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18 Abstract

19 Background

20 Vasospastic angina is sometimes suspected from patients’ medical history. It is essential to 

21 appropriately distinguish vasospastic angina from acute coronary syndrome because its 

22 standard treatment is pharmacotherapy, not catheter intervention. Large language models 

23 have recently been developed and are currently widely accessible. In this study, we aimed to 

24 use large language models to distinguish between vasospastic angina and acute coronary 

25 syndrome from patient information and compare the accuracies of these models.

26

27 Method

28 We searched for cases of vasospastic angina and acute coronary syndrome which were 

29 written in Japanese and published in online-accessible abstracts and journals, and randomly 

30 selected 66 cases as a test dataset. In addition, we selected another ten cases as data for few-

31 shot learning. We used generative pre-trained transformer-3.5 and 4, and Bard, with zero- and 

32 few-shot learning. We evaluated the accuracies of the models using the test dataset.

33

34 Results

35 Generative pre-trained transformer-3.5 with zero-shot learning achieved an accuracy of 52%, 

36 sensitivity of 68%, and specificity of 29%; with few-shot learning, it achieved an accuracy of 

37 52%, sensitivity of 26%, and specificity of 86%. Generative pre-trained transformer-4 with 

38 zero-shot learning achieved an accuracy of 58%, sensitivity of 29%, and specificity of 96%; 

39 with few-shot learning, it achieved an accuracy of 61%, sensitivity of 63%, and specificity of 

40 57%. Bard with zero-shot learning achieved an accuracy of 47%, sensitivity of 16%, and 
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41 specificity of 89%; with few-shot learning, this model could not be assessed because it failed 

42 to produce output.

43

44 Conclusion

45 Generative pre-trained transformer-4 with few-shot learning was the best of all the models. 

46 The accuracies of models with zero- and few-shot learning were almost the same. In the 

47 future, models could be made more accurate by combining text data with other modalities.
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48 Introduction

49 Vasospastic angina (VSA) is characterized by transient constriction of the coronary artery, 

50 causing angina and other nonspecific symptoms [1–3]. VSA is known to be caused by 

51 various factors, including emotional stress, exposure to low temperatures, and resting during 

52 the period from midnight to early morning [3–7]. Conversely, acute coronary syndrome 

53 (ACS), which is mostly caused by diseases that differ from VSA, frequently presents with 

54 chest pain during physical exertion following a prolonged history of smoking, dyslipidemia, 

55 hypertension, or diabetes mellitus [8–10]. Because VSA shares some symptoms with ACS, 

56 which requires urgent catheter intervention treatment, distinguishing between VSA and ACS 

57 is often challenging at the screening stage [3,4,8–11]. In cases where it is difficult to 

58 distinguish between the two, VSA is confirmed by coronary spasm provocation testing, as 

59 described in the guideline and international consensus [12,13]. However, provocation testing 

60 is an invasive procedure that carries the risk of serious complications [14]. Therefore, there is 

61 a need for a noninvasive method of screening for VSA in patients with angina.

62 In recent years, large language models (LLMs) have demonstrated great potential in a broad 

63 range of fields including medicine [15–17]. In the medical field, generative pre-trained 

64 transformer 4 (GPT-4) has achieved high scores in medical licensing examinations in the 

65 United States and Japan [18–20]. In real-world clinical settings, physicians rely on patient 

66 information gathered through interviews and examinations. However, to the best of our 

67 knowledge, there has been no research on whether LLMs can effectively use patient 

68 information to distinguish between specific diseases. Furthermore, although GPT-4 has 

69 multilingual capabilities, much of the research conducted using this model has focused on 

70 English documents [19,21]. In this study, we aimed to use LLMs to distinguish between VSA 

71 and ACS from patient information written in Japanese and compare the accuracies of the 

72 models.
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73 Materials and methods

74 An overview of this study is shown in Fig 1.

75

76 Fig 1. The flow of this study. 

77 The overview of this study is shown. 

78

79 Case selection

80 In a previous study, we continuously collected cases of VSA and ACS published in abstracts 

81 of the Japanese Society of Internal Medicine regional conferences and open-access journals. 

82 In the present study, we randomly selected 66 of these cases (38 VSA and 28 ACS cases) as a 

83 test dataset [22]. We defined ACS to include both unstable angina and acute myocardial 

84 infarction. In addition, we selected another ten cases (five VSA and five ACS cases) from the 

85 previously collected cases as data for few-shot learning. Because the data used in this study 

86 were publicly accessible, there were no ethical concerns. Nonetheless, we handled cases 

87 following the principles outlined in the Declaration of Helsinki.

88

89 Data extraction

90 We extracted data comprising age, sex, medical history, past medical history, and medication 

91 from the selected abstracts and case reports, and organized them accordingly (S1 Fig). 

92 Medication doses were not extracted, and the English notation of medication was translated 

93 to Japanese and standardized.

94
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95 GPT-3.5 and GPT-4

96 We used ChatGPT Plus (OpenAI), which is based on generative pre-trained transformer-3.5 

97 (GPT-3.5) and GPT-4 [20]. In addition, we adopted the zero- and few-shot learning 

98 approaches. To select appropriate cases to include in the data for few-shot learning, YK and 

99 SK discussed and identified typical cases of VSA and ACS. We selected ten representative 

100 cases from the data that were left behind after selecting the test dataset, and these cases were 

101 used as data for few-shot learning.

102 At the beginning of the prompts, we asked GPT-3.5 and GPT-4 to answer whether each case 

103 was predicted to be VSA or any other coronary artery disease. Technically, ACS can be 

104 caused also by VSA, although rare, and therefore, we used the phrase of “any other coronary 

105 artery disease” rather than ACS. In the zero-shot learning tests, we input the cases from the 

106 test dataset just after the above question. In the few-shot learning tests, we inserted the set 

107 comprising each case and its correct answer, for the ten cases of the learning data (S2 Fig). 

108 We performed the experiment from May 10 to May 20, 2023. We used a new session for 

109 each case by clearing all conversations before inputting any prompts.

110

111 Bard

112 We used Bard (Google) because it was announced on May 11, 2023 that Bard could respond 

113 to Japanese text. We input the same request as we input to GPT-3.5 and GPT-4. In the zero-

114 shot learning tests, we input the cases in the test dataset following the request sentence. In the 

115 few-shot learning tests, we input the same set of ten cases (with their correct answers) as we 

116 input to GPT-3.5 and GPT-4. We performed the experiment from May 22 to May 24, 2023. 

117 We reset the conversations every time we input a prompt.

118
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119 Evaluation of model accuracy

120 In each of the three groups of experiments (GPT-3.5, GPT-4, and Bard), we compared their 

121 answers with the correct answers, and calculated accuracy, sensitivity, specificity, precision, 

122 and F-score. We compared the accuracies achieved by the three LLMs. The threshold for 

123 statistical significance was set at 0.05. The accuracy of each model was calculated with a 

124 95% confidence interval (CI) using the binomial test, implemented in R (R Foundation for 

125 Statistical Computing, Vienna, Austria).

126

127 Comparison with cardiologists’ accuracy and accuracy of each 

128 model

129 In the previous study, we reported the accuracy with which cardiologists answered the cases 

130 in the test dataset [22]. In this study, for each case, we evaluated the answer given by each 

131 model with reference to those given by the cardiologists.

132

133 Sensitivity analysis

134 As a sensitivity analysis, we selected the subset of the test dataset comprising the cases for 

135 which more than half of the cardiologists answered correctly in the previous study [22]. In 45 

136 out of 66 cases, more than 50% of the cardiologists answered correctly. We hypothesized that 

137 these cases contain enough information to distinguish between VSA and ACS. Therefore, in 

138 the sensitivity analysis, we used these 45 cases only.

139
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140 Results

141 Accuracy evaluation of GPT-3.5, GPT-4, and Bard

142 Table 1 shows the accuracy achieved in the three groups of experiments. For GPT-3.5 with 

143 zero-shot learning, the accuracy was 52% (95% CI: 39–64%), sensitivity was 68%, 

144 specificity was 29%, precision was 57%, and F-score was 62%; with few-shot learning, the 

145 accuracy was 52% (95% CI: 39–64%), sensitivity was 26%, specificity was 86%, precision 

146 was 71%, and F-score was 39%. For GPT-4 with zero-shot learning, the accuracy was 58% 

147 (95% CI: 45–70%), sensitivity was 29%, specificity was 96%, precision was 92%, and F-

148 score was 44%; with few-shot learning, the accuracy was 61% (95% CI: 48–72%), sensitivity 

149 was 63%, specificity was 57%, precision was 67%, and F-score was 65%. For Bard with 

150 zero-shot learning, the accuracy was 47% (95% CI: 35–60%), sensitivity was 16%, 

151 specificity was 89%, precision was 67%, and F-score was 26%; with few-shot learning, Bard 

152 failed to respond to the input data.

153

154 Table 1. The main results of accuracies of the models.

155

156 The accuracy achieved in each of the three AI models (GPT-3.5, GPT-4, and Bard) with zero- 

157 and few-shot learning is shown.

158

Bard/fewBard/zeroGPT-4/fewGPT-4/zeroGPT-3.5/fewGPT-3.5/zero

NA47.0
(95%CI: 34.6 - 59.7)

60.6
(95%CI: 47.8 - 72.4)

57.6
(95%CI: 44.8 - 69.7)

51.5
(95%CI: 38.9 - 64.0)

51.5
(95%CI: 38.9 - 64.0)Accuracy

NA15.863.228.926.368.4Sensitivity

NA89.357.196.485.728.6Spesificity

NA66.766.791.771.456.5Precision

NA25.564.944.038.561.9F-score
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159 Comparison with cardiologists' accuracy and result of each model

160 Fig 2 shows the results of GPT-4 with few-shot learning with reference to the cardiologists’ 

161 accuracy (the proportion of cardiologists who answered correctly). GPT-4 tended to correctly 

162 answer cases for which the cardiologists’ accuracy was high. This tendency was observed for 

163 the other models except for GPT-3.5 with zero-shot learning (S3–6 Figs).

164

165 Fig 2. Comparison with cardiologists' accuracy and GPT-4 with few-shot learning.

166 The result of GPT-4 with few-shot learning is shown with reference to the proportion of 

167 cardiologists who answered correctly.

168

169 Sensitivity analysis

170 In the sensitivity analysis, the results were almost the same as the main results (Table 2). 

171 GPT-4 yielded the highest accuracy of the three models. In GPT-4 with zero-shot learning, 

172 the accuracy was 76%, sensitivity was 50%, specificity was 100%, precision was 100%, and 

173 F-score was 67%; with few-shot learning, the accuracy was 71%, sensitivity was 77%, 

174 specificity was 65%, precision was 68%, and F-score was 72%.

175

176 Table 2. The results of the sensitivity analysis.

177

Bard/fewBard/zeroGPT-4/fewGPT-4/zeroGPT-3.5/fewGPT-3.5/zero

NA57.8
(95%CI: 42.2 - 72.3)

71.1
(95%CI: 55.7 - 83.6)

75.6
(95%CI: 60.5 - 87.1)

60.0
(95%CI: 44.3 - 74.3)

48.9
(95%CI: 33.7 - 64.2)Accuracy

NA27.377.350.031.868.2Sensitivity

NA87.065.2100.087.030.4Spesificity

NA66.768.0100.070.048.4Precision

NA38.772.366.743.856.6F-score
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178 The results of experiments for the subset of the test dataset for which more than half of the 

179 cardiologists answered correctly are shown.

180

181 Discussion

182 In this study, we used GPT-3.5, GPT-4, and Bard with zero- and few-shot learning for the 

183 purpose of distinguishing between VSA and ACS from patient information. The results of the 

184 study can be summarized as follows: 1) GPT-4 with few-shot learning yielded the most 

185 accurate results of the three LLMs, 2) there were no significant differences in accuracy 

186 between zero- and few-shot learning, and 3) our study was unique in that it processed data in 

187 the form of Japanese text instead of English text.

188 GPT-4 was able to distinguish VSA and ACS from patient information and its accuracy was 

189 almost the same as that of medical students. In a previous study, we compared a variant 

190 model of BERT (Google) with cardiologists and medical students [22,23]. The test data were 

191 the same as those used in this study. For cardiologists, the accuracy was 68%, sensitivity was 

192 58%, and specificity was 82%, whereas for medical students, the accuracy was 61%, 

193 sensitivity was 40%, and specificity was 89% [22]. In the current study, GPT-4 with few-shot 

194 learning achieved almost the same accuracy as medical students. Because we collected cases 

195 from conference abstracts of oral presentations and peer-reviewed articles, which ensured 

196 linguistic consistency and no unique abbreviations or variations in sentences, we certainly 

197 used high-quality data. However, the performance of GPT-4 in distinguishing VSA from 

198 ACS did not match that of cardiologists. This implies that the advantages of enhancing the 

199 quality of data are limited. Improvements to the methodology of models are required to 

200 obtain further improvements in performance.
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201 Surprisingly, we found no significant differences in accuracy between zero- and few-shot 

202 learning. Previously, few-shot learning was reported to increase the accuracy of LLMs [24]. 

203 However, although we used GPT-3.5 and GPT-4 with both zero- and few-shot learning, there 

204 were almost no differences in accuracy between the two methods. This suggests that few-shot 

205 learning may not necessarily improve accuracy. Fine-tuning is another promising method for 

206 enhancing the accuracy of models. Fine-tuning involves adjusting the parameters and 

207 architecture of models, using training data to adapt them to specific tasks [25,26]. Initially, 

208 we attempted to conduct fine-tuning using the remaining data for the purpose of tailoring the 

209 models to our specific tasks. However, applying fine-tuning to GPT-4 was impossible as of 

210 May 20, 2023. In the future, fine-tuning could potentially improve the accuracy of GPT-4 

211 even further.

212 Our study has the potential to contribute to the advancement of natural language processing 

213 of Japanese medical data. A comprehensive review showed that almost 90% of the 

214 publications about clinical natural language processing addressed the processing of English 

215 text data, whereas only 0.62% were on Japanese text data [27]. The multilingual capability of 

216 GPT-4 will facilitate research on Japanese text. Much more research specific to the Japanese 

217 population is required because there are some diseases, such as VSA, which are more 

218 common in Japan than elsewhere.

219 There is scope for improvement in the accuracy of artificial intelligence (AI) models and their 

220 applications to other diseases. It is expected that the accuracy of AI models can be improved 

221 by combining other types of data with text data. In a previous study, an AI model was 

222 developed that used numerical and image data, including laboratory data and resting 12-lead 

223 electrocardiograms, to determine the presence or absence of coronary abnormalities in 

224 patients with chest pain [28]. “Generalist” medical AI, capable of flexibly incorporating data 

225 modalities including text data, numerical data (such as examination findings), and image data 
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226 (such as electrocardiograms), could potentially be useful in clinical settings [29]. 

227 Furthermore, the methodology of this study can be applied to diseases other than VSA, 

228 thereby facilitating the development of AI models to distinguish between various diseases.

229 There are some limitations to this study. First, the number of conference abstracts and 

230 published papers collected in the study was limited, and it is difficult to generalize its results. 

231 One possible solution to the scarcity of data is the extraction of data from electronic health 

232 records [30]. Although electronic health records contain patient information, the quality of 

233 this information may be inadequate. Electronic health records are often written by busy 

234 physicians and nurses; they therefore contain many abbreviations and incorrect or vague 

235 expressions, and often ignore grammar [31,32]. Therefore, the quality of electronic health 

236 record data is considered to be lower than that of the abstracts and reports used in this study. 

237 Second, regarding the content of the data, the fact that the cardiologists’ accuracy was only 

238 around 70% suggests that the data used in this study may not have contained sufficient 

239 information for distinguishing VSA. That said, in actual clinical practice, it is often difficult 

240 to determine VSA solely from patients’ medical history; therefore, the data used in this study 

241 could not be necessarily reflective of real-world clinical practice. Third, we asked the models 

242 to answer whether each case was VSA or any other coronary artery disease. We believe that 

243 this prompt was very effective in distinguishing between VSA and ACS. However, we would 

244 like to further improve models by directly comparing VSA and ACS. Fourth, in the data 

245 collection process, we defined the ACS group as cases described as “unstable angina” or 

246 “acute myocardial infarction.” Cases described using synonyms or different expressions, such 

247 as “acute coronary syndrome” or “ACS,” may have been omitted, possibly limiting the 

248 quantity of data available for training the AI model and evaluating its accuracy. Future 

249 research should aim to collect cases comprehensively, including those described using 

250 synonyms and different expressions.
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251 In conclusion, we used GPT-3.5, GPT-4, and Bard to distinguish between VSA and ACS 

252 from patient information. The predictive accuracy of GPT-4 with few-shot learning was the 

253 best of the three models. In the future, by creating multimodal AI models that combine text 

254 data with numerical data, image data, and other types of data, it is expected that the accuracy 

255 will be further improved.

256
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367  

368 Supporting information

369 S1 Fig. An example of the data. 

370 This example was extracted from the following case report published in an open-access 

371 journal. We used only the original sentences written in Japanese above in the box. In the 

372 figure, we translated the whole text into English to make it easy to understand.

373 S2 Fig. The detailed data for few-shot learning. 

374 This figure shows the ten cases of the learning data used for few-shot learning. In the 

375 prompts, we put only the original sentences written in Japanese in the above box. In the 

376 figure, we translated the whole text into English to make it easy to understand.

377 S3 Fig. Comparison with cardiologists' accuracy and GPT-3.5 with zero-shot learning. 

378 The result of GPT-3.5 with zero-shot learning is shown with reference to the proportion of 

379 cardiologists who answered correctly.

380 S4 Fig. Comparison with cardiologists' accuracy and GPT-3.5 with few-shot learning. 

381 The result of GPT-3.5 with few-shot learning is shown with reference to the proportion of 

382 cardiologists who answered correctly.

383 S5 Fig. Comparison with cardiologists' accuracy and GPT-4 with zero-shot learning. 

384 The result of GPT-4 with zero-shot learning is shown with reference to the proportion of 

385 cardiologists who answered correctly.

386 S6 Fig. Comparison with cardiologists' accuracy and Bard with zero-shot learning. 

387 The result of Bard with zero-shot learning is shown with reference to the proportion of 

388 cardiologists who answered correctly.
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