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 2 

Summary 33 

Metabolites are small molecules that are useful for estimating disease risk and 34 

elucidating disease biology. Nevertheless, their causal effects on human diseases have not 35 

been evaluated comprehensively. We performed two-sample Mendelian randomization 36 

to systematically infer the causal effects of 1,099 plasma metabolites measured in 6,136 37 

Finnish men from the METSIM study on risk of 2,099 binary disease endpoints measured 38 

in 309,154 Finnish individuals from FinnGen. We identified evidence for 282 causal 39 

effects of 70 metabolites on 183 disease endpoints (FDR<1%). We found 25 metabolites 40 

with potential causal effects across multiple disease domains, including ascorbic acid 2-41 

sulfate affecting 26 disease endpoints in 12 disease domains. Our study suggests that N-42 

acetyl-2-aminooctanoate and glycocholenate sulfate affect risk of atrial fibrillation 43 

through two distinct metabolic pathways and that N-methylpipecolate may mediate the 44 

causal effect of N6, N6-dimethyllysine on anxious personality disorder. This study 45 

highlights the broad causal impact of plasma metabolites and widespread metabolic 46 

connections across diseases. 47 

  48 
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Introduction 49 

Metabolites are intermediate or end products of cellular metabolism with a wide range 50 

of functions1. Compared to gene transcripts and proteins, metabolites are more 51 

proximal to diseases, making them ideal biomarkers for estimating disease risk and 52 

understanding disease biology. Metabolite levels have shown associations with many 53 

human diseases, including type 2 diabetes and multiple cancers2,3. Some metabolites 54 

have demonstrated potential for predicting future disease4,5. However, the causal effects 55 

of metabolites on human diseases have not been evaluated comprehensively. 56 

Metabolite levels reflect both environmental and genetic influences1. With the 57 

advent of high-throughput metabolic profiling technology, measuring levels of thousands 58 

of metabolites for participants in population studies has become possible. Recent 59 

genome-wide association studies (GWAS) that combine high-throughput metabolic 60 

profiling and genotyping/sequencing in large samples have identified thousands of 61 

genetic associations for thousands of metabolites and metabolic features6. These studies 62 

usually measure metabolite levels in blood, which are widely considered to reflect 63 

metabolite aggregate concentrations across tissues7. Recently, we profiled plasma levels 64 

for 1,391 metabolites using Metabolon non-targeted mass spectrometry technology in 65 

6,136 Finnish individuals of the Metabolic Syndrome in Men (METSIM) study8. GWAS 66 

identified 2,030 genetic associations for 803 of the 1,391 metabolites8. Integrating these 67 

metabolite GWAS with expression quantitative trait loci (eQTL) in 49 human tissues 68 

established associations of expression levels of 397 genes with levels of 521 plasma 69 

metabolites9. These GWAS deepen our understanding of genetic regulation of metabolic 70 

individuality, open an avenue to evaluate the causal effects of blood metabolites on 71 

human diseases using Mendelian randomization, and have the potential to provide 72 

actionable disease interventions. 73 

Mendelian randomization is an instrumental variable (IV) method to interrogate 74 

causal effects of heritable risk factors on diseases of interest using genetic variants as 75 

IVs10. Mendelian randomization has identified modifiable risk factors for human diseases 76 

and recent methods development facilitates its broader application. For example, 77 

Mendelian randomization using the robust adjusted profile score (MR-RAPS) can account 78 

for bias of weak and outlier genetic IVs11 and multivariable Mendelian randomization 79 

enables testing causal effects of multiple potentially related exposures on the same 80 

outcome12,13. 81 
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Mendelian randomization analysis has recently been applied to search for causal 82 

blood metabolites for a wide range of diseases and traits, including type 2 diabetes14, 83 

neuroticism15, Alzheimer’s disease16, and rheumatoid arthritis17. These studies 84 

demonstrate the utility of Mendelian randomization to identify potential causal 85 

metabolites and metabolic pathways for human diseases. However, the existing studies 86 

are restricted to one or a few disease outcomes and a relatively limited set of 87 

metabolites6,18. 88 

Here, we comprehensively evaluated potential causal effects of 1,099 plasma 89 

metabolites on 2,099 binary disease endpoints (hereafter disease traits) using a 90 

Mendelian randomization analysis in GWAS of METSIM plasma metabolites8 and FinnGen 91 

disease traits (release 7)19. We identified evidence for 282 causal effects of 70 plasma 92 

metabolites on 183 disease traits. Our study uncovered new potential causal effects of 93 

plasma metabolites for a broad spectrum of human diseases. We also identified some 94 

metabolites with broad causal effects across multiple disease types. 95 

 96 

Results 97 

Interpretation of Mendelian randomization effect estimates. Mendelian 98 

randomization tests whether genetic variants that affect the exposure (metabolite) have 99 

a proportional effect on the outcome (disease trait). With additional assumptions about 100 

the relationship between the genetic variants, metabolites, and disease traits20, the 101 

proportionality constant can be interpreted as a measure of the strength of the causal 102 

effect. In this paper, we focus primarily on significance and direction when interpreting 103 

estimated effects. Mendelian randomization can avoid bias due to environmental 104 

confounding and reverse causation which can plague observational associations20. 105 

However, causal interpretation of Mendelian randomization effects relies on additional 106 

assumptions, which may not hold in all cases. These effects must therefore be interpreted 107 

in the context of other sources of evidence (see Davies et al. 201720 for a full discussion 108 

of interpretation of Mendelian randomization estimates). 109 

 110 

Summary of Mendelian randomization results. We previously conducted GWAS for 111 

1,099 named plasma metabolites with annotated chemical identities in up to 6,136 112 

Finnish men aged 45-74 at enrollment from the METSIM study8. These 1,099 metabolites 113 

included nine biochemical classes of small molecules related to the metabolisms of lipids 114 
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(n=548, 49.9%), amino acids (n=215, 19.6%), xenobiotics (n=163, 14.8%), peptides 115 

(n=42, 3.8%), nucleotides (n=42, 3.8%), cofactors and vitamins (n=38, 3.5%), 116 

carbohydrates (n=25, 2.3%), partially-characterized molecules (n=16, 1.5%), and energy 117 

(n=10, 0.9%) (Supplementary Table 1). 118 

To identify causal plasma metabolites for human diseases, we carried out 119 

univariable Mendelian randomization analysis using MR-RAPS19 to evaluate causal 120 

effects of the 1,099 metabolites on 2,099 binary disease traits from the FinnGen study 121 

(release 7; Fig. 1a). In GWAS, we inverse normalized the metabolite measurements8 and 122 

measured disease trait associations by mixed-model logistic regression19. Our estimated 123 

causal effects can therefore be interpreted as the change in log odds of disease risk caused 124 

by an increase of one standard deviation of the normalized metabolite level. To identify 125 

independent IVs for the Mendelian randomization analysis, we performed linkage 126 

disequilibrium (LD) clumping in the GWAS summary statistics for each of the 1,099 127 

metabolites to ensure resulting variants achieve association P < 10-5 and each pair of 128 

variants within 1 megabase (Mb) distance satisfy LD r2 < 0.01. For the 1,099 metabolites, 129 

we identified from 12 to 173 likely independent variants (mean=42.3; median=40.0) and 130 

used these as IVs (Supplementary Fig. 1). 131 

We identified evidence for 282 causal effects of 70 plasma metabolites on 183 132 

disease traits at a false discovery rate (FDR) threshold < 1% (Fig. 2 and Supplementary 133 

Table 2), highlighting the broad relevance of plasma metabolite levels to human health. 134 

These 282 metabolite-disease trait pairs showed strong robustness to IV selection and 135 

choice of Mendelian randomization method (Supplementary Fig. 2-5, Supplementary 136 

Notes). The 70 causal metabolites comprised lipids (n=31, 44.3%), amino acids (n=29, 137 

41.4%), xenobiotics (n=4, 5.7%), cofactors and vitamins (n=2, 2.9%), and nucleotides, 138 

carbohydrate, peptide, and partially-characterized molecule (n=1, 1.4% for each). 139 

Compared to the 1,099 metabolites evaluated, the 70 metabolites showed significant 140 

enrichment in amino acids (odds ratio (OR)=3.20, Chi-square test P=4.0×10-6) and 141 

depletion in xenobiotics (OR=0.33, Chi-square test P=0.041), which may reflect the 142 

significantly larger numbers of IVs for amino acids than for xenobiotics (Student’s t-test 143 

P=1.2×10-12). The 70 plasma metabolites conferred significant causal effects on 1 to 26 144 

disease traits (mean=4.0; median=1.0), with 32 (46%) showing significant causal effects 145 

on more than one disease trait (Fig. 1b-1c). The 183 disease traits covered a broad 146 

spectrum of diseases. The FinnGen consortium grouped these disease traits into 20 147 
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categories, including cancers (e.g. colon cancers), cardiometabolic (e.g. type 2 diabetes), 148 

infectious (e.g. tularaemia), neurological (e.g. Parkinson’s disease), and mental and 149 

behavioral diseases (e.g. anxiety personality disorder) (Supplementary Table 2). Each 150 

of the 183 disease traits had 1 to 6 causal metabolites (mean=1.5; median=1.0); 53 (29%) 151 

had ≥2 causal metabolites (Fig. 1d). 152 

 153 

New potential causal metabolites for diseases. Among the 282 causal effects, we 154 

reproduced several known relationships. For example, we identified a potential causal 155 

effect of low plasma lipid glycosyl-N-stearoyl-sphingosine levels on increasing risk of 156 

coronary artery disease (β=-0.11, P=1.0×10-6), reinforcing the important role of 157 

sphingolipid metabolism in coronary artery disease21. Studies have reported high levels 158 

of valine, a branched-chain amino acid, associated with increased risk of type 2 159 

diabetes4,22. We validated, with nominal significance, the causal effect of plasma valine 160 

levels on risk of type 2 diabetes (β=0.041, P=5.0×10-3). In addition, we found that elevated 161 

plasma N-acetylvaline levels decreased risk of type 2 diabetes (β=-0.085, P=1.1×10-8). N-162 

acetylvaline is a derivative of valine and belongs to a class of N-acyl-alpha amino acids. 163 

Multivariable Mendelian randomization including both valine and N-acetylvaline 164 

suggested that both metabolites have direct effects on type 2 diabetes (N-acetylvaline: 165 

β=-0.096, P=2.7×10-12; valine: β=0.087, P=1.8×10-5), indicating a potentially important 166 

and complex role of valine metabolism in risk of type 2 diabetes. Interestingly, we found 167 

that high levels of two additional plasma N-acyl-alpha amino acids N-acetylglutamate 168 

(β=-0.11, P=1.0×10-7) and N-acetylmethionine (β=-0.072, P=5.5×10-7) potentially 169 

causally decreased risk of type 2 diabetes. The three N-acyl-alpha amino acids N-170 

acetylvaline, N-acetylglutamate, and N-acetylmethionine show substantial phenotypic 171 

correlation and share many IVs (Fig. 3, Supplementary Fig. 6). For these three N-acyl-172 

alpha amino acids, our GWAS previously identified genome-wide significant associations 173 

at the ACY1 gene8, which encodes enzyme aminoacylase 1 that catalyzes the hydrolysis of 174 

acylated L-amino acids to L-amino acids. Mendelian randomization suggested that 175 

elevated plasma aminoacylase 1 levels23 decreased levels of the three N-acyl-alpha amino 176 

acids (β<-1.20, P<4.2×10-21) but increased risk of type 2 diabetes (β=0.16, P=2.6×10-4), 177 

directionally consistent with the known function of aminoacylase 1 and a recently 178 

reported positive causal effect of aminoacylase 1 on type 2 diabetes24. These findings 179 

suggest a possible role of synthesis or degradation of N-acetylated proteins in type 2 180 
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diabetes. However, due to substantial sharing of IVs across the three N-acetyl amino acids, 181 

Mendelian randomization cannot identify whether this effect is due to one specific N-182 

acetyl amino acid or multiple. 183 

Our study also identified new potential causal metabolites for human diseases. 184 

Mendelian randomization recently suggested causal effects of plasma metabolites on risk 185 

of dementia16,25,26. We identified a significant potential protective effect of high plasma 186 

lipid 2-arachidonoyl-GPC (20:4) levels on risk of frontotemporal dementia (β=-0.89, 187 

P=1.2×10-6), a type of dementia characterized by progressive loss of neurons in the 188 

brain's frontal or temporal lobes. To the best of our knowledge, studies previously only 189 

reported 2-methoxyacetaminophen sulfate27 with causal effect specifically on 190 

frontotemporal dementia. 2-arachidonoyl-GPC (20:4) is a lysophosphatidylcholine 191 

widely considered as a potent pro-inflammatory mediator28. Emerging evidence has 192 

demonstrated that neuroinflammation plays an important role in dementia29. Studies 193 

have identified a negative association of lysophosphatidylcholine with Alzheimer’s 194 

disease30. Consistent with these results, we found a protective causal effect of increased 195 

2-arachidonoyl-GPC (20:4) levels on risk of frontotemporal dementia. We previously 196 

identified genome-wide associations for 2-arachidonoyl-GPC (20:4) around the 197 

FADS1/FADS2, two fatty acid desaturase genes8. Interestingly, we found that low 198 

expression of FADS1/FADS2 in the whole blood but high expression in the brain 199 

significantly increased plasma 2-arachidonoyl-GPC (20:4) level9. FADS1 variants could 200 

regulate erythrocyte arachidonic acid biosynthesis that subsequently induces 201 

inflammation in Alzheimer's disease31. 202 

Chronic kidney disease affects >10% of the general population worldwide32 and 203 

its risk factors are still poorly understood. We found evidence that elevated plasma 204 

xenobiotic sulfate levels increased risk of chronic kidney disease (β=0.080, P=1.9×10-7). 205 

High sulfate levels have been previously found to be associated with disease progression 206 

and increased mortality in individuals with kidney disease33. Our previous GWAS 207 

identified a genome-wide significant association with plasma sulfate levels at the 208 

SLC13A1 gene8, which encodes a sulfate transmembrane transporter and mediates the 209 

first step of sulfate absorption. SLC13A1 is primarily expressed in the proximal renal 210 

tubules. We previously found that high expression of SLC13A1 decreased plasma sulfate 211 

abundance9. These results together suggest that SLC13A1 could serve as a potential drug 212 

target for chronic kidney disease through regulation of plasma sulfate levels. 213 
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 214 

Causal metabolites shared across diseases. We identified evidence for 32 metabolites 215 

with causal effects on more than one disease trait (Fig. 1b and Fig. 2; see Summary of 216 

Mendelian randomization results). Of these 32 metabolites, 25 (78%) showed 217 

significant causal effects on ≥2 distinct disease categories (Fig. 1c, Supplementary 218 

Table 2). The sharing of causal metabolites between diseases may partially explain 219 

observed phenotypic correlations and disease comorbidities. For example, we identified 220 

causal effects of plasma amino acid N-acetylvaline levels on optic atrophy (β=0.53, 221 

P=4.7×10-7) and myasthenia gravis (β=0.53, P=7.9×10-8), diseases with substantial 222 

comorbidity34. These results suggested that valine metabolism might play a role in both 223 

cell cycle of retinal ganglion cell axons and communication between nerves and muscle. 224 

We found causal effects of plasma amino acid N-acetyl-aspartyl-glutamate (NAAG) levels 225 

on increased risk of both Parkinson's disease (β=0.11, P=3.2×10-7) and autoimmune 226 

hypothyroidism (β=0.039, P=3.9×10-9), which also have substantial comorbidity35. To the 227 

best of our knowledge, this is the first reported evidence of these four causal effects. 228 

The metabolite affecting the largest number of disease traits was ascorbic acid 2-229 

sulfate, with evidence of causal effects on 26 disease traits of 12 categories, including 230 

cardiomyopathy (disease of the circulatory system), arthropathy (disease of the 231 

musculoskeletal system and connective tissue), and acne (disease of the skin and 232 

subcutaneous tissue) (Supplementary Table 2). We found that elevated levels of 233 

ascorbic acid 2-sulfate may decrease risk of 12 disease traits including colon 234 

adenocarcinoma (β=-0.13; P=9.3×10-8) and endometriosis of the fallopian tube (β=-0.48; 235 

P=1.6×10-7) but increase risk of 14 others including conjunctiva cancer (β=0.36; 236 

P=2.8×10-14) and arthropathy (β=0.028; P=1.1×10-7). 237 

Notably, the suggested causal effects of plasma ascorbic acid 2-sulfate showed 238 

heterogeneity across disease traits even in the same category. For example, we found 239 

elevated ascorbic acid 2-sulfate levels are protective for acne (β=-0.18; P=3.9×10-10) and 240 

lichen sclerosus (β=-0.15; P=7.1×10-7) but increase risk of dyshidrosis, a kind of eczema 241 

(β=0.42; P=4.2×10-10). These three conditions all affect skin but usually in different 242 

anatomical locations: the face, upper part of the chest, and back; the genital area; and the 243 

palms and fingers, respectively. Ascorbic acid 2-sulfate arises from the action of a liver-244 

derived sulfotransferase on vitamin C, so it is possible that plasma levels of ascorbic acid 245 

2-sulfate are a proxy for action of liver-derived sulfotransferases or for vitamin C levels, 246 
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or a combination of these. Vitamin C is an essential nutrient for humans, acting as an 247 

antioxidant by protecting the body against oxidative stress, as a cofactor in enzymatic 248 

reactions including collagen synthesis, and as a structure component for blood vessels, 249 

cartilage, and muscle36. Vitamin C supplementation has been broadly recommended to 250 

help protect cells against the effects of free radicals, and has generally been found to be 251 

safe. Further investigation is needed to understand whether the effects we identified are 252 

effects of vitamin C itself or other biological processes. 253 

 254 

Independent causal metabolic pathways on the same disease. We computed both 255 

phenotypic correlation and correlation of IV effects (rIV) for each pair of the 70 significant 256 

metabolites, showing their pervasive connections (Fig. 3, Supplementary Fig. 7-8; see 257 

Methods). We found strong correlations between some pairs of potential causal 258 

metabolites for the same disease traits (absolute rIV median=0.84, mean=0.64, 259 

range=0.00033-0.99; Supplementary Fig. 9). 260 

Causal effects of two metabolites with highly correlated IVs on the same disease 261 

trait in univariable Mendelian randomization could result from multiple scenarios. For 262 

example, both metabolites may causally affect the disease trait independently, or only 263 

one metabolite could affect the disease trait, with the result for the other being due to 264 

mediation or horizontal pleiotropy. We employed multivariable Mendelian 265 

randomization13 to distinguish these possibilities. 266 

For atrial fibrillation, we identified a risk effect of plasma lipid N-acetyl-2-amino-267 

octanoate (β=0.068; P=2.3×10-7) and protective effects of plasma amino acid N-delta-268 

acetylornithine (β=-0.047; P=5.1×10-7) and lipid glycocholenate sulfate (β=-0.061; 269 

P=2.9×10-8). N-acetyl-2-aminooctanoate and N-delta-acetylornithine have highly 270 

correlated IVs (rIV=0.74) but neither has correlated IVs with glycocholenate sulfate 271 

(|rIV|<0.08). Multivariable Mendelian randomization analysis identified distinct causal 272 

effects on atrial fibrillation of lipids N-acetyl-2-amino-octanoate (β=0.054; P=7.2×10-3) 273 

and glycocholenate sulfate (β=-0.058; P=2.6×10-7), but no causal effect of N-delta-274 

acetylornithine, conditional on the other two metabolites (β=-0.020; P=0.17). In the 275 

METSIM study, we identified 816 individuals with atrial fibrillation (see Methods). 276 

Logistic regression identified a significant association between plasma N-acetyl-2-amino-277 

octanoate level and risk of atrial fibrillation (β=0.080; P=0.045), directionally consistent 278 

with the causal effect estimated in Mendelian randomization. We observed no significant 279 
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associations with N-delta-acetylornithine (β=0.057; P=0.148) or glycocholenate sulfate 280 

levels (β=0.072; P=0.064), however observational associations may be biased by 281 

unmeasured confounding variables. 282 

For anxious personality disorder, we identified risk effects of plasma xenobiotic 283 

N-methylpipecolate (β=0.28; P=2.8×10-7) and amino acid N6, N6-dimethyllysine (β=0.24; 284 

P=8.6×10-8) and a protective effect of plasma lipid androsterone sulfate (β=-0.27; 285 

P=1.5×10-7). N6,N6-dimethyllysine and N-methylpipecolate have high IV correlation 286 

(rIV=0.98) and share 42.4% of their IVs at a threshold of metabolite association P≤1×10-287 

5, but neither has correlated IVs with androsterone sulfate (|rIV|<0.03). Because of the 288 

high IV correlation between N6, N6-dimethyllysine and N-methylpipecolate, there is not 289 

enough independent genetic signal to tease apart their causal effects on anxious 290 

personality disorder using multivariable Mendelian randomization. We performed two 291 

multivariable Mendelian randomization analyses including androsterone sulfate and 292 

either N-methylpipecolate or N6, N6-dimethyllysine. In both cases, the data to be 293 

consistent with direct effects of both included metabolites (N-methylpipecolate (β=0.29; 294 

P=6.2×10-8) and androsterone sulfate (β=-0.27; P=7.6×10-8) or at N6, N6-dimethyllysine 295 

(β=0.24; P=5.0×10-7) and androsterone sulfate (β=-0.27; P=2.5×10-7)). To further 296 

understand this relationship, we carried out a GWAS on the metabolite ratio of N6,N6-297 

dimethyllysine and N-methylpipecolate, identifying six independent association signals 298 

in the AKR1C1/AKR1C2/AKR1C3/AKR1C4/AKR1C8, NAT8, PYROXD2, SLC6A20, and 299 

SLC7A9 regions (P<5.0×10-8) (Supplementary Table 3, Supplementary Fig. 10). 300 

Mendelian randomization identified evidence for a causal effect of increased N6,N6-301 

dimethyllysine:N-methylpipecolate ratio on risk of anxious personality disorder (β=-0.34; 302 

P=0.047; Supplementary Fig. 11; see Methods). The pattern we observe in which N6, 303 

N6-dimethyllysine and N-methylpipecolate both increase risk of anxious personality 304 

disorder, but an increase in their ratio confers a protective effect is consistent with a 305 

hypothesis that N-methylpipecolate acts as a mediator in the potential causal pathway of 306 

N6, N6-dimethyllysine on anxious personality disorder (Fig. 4). This is consistent with 307 

previous reports that pipecolate is an intermediate product of lysine metabolism37. 308 

 309 

Discussion 310 

In this study, we systematically screened for potential causal effects of 1,099 plasma 311 

metabolites on 2,099 disease endpoints using two-sample univariable and multivariable 312 
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Mendelian randomization analysis. We identified evidence for 282 causal effects of 70 313 

plasma metabolites on 183 disease endpoints. We characterized the sharing of 314 

metabolite causal effects across 53 human diseases and showed the heterogeneity of 315 

causal metabolic pathways in disease pathophysiology. This study uncovers modifiable 316 

risk metabolites for disease intervention and underscores a pervasive potential causal 317 

role of plasma metabolites in human health. 318 

 We identified evidence for causal effects of 70 plasma metabolites on 183 human 319 

diseases. The relationships of many plasma metabolites with diseases have not been 320 

studied previously. These findings have several implications. First, they provide potential 321 

targets for disease intervention. Many plasma metabolites levels can be modified by diet 322 

and lifestyle changes. For example, we identified that high plasma sulfate levels increased 323 

risk of chronic kidney disease. A wide range of food and beverages have been suggested 324 

as sources of dietary sulfate. We can, in principle, reduce plasma sulfate levels by 325 

reducing the consumption of these food and beverages.  326 

Second, these findings help elucidate disease biology and prioritize therapeutic 327 

targets for human diseases. For example, the risk of high plasma sulfate on chronic kidney 328 

disease suggested SLC13A1 as a potential drug target for chronic kidney disease. The 329 

protective effect of high 2-arachidonoyl-GPC (20:4) level on frontotemporal dementia 330 

bolsters the hypothesis that neuroinflammation contributes to the pathophysiology of 331 

dementia29,31. We characterize the pervasive sharing of potential causal metabolites and 332 

their heterogeneity effects across human diseases. The sharing may help explain some 333 

disease comorbidity and reveal previously-unappreciated connections between diseases. 334 

For example, we identified evidence for 126 heterogeneous causal effects of 15 N-acyl-335 

alpha amino acids on 67 disease traits of 14 categories, highlighting a broad impact of 336 

synthesis or degradation of N-acetylated proteins on human health. 337 

 Our study showed that metabolites with significant univariable causal effects on 338 

the same disease traits might act in disease pathogenesis through separate metabolic 339 

pathways or through a metabolic cascade. We identified two independent metabolic 340 

pathways among three tested metabolites for atrial fibrillation and for anxious 341 

personality disorder, highlighting the heterogeneity of potential causal metabolic 342 

pathways in human diseases. We suggested that a causal effect of N-delta-acetylornithine 343 

on atrial fibrillation might be induced by IVs shared with N-acetyl-2-amino-octanoate. In 344 

contrast, we suggested that N-methylpipecolate might act as a downstream mediator in 345 
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the causal pathway of N6, N6-dimethyllysine on anxious personality disorder, which 346 

could partially explain the strong IV correlation between N-methylpipecolate and N6, N6-347 

dimethyllysine. Previous survival analyses detected significant positive association of 348 

glycocholenate sulfate levels with atrial fibrillation incidence38, while our analysis 349 

identified a negative association of plasma glycocholenate sulfate with atrial fibrillation. 350 

The effect of plasma glycocholenate sulfate on atrial fibrillation warrants further 351 

investigation. 352 

 In this study, plasma metabolite levels may act as proxies for activity of specific 353 

biological pathways, or levels of metabolites in other tissues. For ease of exposition, we 354 

referred to causal effects of metabolites on disease traits throughout this report. However, 355 

this may not mean that intervening directly on plasma metabolite levels will impact risk 356 

of disease trait. The biochemical pathway regulating the metabolite may be the true 357 

causal culprit. For example, we identified a negative association of plasma 2-358 

arachidonoyl-GPC (20:4) level with the risk of frontotemporal dementia, which might 359 

suggest a role of 2-arachidonoyl-GPC (20:4)-mediated neuroinflammation in the brain. In 360 

addition, we applied multivariable Mendelian randomization to tease apart independent 361 

potential causal effects of metabolites on the same disease. However, multivariable 362 

Mendelian randomization can only distinguish effects of metabolites that have a sufficient 363 

number of distinct IVs. Finally, associations between IVs and metabolites were estimated 364 

in an all-male cohort8, while IV-disease associations were estimated in a mixed cohort. 365 

Our causal effect estimates rely on the assumption that genetic regulation of metabolites 366 

and causal effects do not differ between the sexes. If these assumptions are violated, our 367 

estimates will be inaccurate or may not generalize to a mixed sex population. This issue 368 

is most likely to affect sexually differentiated metabolites such as androsterone sulfate. 369 

 In conclusion, we systematically evaluated the causal effects of 1,099 plasma 370 

metabolites on the risk of 2,099 disease endpoints. We identified evidence for 282 causal 371 

effects of 70 plasma metabolites on 183 disease traits. Our study newly uncovered 372 

potential causal effects of plasma metabolites on a broad spectrum of human diseases. 373 

These findings highlight heterogeneous and shared causal effects of plasma metabolites  374 

on human diseases. 375 

 376 

 377 

 378 
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Methods 379 

Metabolic Syndrome In Men (METSIM) metabolomics study. METSIM is a single-site 380 

cohort study designed to investigate risk factors for type 2 diabetes and cardiovascular 381 

diseases39. It includes 10,197 Finnish men from Kuopio aged 45 to 74 years at baseline. 382 

We performed non-targeted metabolomics profiling in 6,136 randomly-selected non-383 

diabetic participants using the Metabolon DiscoveryHD4 mass spectrometry platform 384 

(Durham, North Carolina, USA) on EDTA-plasma samples obtained after ≥10-hour 385 

overnight fast during baseline visits from 2005 to 20108. We completed single-variant 386 

GWAS for 1,391 metabolites, which identified 2,030 independent metabolite 387 

associations8. For this study, we used GWAS summary statistics at 16.2M genotyped or 388 

imputed genetic variants for the 1,099 named metabolites with annotated biochemical 389 

identities8. All METSIM participants provided written informed consent. The Ethics 390 

Committee at the University of Eastern Finland and the Institutional Review Board at the 391 

University of Michigan approved the METSIM metabolomics study. 392 

 393 

FinnGen study. FinnGen is designed to collect and analyze genome and healthcare data 394 

to identify new diagnostic and therapeutic targets for human diseases19. FinnGen 395 

obtained participant informed consent for biobank research based on the Finnish 396 

Biobank Act. Research cohorts collected prior to the Finnish Biobank Act coming into 397 

effect (September 2013) and the start of FinnGen (August 2017) obtained study-specific 398 

consents and later transferred the consents to the Finnish biobank after the National 399 

Supervisory Authority for Welfare and Health (Fimea) approved the recruitment 400 

protocols. 401 

FinnGen identified 3,095 disease endpoints in release 7 using healthcare data 402 

from Finnish national registries: Drug Purchase and Drug Reimbursement and Digital and 403 

Population Data Services Agency; Digital and Population Data Services Agency; Statistics 404 

Finland; Register of Primary Health Care Visits (AVOHILMO); Care Register for Health 405 

Care (HILMO); and Finnish Cancer Registry. These registries recorded disease-relevant 406 

codes of the International Classification of Diseases (ICD) revisions 8, 9, and 10, cancer-407 

specific ICD-O-3, Nordic Medico-Statistical Committee (NOMESCO) procedure, Finnish-408 

specific Social Insurance Institute (KELA) drug reimbursement, and Anatomical 409 

Therapeutic Chemical (ATC)8. Each FinnGen participant was genotyped with an Illumina 410 

or Affymetrix array. Genotype imputation followed using the Finnish-specific Sequencing 411 
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Initiative Suomi (SISu) v3 reference panel40. FinnGen carried out single-variant GWAS for 412 

each disease endpoint using mixed model logistic regression in SAIGE41. For this study, 413 

we used GWAS summary statistics at 16.7M genotyped or imputed genetic variants for 414 

all 3,095 disease traits in up to 309,154 individuals from FinnGen release 7. After we 415 

finished the Mendelian randomization analysis, FinnGen made the release 8 publicly 416 

available, which includes GWAS summary statistics for 2,202 disease traits. In 417 

comparison to FinnGen release 7, release 8 reduced the number of disease traits 418 

primarily by dropping redundant disease traits. To improve efficiency and reduce 419 

redundancy, we restricted our Mendelian randomization analysis results to 2,099 of the 420 

3,095 disease traits that are included in FinnGen release 8.  421 

 422 

Selection of IVs. We identified 16.2M genetic variants shared between GWAS summary 423 

files across all the 1,099 metabolites in METSIM and the 2,099 disease traits in FinnGen 424 

release 7. To identify independent genetic variants as IVs for Mendelian randomization, 425 

we performed LD clumping in the GWAS results for each of the 1,099 metabolites in Plink 426 

to ensure resulting variants achieved association P<10-5 and each pair of variants within 427 

1 Mb distance has LD r2<0.0142. For LD calculation, we used genotypes in 8,433 METSIM 428 

individuals without close relatives defined as pairwise kinship coefficients<0.125. 429 

 430 

Primary univariable Mendelian randomization. To identify causal metabolites for 431 

human diseases, we performed two-sample univariable Mendelian randomization to test 432 

the causal effect of each of the 1,099 plasma metabolites on each of the 2,099 disease 433 

traits using MR–robust adjusted profile scoring (MR-RAPS)11. MR-RAPS allows for 434 

horizontal pleiotropy and enables inclusion of IVs with weak effects by accounting for the 435 

precision of IV-exposure and IV-outcome associations11. We used over dispersion and 436 

Tukey robust loss function parameters in MR-RAPS. We conducted the MR-RAPS analysis 437 

using the mr.raps R package. To identify significant causal effects, we applied an FDR<1% 438 

to account for multiple testing. 439 

 440 

Evaluation of causal effects of blood aminoacylase 1 levels on plasma levels of three 441 

N-acyl-alpha amino acids and risk of type 2 diabetes. To test causal effects of protein 442 

aminoacylase 1 on plasma levels of three N-acyl-alpha amino acids: N-acetylvaline, N-443 

acetylglutamate, and N-acetylmethionine and risk of type 2 diabetes, we performed two-444 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.26.23291721doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.26.23291721


 15 

sample univariable Mendelian randomization. deCODE measured plasma aminoacylase 1 445 

level using SomaScan version 4 in 35,559 Icelanders followed by protein quantitative 446 

trait loci (pQTL) analysis, which identified three independent cis-pQTLs for aminoacylase 447 

123. Among the three cis-pQTLs, the top pQTL site rs121912698 was available in both 448 

METSIM and FinnGen. We used this variant as single IV and performed a Wald ratio test 449 

to evaluate causal effects of protein aminoacylase 1 on plasma levels of the three N-acyl-450 

alpha amino acids and risk of type 2 diabetes in the twoSampleMR R package. 451 

 452 

Estimation of IV correlation between metabolites. To estimate the degree to which 453 

each pair of metabolites share genetic IVs, we computed the proportion of overlapping 454 

IVs and the IV correlation. For each metabolite pair, we took the union of IVs for both 455 

metabolites. We then performed LD clumping using LD r2<0.01 in 1 Mb distance in Plink42 456 

to remove correlated IVs. Finally, we extracted association statistics for the resulting set 457 

of IVs for both metabolites. For LD calculation, we used genotypes in 8,433 METSIM 458 

individuals with pairwise kinship coefficients<0.125. We calculated the proportion of IVs 459 

shared as the proportion of the LD clumped union set of IVs with association P≤10-5 for 460 

both metabolites. We calculated the IV correlation, rIV, as the correlation of association 461 

statistics of the LD clumped union set of IVs with the two metabolites. 462 

 463 

Multivariable Mendelian randomization. To detect independent causal effects among 464 

metabolites that conferred significant univariable causal effects on the same disease trait, 465 

we performed multivariable Mendelian randomization in Genome-wide mR Analysis 466 

under Pervasive PLEiotropy (GRAPPLE)13. We merged the IVs that were used in 467 

univariable Mendelian randomization across all the targeted metabolites and performed 468 

LD clumping as in Selection of IVs to ensure that all IVs were nearly independent. We 469 

applied default parameters in GRAPPLE and used nominal P<0.05 as the significance 470 

threshold. 471 

 472 

Associations of N-acetyl-2-aminooctanoate, N-delta-acetylornithine, and 473 

glycocholenate sulfate with atrial fibrillation in METSIM. Among the 6,102 METSIM 474 

participants with measured plasma N-acetyl-2-aminooctanoate, N-delta-acetylornithine, 475 

and glycocholenate sulfate levels at baseline, we identified 816 with atrial fibrillation in 476 

METSIM as of June 2022. To test for associations between plasma metabolite levels and 477 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.26.23291721doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.26.23291721


 16 

presence of atrial fibrillation, we used logistic regression with covariates baseline study 478 

age, body mass index (BMI), binary cigarette smoking status (ever smoker versus never 479 

smoker), alcohol drinking amount, baseline systolic and diastolic blood pressure, and 480 

lipid and hypertension medication use. 481 

 482 

GWAS for metabolite ratio of N6,N6-dimethyllysine and N-methylpipecolate and 483 

causal effect of the ratio on anxious  personality disorder. In the 6,136 METSIM 484 

participants8, we computed the ratio of N6,N6-dimethyllysine to N-methylpipecolate by 485 

dividing the level of N6,N6-dimethyllysine by the level of N-methylpipecolate. We 486 

regressed out covariates study age, Metabolon batches, and lipid lowering medication 487 

status, and inverse normalized the residuals. We performed single-variant GWAS for the 488 

resulting residuals in Regenie v3.2.243. For the chromosomes on which we identified 489 

genome-wide significant associations (P<5.0×10-8), we performed recursively a stepwise 490 

conditional test to identify near-independent association signals until no variant attained 491 

P<5.0×10-8 8. To test causal effect of the metabolite ratio on risk of anxious personality 492 

disorder, we performed univariable Mendelian randomization test using MR-RAPS11. We 493 

used the near-independent association signals for the metabolite ratio that are also 494 

available in the GWAS for anxious personality disorder as IVs. We conducted the MR-495 

RAPS analysis with over dispersion and Tukey robust loss function parameters using the 496 

mr.raps R package. 497 

  498 
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Figure 1: Summary of the 282 significant causal effects of 70 metabolites on 183 648 
disease traits. a, the overall design of univariable Mendelian randomization to test 649 
causal effects of 1,099 metabolites on 2,099 disease traits; b, distribution of metabolites 650 
by the number of disease traits that they showed significant causal effects on; c, 651 
distribution of metabolites by the number of disease categories that they showed 652 
significant causal effects on; d, distribution of disease traits by the number of their 653 
associated causal metabolites. 654 

 655 
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Figure 2: Heat map of the 282 potential causal effects of 70 metabolites on 183 657 
FinnGen disease traits. The x-axis denotes the 183 disease traits of 20 colored 658 
categories (from left to right): light paleturquoise (n=1; alcohol related diseases), light 659 
wheat (7; congenital malformations, deformations and chromosomal abnormalities), 660 
light steel blue (6; diseases of the blood and blood-forming organs), salmon (20; diseases 661 
of the circulatory system), sky blue (17; diseases of the digestive system), dark sandy 662 
brown (1; diseases of the ear and mastoid process), dark olive green (9; diseases of the 663 
eye and adnexa), light thistle (7; diseases of the genitourinary system), gray (21; diseases 664 
of the musculoskeletal system and connective tissue), orchid (16; diseases of the nervous 665 
system), light sky blue (6; diseases of the respiratory system), dodger blue (11; diseases 666 
of the skin and subcutaneous tissue), dark sea green (3; drug purchase endpoints), forest 667 
green (16; endocrine, nutritional and metabolic diseases), light pink (4; infectious and 668 
parasitic diseases), fire brick (10; mental and behavioral disorders), sandy brown (20; 669 
neoplasms), dark orange (3; neurological diseases), medium thistle (4; pregnancy, 670 
childbirth and the puerperium), and medium purple (1; rheuma endpoints). The y-axis 671 
denotes the 70 metabolites of eight colored biochemical classes (from bottom to top): 672 
light blue (n=31; lipids), dark blue (29; amino acids), light green (4; xenobiotics), dark 673 
green (2; cofactors and vitamins), pink (1; nucleotides), red (1; peptides), light orange (1; 674 
carbohydrates), and dark orange (1; partially characterized molecules). The bar plots 675 
show the number of FinnGen disease traits that each metabolite confers causal effects on 676 
(on the left) and the number of causal metabolites for each disease trait (on the top). The 677 
color of cells denotes the direction of potential causal effects (red for positive and blue 678 
for negative effects) of metabolites on disease traits. 679 
 680 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.26.23291721doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.26.23291721


 23 

 681 
  682 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.26.23291721doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.26.23291721


 24 

Figure 3: IV sharing (upper left triangular heat map) and correlation (lower right 683 
triangular heat map) for all pairs of the 70 metabolites. The color bar on the x-axis 684 
and y-axis denotes the biochemical classes of metabolites: light blue (lipids), dark blue 685 
(amino acids), light green (xenobiotics), dark green (cofactors and vitamins), pink 686 
(nucleotides), red (peptides), light orange (carbohydrates), and dark orange (partially 687 
characterized molecules). In the upper left triangular heat map, each cell denotes the 688 
proportion of IVs with metabolite association P≤10-5 shared between the pair of 689 
metabolites. In the lower right triangular heat map, and each cell denotes the IV 690 
correlation between the pair of metabolites. The diagonal cells are colored in dark gray 691 
to distinguish the upper and lower triangular heat maps.  692 
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Figure 4: Mendelian randomization suggests two metabolic pathways for anxious 696 
personality disorder. Genes implicated for the ratio of N6,N6-dimethyllysine and N-697 
methylpipecolate and for androsterone sulfate are italicized. 698 
 699 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.26.23291721doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.26.23291721

