Stochastic Gradient Descent model 

on saddle point. Courtesy of (Ruder, 2016)  
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 Finally, there were a variety of statistical measures employed to measure the perfor-

mance of the model in predicting IL-6 and IL-8 levels. Root mean squared error (RMSE), 

mean squared error (MSE), mean absolute error (MAE), coefficient of determination (R-

squared or R2), and finally, pure accuracy. 

4. Results and Discussion 

After testing data sets were applied, there are various trends that become evident. 

The test found a pure accuracy of 90.9%, a root mean squared error of 3.55, a mean squared 

error of 13.5, a mean absolute error of 2.49, and an R-squared value of 0.88. These results 

were derived from 100 trials of the algorithm that ran 500 epochs each. The squared, root, 

and absolute error all being on the lower side means the algorithm was able predict said 

cytokine levels with minimal error per trial. In addition, the pure accuracy and R-squared 

values tell much the same story. 

 

 

 

            

 

 

 

 

 

 

 

The R-squared value being so close to 1 means the algorithm was able to effectively 

correlate the x and y variables. This indicates that 88.2% of the variability in the dependent 

variables (Interleukin-6 and Inter-leukin-8 cytokines) could be explained by the independ-

ent variable of the Haptoglobin alleles and hematological profiles.     

 When looking for trends across all 100 trials, there’s clear evidence that the little vol-

atility between epochs of which the algorithm ran indicates the predictive power of the 

algorithm at work. While this could indicate underfitting or overfitting, this is also likely 

the work of a well-formed model that has understood the inputs well and is predicting 

the outputs and cytokine levels in a contained range. 

Table 3 – Various statistical averages from the ANN in predicting IL-6 and IL-8 

Cytokines based on hematological factors and Haptoglobin alleles. These averages 

were over 100 trials of 500 epochs each. 

Results Value 

Accuracy 0.909 

Figure 4: Chart displaying the accuracy of the artificial neural network over 100 trials of 500 epochs each. 
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.  

5. Conclusions 

Sickle Cell Diseases (SCD) such as Sickle Cell Anemia (SCA) affect over 20 million 

worldwide, with people of African, Mediterranean, and Middle Eastern descent being 

more prone to infection. As predicted, this project discovered a non-linear correlation 

between Haptoglobin alleles, hematological parameters, and the production of Interleu-

kin-6 (IL-6) and Interleukin-8 (IL-8) in patients with SCA. The potential for machine 

learning as a whole to be applied to the field of Sickle Cell Anemia research is massive 

and cannot be understated. The research built today has the potential to accelerate some 

of the most promising technologies that currently exist to diagnose and treat SCD. 

Methods of combating SCA, including blood transfusions and hydroxyurea, are 

beginning to be researched in depth, and this machine learning model can speed up the 

development of cures and treatments. Hydroxyurea, as well as other treatment methods, 

has been proven to increase mean MCV and hemoglobin levels (Steinberg, 2003; Platt, 

2008). Matching this with the prediction of IL-6 and IL-8 levels, personalized doses and 

treatment periods of medication could be modeled uniquely for every patient depending 

on their specific hematological parameters to reach a healthy Interleukin level.  

Due to the predictive nature of these neural networks built through this project, 

the ability to predict the phenotype of SCA during the first months of a patient's life or 

even in the prenatal period (since alleles can be analyzed even before birth) could allow 

a more precise prognosis and individualized treatment for young patients (Steinberg & 

Adewoye, 2006). The results produced in this study clearly outline the viability of ma-

chine learning models to predict cytokine levels, specifically IL-6 and IL-8. Ultimately, 

the study’s results act as a net good for society.
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