
1

Harmonizing Healthy Cohorts to Support Multicenter Studies on Migraine 
Classification using Brain MRI Data

Hyunsoo Yoon1, Todd J. Schwedt2,3, Catherine D. Chong2,3, Oyekanmi Olatunde4, Teresa Wu3,5

1 Yonsei University; Department of Industrial Engineering

2 Mayo Clinic; Department of Neurology

3 ASU-Mayo Center for Innovative Imaging

4 Binghamton University; Department of Systems Science and Industrial Engineering

5 Arizona State University; School of Computing and Augmented Intelligence

Corresponding Author: 

Teresa Wu
Professor, School of Computing and Augmented Intelligence
Arizona State University
Adjunct Professor of Radiology, College of Medicine
Mayo Clinic
Founding Director, ASU-Mayo Center for Innovative Imaging
Teresa.Wu@asu.edu 

Key Words:  Migraine, Magnetic Resonance Imaging, Classification, Cortical Thickness, Brain Structure, 
Headache, Cortical Surface Area, Brain Volume, Maximum Mean Discrepancy, Geodesic Flow Kernel

Highlights 

 The harmonization method was established by Healthy Core Construction.
 The inclusion of a healthy core addresses intrinsic heterogeneity that exists within a healthy control 

cohort and in multicenter studies. 
 The utilization of a healthy core can increase the accuracy and generalizability of brain imaging-

based classification models.
 The proposed harmonization method offers flexible utilities for multicenter studies. 

Data Availability Statement 
Data from the study sponsored by the United States Department of Defense (DOD) will be made available 
through the Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System in accordance 
with the rules and regulations of the DOD. Patient consent for the NIH-sponsored study and for the Mayo-funded 
study did not include a data sharing agreement.
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Abstract

Multicenter and multi-scanner imaging studies might be needed to provide sample sizes large enough for 

developing accurate predictive models. However, multicenter studies, which likely include confounding 

factors due to subtle differences in research participant characteristics, MRI scanners, and imaging 

acquisition protocols, might not yield generalizable machine learning models, that is, models developed 

using one dataset may not be applicable to a different dataset. The generalizability of classification models 

is key for multi-scanner and multicenter studies, and for providing reproducible results. This study 

developed a data harmonization strategy to identify healthy controls with similar (homogenous) 

characteristics from multicenter studies to validate the generalization of machine-learning techniques for 

classifying individual migraine patients and healthy controls using brain MRI data. The Maximum Mean 

Discrepancy (MMD) was used to compare the two datasets represented in Geodesic Flow Kernel (GFK) 

space, capturing the data variabilities for identifying a “healthy core”. A set of homogeneous healthy 

controls can assist in overcoming some of the unwanted heterogeneity and allow for the development of 

classification models that have high accuracy when applied to new datasets. Extensive experimental results 

show the utilization of a healthy core. One dataset consists of 120 individuals (66 with migraine and 54 

healthy controls) and another dataset consists of 76 (34 with migraine and 42 healthy controls) individuals. 

A homogeneous dataset derived from a cohort of healthy controls improves the performance of 

classification models by about 25% accuracy improvements for both episodic and chronic migraineurs. 
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1. Introduction

Neuroimaging studies have shown structural and functional alterations in brain regions involved in sensory-

discriminative, affective, and cognitive pain processing, pain modulation, and multisensory integration in 

patients with migraine [Eck, J. et al. 2011, Lo Buono et al. 2017, Meylakh, N. et al. 2018, Mu, J. et al. 2020, 

Wei H. et al. 2020, Scheepens, D. S. 2020, Ashina, S. 2021]. Machine learning models trained to 

automatically classify individuals with migraine from healthy controls (HCs) using functional magnetic 

resonance imaging (fMRI) and structural MRI data have shown good utility for discriminating those with 

migraine from HCs. Yet, the generalization of the algorithms might be poor; that is, the classification model 

developed using one dataset may not perform as accurately on a separate dataset. The generalizability of 

classification models is key for multi-scanner and multicenter studies, and for providing reproducible 

results. Harmonization in clinical research has been focusing on defining, reviewing, and standardizing 

common data elements [Firnkorn, D et al. 2015, Yu, M. et al. (2018), Ma, D. et al. (2019), Chen, A. A. et 

al. (2022)]. This is known as data curation - a strategy to combine the data from different sources to improve 

the generalizability of classification models. To be specific, this harmonization strategy is the explicit 

removal of the site or cohort-related effects in data from multiple sources. This harmonization strategy is 

desirable for improving the generalizability of classification models. Yet, from a data-driven aspect, the 

data from different sources may inherently exhibit different characteristics due to several reasons, such as 

differences in patient populations from which research participants are identified and the methods by which 

data are acquired. In machine learning research, extensive efforts are dedicated to transforming the data 

from different sources into a common feature space for evaluating similarities from multiple sources or 

adapting them thoroughly. This is also known as Domain Adaptation, a well-studied field [Tzeng, et al. 

2017, Csurka et al. 2017, Tang, et al. 2020]. 

Domain adaptation leverages labeled data in one or more related source domains, to build a machine 

learning model for unseen or unlabeled data in a target domain. These adaptation methods aim to discover 

a shared feature representation for minimizing distribution differences while preserving the important 
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properties of original datasets. There are several types of domain adaptation approaches, such as re-

weighting, parameter adaptation, feature augmentation, and feature transformation [Yao, Y et al. 2010, 

Gong, B 2012, Matasci, G 2015, Tzeng, et al. 2017, Csurka et al. 2017, Tang, et al. 2020]. After adaptation, 

a standard machine learning approach is used that assumes the test data are drawn from a similar distribution 

as the training data. As noted, most domain adaptation methods are designed to transform the data (both 

HCs and patients) together into a common space. Careful consideration of this approach reveals a potential 

concern, that is, it ignores the fact that there may exist heterogeneity even within the HC cohorts. As a 

result, transforming and aligning the whole dataset may not work as well as expected. In this research, we 

propose a new concept termed “healthy core”: that transforms and aligns imaging data from HCs using their 

brain MRI data. Specifically, this study aims to 1) identify HCs from different sources to construct a healthy 

core; 2) develop and test classification models based on medical imaging that utilizes the healthy core in 

model training, validation, and testing across the datasets. We hypothesized that, compared to classification 

models developed without the use of a healthy core, imaging-based classification models for migraine 

developed with the use of a healthy core would have higher classification accuracy when applied to an 

unseen dataset.

2. Method 

2.1.  Approvals and Consent 

All studies were approved by the Mayo Clinic and Washington University School of Medicine in St. Louis 

Institutional Review Boards. All participants provided written consent prior to study participation. 

Individuals with migraine were identified from the headache clinics at both institutions. HCs and 

individuals with migraine were enrolled from a database of research volunteers, and via community 

outreach.

2.2.  Study Participants
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Diagnoses of episodic migraine (EM) and chronic migraine (CM) were assigned using the most recent 

version of the International Classification of Headache Disorders available at the time of enrollment [ICHD-

3 beta 2013]. Migraine diagnoses were assigned by a headache specialist (TS). HCs were excluded 

if they had a history of migraine, but occasional tension-type headaches (< 3 tension-type 

headaches per month) were allowed. Participants were male or female adults between the ages of 18-

65. Those with contraindications to MRI, acute pain conditions other than migraine, neurological disorders 

other than migraine, women who were pregnant, and individuals with abnormal brain MRI findings 

according to usual clinical interpretation were excluded. Participants were recruited for the study between 

2012 and 2021.

2.3.  Data Collection

Dataset 1 (DS1): The DS1 cohort, a total of 120 individuals (66 with migraine and 54 HCs) includes some 

patients scanned at Mayo Clinic Arizona and other patients scanned at Washington University School of 

Medicine in St. Louis. 

Dataset 2 (DS2): The DS2 cohort, a total of 76  (34 with migraine and 42 HCs), consists of data from 

individuals scanned only at Mayo Clinic Arizona. 

Data collected from all study participants included age, sex, Beck Depression Inventory-II (BDI-II) scores, 

and State-Trait Anxiety Inventory (STAI) scores, Additional data collected from migraine participants 

included headache frequency, number of years lived with headache, and Migraine Disability Assessment 

(MIDAS) scores.

Study participants were imaged on one of two Siemens (Erlangen, Germany) scanners, each at a different 

institution. Scanners at both institutions differed in scanner model (Magnetom vs Trio), use of headcoil (12-

channel vs 20-channel), and T1-weighted and T2-weighted acquisition parameters, described in detail 

below.
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Washington University: MAGNETOM Trio 3T scanner using a 12-channel head matrix coil 

T1-weighted images: TE=3.16 ms, TR=2.4 s, 1x1x1 mm voxels, 256x256 mm field of view (FOV), 

acquisition matrix 256 x 256. T2-weighted images: TE=88 ms, TR=6280 ms, 1x1x4 mm voxels, 256x256 

mm field of view, acquisition matrix 256 x 256.

Mayo Clinic: MAGNETOM Skyra 3T scanner using a 20-channel head matrix coil.T1-weighted images: 

TE=3.03 ms; TR=2.4 s; 1x1x1.25 mm voxels; 256x256 mm field of view, acquisition matrix 256 x 256. 

T2-weighted images: TE=84 ms; TR=6800 ms; 1x1x4 mm voxels; 256x256mm FOV, acquisition matrix 

256 x 256).

T1 images were used for ruling out gross structural abnormalities. 

Data included in this analysis have been utilized in prior analyses [Schwedt, T.J., 2015 and Chong, C. D. 

2017]. T1-weighted image processing was performed using the automated FreeSurfer image analysis suite 

(version 5.3, http://surfer.nmr.mgh.harvard.edu/) available at the time of imaging. Image processing 

included skull stripping, automated Talairach transformation, segmentation of subcortical gray and white 

matter, intensity normalization, gray-white mater boundary tessellation, and surface deformation[Dale, A. 

M (1999), Fischl, B. (2001), Fischl, B. (2002), Ségonne, F. (2004)]. Data output measures from the 

automated ‘recon-all’ processing stream included regional cortical volume, cortical surface area, and 

cortical thickness over the left and right hemispheres. 

2.4.  Evaluation of Dataset differences between DS1 and DS2

For both datasets, measurements of cortical thickness, cortical surface area, and cortical volume for 68 

regions were derived resulting in 204 measures per subject. Image features of HCs on cortical thickness, 

cortical surface area, and volumes in DS1 and DS2 were compared separately to identify the potential cohort 

difference. The comparison was performed for the means of features, the variances of features, and feature 

correlation structures. The cohort-wise means/variances of each feature were compared using a two-sample 
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t-test/F-test. False Discovery Rate (FDR) was used to correct for multiple comparisons. The cohort-wise 

correlation matrices for the volume, area, and thickness features were compared using the two-sample 

Hotelling’s T2 (the multivariate extension of the common two-group Student's t-test) and Multivariate 

Analysis of Covariance. In order to avoid the confounding of multiple cohort differences, the mean and 

variance differences were removed from each cohort to identify the remaining differences. 

2.5.  Constructing the Healthy Core

Differences in imaging acquisition protocols, scanners, and even small differences in populations from 

which research participants are enrolled can lead to cohort effects. Therefore, simply combining all HCs 

from different studies/sites may not be optimal due to cohort effects. In order to address this issue, here we 

propose a new design strategy to discover the homogenous HCs from different datasets as referenceable 

HCs (see Step 2 in Figure 1). Our proposed approach contains two key concepts: 1) measure the similarity 

between HCs from different datasets, and 2) explore feature representations of the dataset to assess the 

similarities. First, the proposed method utilizes the Maximum Mean Discrepancy (MMD) [Gretton, A et al. 

2012, Cui, P et al. 2020] which is a kernel-based statistic used to determine whether two distributions are 

similar. MMD can be considered as a criterion to determine whether subset samples from multiple datasets 

are homogenous [Gretton, A et al. 2012, Long, et al. 2015, Yan, et al. 2017, Epstein, et al. 2019, Zhang, et 

al. 2020, Kirchler, et al 2020]. However, the MMD is a point estimate-based statistic which may be too 

strict since the original datasets might inherently exhibit different characteristics. To capture the inherent 

variabilities, we hypothesize that Geodesic Flow Kernel (GFK), which utilizes geometric manifolds termed 

Grassmann, may help. GFK has been widely used in the domain adaptation research field because it does 

not focus only on the feature representations of the two datasets (snapshot of each dataset), it constructs the 

transformation over the Grassmann space of the two datasets with a scale parameter. As a result, it has the 

potential to identify the subset samples from each dataset, for example, using MMD, as the homogenous 

core.  
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Figure 1. The overall workflow for Healthy Core Construction

We hypothesize that using a healthy core, a homogenous subset of HCs from different sources, can help 

improve the generalization of the machine learning model for classifying migraine since it addresses the 

heterogeneity of the HCs within and across the datasets; and sets the bridges between the datasets. To 

comprehensively assess the clinical utility of the proposed method, we designed three sets of experiments: 

(1) evaluating the performance of migraine classification models within a single dataset; (2) evaluating the 

performance of migraine classification models developed using one dataset and tested on a second dataset; 

and (3) evaluating the performance of migraine classification models with and without using healthy core 

samples for classifying individuals with CM and those with EM from a different dataset. In the training of 

the classification models, cross-validation has been applied. To get reliable results for the relatively small 

sample sizes, experiments are repeated under five different random scenarios (cross-validated) to build 

classifiers and report average performances. Since our last experiment focuses on migraine only, we report 

the Area Under the Curve (AUC) for the first two experiments and the accuracy of identifying migraine in 

the last experiment. 
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3. Results

DS1 consisted of 120 subjects (Age: 36 ± 11, female:91, male:29, Amongst those with migraine, an 

average headache frequency was:8.91 ± 6.25 days per month), including 54 HC, 51 EM patients, and 15 

CM patients. DS2 consisted of 76 subjects (Age: 38 ± 10, female:41, male:35, Average headache 

frequency for those with migraine: 17.97 ± 8.08 days per month), including 42 HCs, 8 EM patients, and 

26 CM patients. The overall sample numbers in this study are shown in Table 1 and the proportion of 

individuals with aura is described in Table 2. 

Table 1. Overall sample numbers for HC, EM, and CM 

HC EM CM

DS1 (120 subjects) 54 51 15

DS2 (76 subjects) 42 8 26

Table 2. Proportion of individuals with aura

DS1 (66 migraineurs) DS2 (34 migraineurs)

EM CM EM CM

Aura 22 6 3 15

No Aura 29 8 5 11

Unknown 0 1 0 0

3.1.  Dataset (Cohort) Differences

First, the mean of area, thickness, and volume features are significantly different between the HCs in the 

two datasets with a p-value<0.01 before the False Discovery Rate (FDR) correction. Further, three imaging 
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features among those 41 significant features were identified as significantly different between two cohorts 

by the two-sample t-test and Kolmogorov-Smirnov test after FDR correction (Table 3). 

Table 3. The difference in the mean of features between DS1 and DS2

 
Two-sample t-test Two-sample 

Kolmogorov-Smirnov 

Before FDR 41 43

After FDR 12 3

Figure 2 illustrates the significant mean difference in each imaging feature between the two cohorts. This 

result confirms that there are mean differences between the two cohorts for each modality. 

                Area Features                                           Thickness Features                               Volume Features

Figure 2. Univariate Analysis for Mean Difference Scale

Second, the variances of the features were tested. Table 4 shows that the variance for each feature is not 

significantly different between two cohorts under both tests after FDR correction.

Table 4. The difference in the variances of features between DS1 and DS2

 

Two-sample F-test for 
equal variances

Ansari-Bradley Test for 
Equal Variances

Before FDR 8 9

After FDR 0 0

Furthermore, we investigated the possibility that significant group differences in sex distribution (p-

value=0.01) contributed to the cohort difference. 
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We randomly selected the sex-balanced sub samples from both cohorts. After making the balanced groups, 

the mean and variance of features (volume, area, and thickness) were tested using the t-test and KS test for 

mean, F-test and Ansari-Bradley test for variance whether the dataset difference exists. Since we selected 

a random subset to test, this test procedure was repeated 10,000 times to avoid a sampling-dependent 

conclusion.  It was concluded that there is a significant mean difference and a marginal variance difference 

in each feature (volume, area, and thickness), but sex distribution was not a significant factor in the dataset 

difference. 

Table 5 shows the average mean difference under several scenarios such as DS1 vs DS1, DS2 vs DS2, 

Random splits, and DS1 vs DS2. DS1 vs DS1 illustrates 21 randomly selected samples from the DS1 dataset 

and 21 non-overlapped samples from DS1. Note 21 samples are the number of consistent and balanced 

samples across four scenarios. The random splits mean 21 randomly chosen subsets from the combined 

dataset (DS1 and DS2) and another non-overlapped 21 samples. The number in the table shows the mean 

features per each subset and their differences. Because of the randomness in the sampling, we repeat this 

task 100 times and report the averaged values. 

Table 5. Average Mean Difference under Random Subsets within Dataset

Avg. |DS1-DS2| DS1 vs DS1 DS2 vs DS2 Random splits DS1 vs DS2

Area (mm2) 82.12 77.86 80.75 102.27

Thickness (mm) 0.0416 0.0458 0.0436 0.0481

Volume (mm3) 253.74 257.07 256.01 275.58

Table 5 confirms there is more of a difference between the two datasets (DS1 vs DS2) compared to sample 

subsets from within a dataset (e.g., DS1 vs DS1). The test results indicate that DS1 and DS2 are not 

compatible after mean and variance adjustments. Simple cohort-wise adjustments still have limited clinical 

applicability. This finding motivated us to develop new methods to construct a “healthy core” that consists 

of HC with similar characteristics from DS1 and DS2. 
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3.2.   Experiment I: evaluating the performance of different classification models within a 

single dataset

The goal is to demonstrate the accuracy of machine learning models in classifying migraine within a single 

dataset as shown in table 6. In this experiment, we built four binary classifiers (regularized logistic 

regression, support vector machine (SVM), random forest, and XGBoost) to identify HC vs. CM, or HC vs 

EM. For each dataset (DS1 or DS2), we split the data into training (~60%), validation (~20%), and testing 

(~20%).

Table 6. Single Dataset Experiments

Dataset Training Validation Test

DS 1 HC (n=34) vs. CM (n=9) HC (n=9) vs. CM (n=3) HC (n=11) vs. CM (n=3)

CM DS 2 HC (n=27) vs. CM (n=17) HC (n=7) vs. CM (n=4) HC (n=8) vs. CM (n=5)

DS 1 HC (n=34) vs. EM (n=31) HC (n=9) vs. EM (n=10) HC (n=11) vs. EM (n=10)

EM DS 2 HC (n=27) vs. EM (n=4) HC (n=7) vs. EM (n=2) HC (n=8) vs. EM (n=2)

Table 7A. AUC of Four Classification Models in Single Dataset Experiments for CM

Training on DS1 Test on DS1 Training on DS2 Test on DS2

Regularized Logistic Reg. 0.9600 0.7360 0.9820 0.6380

SVM 0.8720 0.6700 0.9800 0.5900

Random Forest 0.9320 0.7700 0.9180 0.6560

XGBoost 0.9480 0.8370 0.9040 0.7020

Average 0.7533 0.6465
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Table 7B. AUC of Four Classification Models in Single Dataset Experiments for EM

Training on DS1 Test on DS1 Training on DS2 Test on DS2

Regularized Logistic Reg. 0.8960 0.6660 0.8920 0.5760

SVM 0.9480 0.6740 0.9500 0.6060

Random Forest 0.9960 0.7400 0.9420 0.6280

XGBoost 0.8440 0.7060 0.9320 0.6440

Average 0.6965 0.6135

Four different models were applied to build the classifiers. The average AUC of the four models for HC vs 

CM was 0.7533 for the DS1 test dataset and 0.6465 for the DS2 test dataset as seen in Table 7A. The 

average AUC of the four models for HC vs EM was 0.6965 for the DS1 test dataset and 0.6135 for the DS2 

test dataset as seen in Table 7B. We conclude that the machine learning models provide good performance 

during training, but that the performance deteriorates when using test data. This deterioration in accuracy 

is expected and the model performance may still be considered satisfactory. 

3.3.  Experiment II: evaluating the performance of the classification models developed on one 

dataset and tested on a second dataset

The goal is to assess the generalizability of machine learning models across datasets as shown in Table 8. 

Like Experiment I, here we tested on HC vs. EM, or HC vs. CM. Since one dataset can be fully utilized in 

training and validating with testing to be conducted in the second dataset, we split the data into training 

(~80%) and validation (~20%) for DS1, or DS2 respectively.  

Table 8. Cross-Dataset Experiments

Datasets Training Validation Test

CM 

DS1> DS2

DS1: 

HC (n=43) vs. CM (n=12)

DS1: 

HC (n=11) vs. CM (n=3)

DS2: 

HC (n=42) vs. CM (n=26)
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CM

DS2 > DS1

DS2: 

HC (n=33) vs. CM (n=21)

DS2: 

HC (n=9) vs. CM (n=5)

DS1: 

HC (n=54) vs. CM (n=15)

EM

DS1 > DS2

DS1: 

HC (n=43) vs. EM (n=41)

DS1: 

HC (n=11) vs. EM (n=10)

DS2: 

HC (n=42) vs. EM (n=8)

EM

DS2 > DS1

DS2: 

HC (n=33) vs. EM (n=6)

DS2: 

HC (n=9) vs.EM (n=2)

DS1: 

HC (n=54) vs. EM (n=51)

Table 9A. AUC of Four Classification Models for HC vs CM in Cross-Dataset Experiments

Training (DS1) Test (DS2) Training (DS2) Test (DS1)

Regularized Logistic Reg. 0.9160 0.5040 0.9340 0.6160

SVM 0.9740 0.580 0.8620 0.5980

Random Forest 0.9640 0.4400 0.9820 0.6900

XGBoost 0.9940 0.5740 0.8680 0.5880

Average 0.5245 0.6230

Table 9B. AUC of Four Classification Models for HC vs EM in Cross-Dataset Experiments

Training (DS1) Test (DS2) Training (DS2) Test (DS1)

Regularized Logistic Reg. 0.8475 0.6375 0.9100 0.5900

SVM 0.7850 0.6050 0.9725 0.5825

Random Forest 0.9600 0.5325 0.9675 0.5950

XGBoost 0.8225 0.5375 0.9075 0.6175

Average 0.5781 0.5963
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As seen in Table 9A for HC vs CM, all four trained classifiers did not perform well in this cross-dataset 

experiment. The average AUC on models trained on DS1 dropped from 0.7533 (testing on DS1) to 0.5245 

(testing on DS2), and the average AUC on models trained on DS2 dropped from 0.6465 (testing on DS2) 

to 0.6230 (testing on DS1). We can also observe similar patterns for HC vs EM in the cross-dataset 

experiment as seen in Table 9B. The average AUC on models trained on DS1 dropped from 0.6965 (testing 

on DS1) to 0.5781 (testing on DS2), and the average AUC on models trained on DS2 dropped from 0.6135 

(testing on DS2) to 0.5963 (testing on DS1). This result demonstrates the existence of dataset discrepancies 

that need to be cautiously handled when building classification models. 

3.4. Experiment III: evaluating the performance of classification models with and without using 

Healthy Core 

The goal is to assess the applicability of machine learning models developed in one dataset including 

participants with migraine and the healthy core to classify individuals with migraine from a separate dataset. 

The overall sample numbers in Cross-dataset Experiments with Healthy Core are shown in Table 10.

Table 10. Cross-dataset Experiments with Healthy Core

Datasets Training Validation Test

CM

DS1→ DS2

Healthy Core (n = 28) vs. 

CM from DS1 (n=12)

Healthy Core (n=28) vs. 

CM from DS1 (n=3)

CM from DS2 

(n=26)

CM

DS2→ DS1

Healthy Core (n=28) vs. 

CM from DS2 (n=21)

Healthy Core (n=28) vs. 

CM from DS2 (n=5)

CM from DS1 

(n=15)

EM

DS1 → DS2

Healthy Core (n = 28) vs. 

EM from DS1 (n=41)

Healthy Core (n=28) vs. 

EM from DS1 (n=10)

EM from DS2 

(n=8)

EM

DS2 → DS1

Healthy Core (n = 28) vs. 

EM from DS2 (n=6)

Healthy Core (n=28) vs. 

EM from DS2 (n=2)

EM from DS1 

(n=51)
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Table 11. Accuracy of four models with and without Healthy Core for CM and EM Classification

Regularized LR SVM Random Forest XGBoost
Without 
Healthy 

Core

With 
Healthy 

Core

Without 
Healthy 

Core

With 
Healthy 

Core

Without 
Healthy 

Core

With 
Healthy 

Core

Without 
Healthy 

Core

With 
Healthy 

core
Predicting 
CM from 

DS2 
0.4900 0.6780 0.3790 0.7833 0.4700 0.7680 0.5650 0.8740 

Predicting 
CM from 

DS1
0.6100 0.6920 0.4175 0.6325 0.4800 0.8325 0.5840 0.8400

Predicting 
EM from 

DS2 
0.4716 0.7510 0.5550 0.8787 0.5950 0.8520 0.5520 0.8250 

Predicting 
EM from 

DS1
0.4180 0.6250 0.4950 0.7400 0.5560 0.6600 0.4920 0.7920

Without using the healthy core, the four trained classification models do not have generalization accuracy 

to classify CM (test accuracy for DS2: 0.4760 – about 12 out of 26 CM, and test accuracy for DS1: 0.5229– 

about 8 out of 15) or EM (test accuracy for DS2: 0.5434 – about 4 out of 8 and test accuracy for DS1: 

0.4903 – about 25 out of 51). Unlike typical approaches, the proposed method using the healthy core 

samples to build the same four classifiers achieved significantly better classification accuracy (see Table 

11). These results show that the use of a subset of the HCs from different datasets has the potential to 

support the generalization of classification models. 

3.5.  Discussions on Healthy Core

In Section 3.1, we conducted statistical analysis to confirm the dataset discrepancy between DS1 and DS2. 

For illustration, here we adopted t-Distributed Stochastic Neighbor Embedding (t-SNE), a technique for 

dimensionality reduction (e.g., based on principal component analysis) that is particularly well-suited for 

the visualization of high-dimensional datasets to demonstrate the impact of a healthy core. For details of t-

SNE, interested readers are referred to [Van der Maaten 2008].  
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Figure 3. t-SNE plot of DS 1 and DS2 for CM on the first and second principal component. (A) combined HCs 
(n=96) vs. CM from DS1 (n=15). (B) Healthy Core (n=28) vs. CM from DS1 (n=15). (C) combined HCs (n=96) vs. 

CM from DS2 (n=26). (D) Healthy Core (n=28) vs. CM from DS2 (n=26).

As seen in Figure 3A and Figure 3C, combined HCs do not have separating (thus predictive) pattern 

compared to CM from either DS1 or DS2. On the other hand, the selected HCs cores have representative 

similar patterns, and healthy core (see Figure 3B and Figure 3D) can be well clustered in the t-SNE plot. 
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Figure 4. t-SNE plot of DS 1 and DS2 for EM on the first and second principal component. (A) combined HCs 
(n=96) vs. EM from DS1 (n=51). (B) healthy core (n=28) vs. EM from DS1 (n=51). (C) combined HCs (n=96) vs. 

EM from DS2 (n=8). (D) healthy core (n=28) vs. EM from DS2 (n=8).

Similar trends were observed for HC vs EM. Figure 4A demonstrated that the combined HCs contain mixed 

patterns with noise. However, 28 healthy cores identified by the proposed methods show compact 

representative patterns and are well separable from EM.  

4. Discussion and Conclusion
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The main finding of this study is that utilization of a healthy core, i.e. a homogeneous dataset derived from 

a cohort of healthy controls, improves the performance of classification models for EM and CM. The use 

of a healthy core helps to overcome the deterioration in model performance that is otherwise seen when 

applying the migraine classification model to independent datasets collected from patients enrolled at 

different institutions and imaged on different scanners. Depending on the modeling approach, the inclusion 

of a healthy core resulted in classification accuracy as high as 88% for EM and CM. 

The use of independent training and testing datasets is a substantial strength of the studies reported herein. 

Many prior publications (including some of our own) reported the accuracy of classification models for 

migraine train and test the model using the same dataset, with strategies such as the “leave-one-out” 

methodology[Schwedt, T.J. et al. 2015, Chong, C.D. et al., 2017, Lee M.J. et al., 2019, Zhang, Q. et al., 

2018, Yang, H. et al., 2018, Chong, C.D., 2021]. Although this type of approach is valid and well-accepted, 

it likely leads to overestimating the performance of the model if it was used in a completely new and 

previously unseen dataset. Because independent training and testing datasets were used in the experiments 

described herein, the reported classification accuracies should be considered as more conservative estimates 

of model performance.

Useful classification models need to have high performance when tested on data that are collected from 

new patient populations and using collection techniques that might differ slightly from those used to collect 

the data that were included for model training (i.e. cross dataset accuracy). For example, a brain MRI-based 

classification model should still have high performance when tested on data from patients imaged at a 

different medical center and using different MR scanners. The experiments reported in this manuscript 

purposefully introduce this type of heterogeneity, with participants being enrolled from two different 

medical centers in two different regions of the United States. Results demonstrate the expected reduction 

in accuracy of the migraine classification models when they have been tested on independent datasets that 

include heterogeneity typical of multicenter imaging experiments. The experiments without the healthy 

core that are reported herein demonstrate this: EM and CM classification accuracy was higher in the single 
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dataset experiments (CM accuracy 65%-75%, EM accuracy 61%-70%) compared to the cross-dataset 

experiments (CM accuracy 57%-59%, EM accuracy 58%-60%). The introduction of a healthy core helped 

to overcome this deteriorating model performance and provided much higher classification accuracies for 

EM and CM.

When performing research that includes “healthy controls” there is an assumption that the healthy control 

cohort is homogeneous. However, even when stringent eligibility criteria are applied in an attempt to make 

the healthy control group as healthy as possible, there will always be identifiable and unidentifiable 

heterogeneity within the healthy control group due to differences in demographics, prior life experiences, 

physical and mental well-being, underlying genetic heterogeneity, the existence of diseases that have not 

yet manifest, and other sources of heterogeneity. When establishing “normal values” for certain types of 

tests, such as blood test results, for example, the use of very large sample sizes can mostly overcome this 

issue of heterogeneity within the healthy control cohort. However, available sample sizes are smaller for 

establishing normal values for brain MRI, a diagnostic test that is time and cost-intensive. The “healthy 

core” method described in this manuscript can help overcome this challenge. For example, with the use of 

the healthy core and XGBoost, the cross dataset classification accuracy improved to 84%-87% for CM and 

to 79%-83% for EM. 

When using the healthy core, the classification accuracies for migraine are comparable, if not somewhat 

higher, than those reported previously in the literature. This is so even though independent training and 

testing sets were used. For example, prior studies using brain imaging structural data reported classification 

accuracies of 67%-86% for differentiating migraine from healthy controls [Schwedt, T.J. et al. 2015], while 

those using functional MRI data reported accuracies of 73%-86% [Chong, C. D. et al. 2017; Yang, H et al. 

2018; Lee, M. J. et al. 2019]. Classification models including multimodality imaging data, combining 

structural and functional measures, have provided accuracies of 83%-84 [Zhang, Q. et al. 2016; Gaw, N. et 

al. 2018]. Classification accuracies for EM were generally lower than for CM in the experiments reported 

herein. This is consistent with expectations since CM is the more severe disease state, prior brain imaging 
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studies have demonstrated that headache frequency has a positive correlation with the amplitude of 

structural and functional brain changes, and prior classification models have had similar findings [Valfrè, 

W. et al. 2008; Schmitz, N. et al. 2008; Maleki, N. at al. 2012; Schwedt, T.J. et al. 2015; Gaw, N. et al. 

2018; Magon, S. et al. 2019; Lai, K. L. et al. 2020; Mu, J. et al. 2020]. 

Study Limitations: We assumed heterogeneity amongst the healthy control cohort, and this assumption 

served as justification for developing a healthy core. However, a limitation of this study is that we are only 

partially able to describe the heterogeneity using the non-imaging data that were collected, such as the 

medical center from which a participant was enrolled, their sex, and age. Future studies should more deeply 

phenotype the healthy control subjects in search of sources of heterogeneity that might associate with 

differences in brain structure. Also, it should be noted that imaging data used in the analyses reported herein 

were also used in prior research on classification models for migraine [Schwedt, T.J. et al. 2015; Gaw, N. 

et al. 2018]. Future studies will continue to validate the migraine classification models reported herein and 

test the value of using a healthy core when developing new classification models. 

In conclusion, the utilization of a healthy core can increase the accuracy and generalizability of brain 

imaging-based classification models for EM and CM. Inclusion of a healthy core addresses intrinsic 

heterogeneity that exists within a healthy control cohort and in multicenter studies, even when stringent 

participant eligibility criteria and methodology are used. 
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Appendix

The proposed method, a unified framework of GFK+MMD

The Maximum Mean Discrepancy (MMD) is a single statistic to measure the closeness between two 

distributions ℙ and ℚ from two datasets. 

                                𝑀𝑀𝐷(ℙ, ℚ ;ℱ)≔sup
𝑓 ∈ ℱ

| 𝔼[𝑓(𝐷𝑆1)] ―  𝔼[𝑓(𝐷𝑆2)] |                                       (1)

where ℱ is a set containing all continuous functions [Gretton, A et al. 2012]

The Geodesic Flow Kernel [Gong, B et al. 2012], also known as GFK, has utilized Grassmann manifolds 

and enabled the construction of physically meaningful new representations between two datasets. GFK 

explores several feature representations between two datasets and generates a number of transformations 

that characterize changes in geometric and statistical properties from one dataset to another dataset. Since 

this approach explores several statistically meaningful feature representations between two datasets, the 

advantage of several representations by GFK can be used for capturing data variabilities instead of relying 

on a single snapshot of each dataset. MMD is utilized as the tool to compare those feature representations. 

Algorithm 1: a proposed algorithm for Healthy Core

Input: Data 𝐗1 and Data 𝐗2; 
Output: A single coreset {𝐗1c, 𝐗2c}
begin 

repeat 
Iteration i =1 to 𝐧1 samples from 𝐗1c
    Given 𝐗2c Construct MMD matrix {𝐺(𝐗1𝐶𝑖),𝐺(𝐗2𝐶)} 
Iteration j =1 to 𝐧2 samples from 𝐗2c
    Given 𝐗1c Construct MMD matrix {𝐺(𝐗1𝐶),𝐺(𝐗2𝐶𝑗)} 
Compute rank by MMD and select sample to maximize decreasing the average MMD 
along 𝑡

until Convergence (optimal point) 
Return 
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