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2 
 

Summary 15 

Motor module is a functional neurophysiological command for muscle coordination. In 16 

clinical settings, population-level characterization and comparison of motor modules are 17 

necessary to evaluate pathophysiological mechanisms and intervention effects. Previous 18 

studies have estimated individual motor modules and then compared them, but the validity of 19 

capturing the distribution of the latent population has not been fully understood. Our study 20 

aimed to address this issue by investigating the accuracy of estimating the population mean of 21 

motor modules. Through simulation experiments, we found that previous individual-based 22 

approach did not converge regardless of sample size and was vulnerable to noise. We 23 

developed an unbiased estimation algorithm using the framework of functional data analysis, 24 

which significantly improved estimation accuracy. Our findings highlight statistical 25 

challenges for motor module analysis and suggest the need for further research on new 26 

computational algorithms using large-scale clinical data. 27 

Keywords: Motor module, computational approach, muscle activity, functional data analysis, 28 

estimation, model  29 
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Graphical Abstract 30 

 31 

  32 
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Introduction 33 

Motor control is a complex process that involves coordinated commands for 34 

thousands of motor units in hundreds of skeletal muscles, generated by the central nervous 35 

system in real-time to produce movements. To help explain this complexity, the concept of a 36 

motor module or muscle synergy has been proposed1–6. A motor module is a set of functional 37 

neurophysiological commands that drive muscle coordination1,7. Currently, motor modules are 38 

characterized via dimension-reduction techniques such as non-negative matrix factorization 39 

(NMF) 8–10(Figure 1A). However, NMF only finds two matrices that minimize residual errors 40 

for each dataset, and the resulting values have no biological meaning11,12. This makes it 41 

challenging to compare or summarize motor modules across multiple subjects (Figure 1C). 42 

Previous computational methodological study has mainly focused on developing 43 

sophisticated models for individual motor modules and improving their estimation 44 

reproducibility13–15. However, to gain a better understanding of the generality of motor 45 

modules, it is also crucial to establish their structure at the population level. Unfortunately, 46 

however, statistical and computational methods for this purpose have not yet been fully 47 

elucidated. 48 

To address these challenges, two main approaches have been emerged. One approach 49 

involves module matching between subjects16–20, where individual motor modules are 50 

estimated and then matched to each other. However, this approach is not always guaranteed 51 
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to give a one-to-one solution, and the repeated application of NMF individually can 52 

contaminate motor module estimates by local solutions due to initial value dependence. 53 

Another approach is joint learning called concatenated NMF (cNMF), where subjects' data 54 

are combined into one pseudo-data as input11,21,22.This approach can help to avoid some of 55 

the problems with module matching, but it can also be numerically unstable and lead to 56 

convergence issues as the matrix size increases with the number of subjects. Overall, 57 

developing reliable statistical and computational methods for characterizing motor modules at 58 

the population level is an ongoing challenge, but it is crucial to advancing our understanding 59 

of motor control and its organization across individuals. To address these issues, this study 60 

presents an unbiased estimation algorithm for motor modules at the population level using 61 

NMF and Functional Data Analysis (FDA) 23,24 (Figure 1D). Our approach accounts for 62 

population variability and reduces statistical errors in motor module expectation estimation, 63 

particularly in larger sample sizes where other methods fail to converge. 64 

Results 65 

Population-level motor module estimation 66 

In this section, we statistically formulated the population-level motor module 67 

borrowing the concept of FDA23,24. We decompose the variability in muscle activity into two 68 

levels: within-individual variability and between-individual variability. Within-individual 69 

variability accounts for variations within a single subject, such as trial-to-trial variation in the 70 
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gait cycle, which can be reduced through preprocessing steps like filtering and temporal 71 

alignment. In contrast, between-individual variability arises from differences between 72 

subjects. We use the FDA to model this variability, taking into account the population 73 

characteristics. In the discussion that follows, individual muscle activity data shall be 74 

subjected to appropriate preprocessing, such as filtering, outlier removal, temporal alignment, 75 

and summarization, for inter-subject comparison. 76 

To describe between-subjects variability in muscle activity, individual muscle 77 

activity patterns are described by functional random variables. Let ����� be a random 78 

functional variable, where the activity of skeletal muscle � at time � is represented by the 79 

function. The muscle activity ��,���� of subject � that we observe can be viewed as the 80 

observed values sampled from the functional population Ω. The observed muscle activity of 81 

individual subject can be denoted with the population mean  82 

����� 	 E�������
 

and the error term ���� as 83 

��,���� 	  ����� � �,����#�1�  

where ����  is parameterized by E������ 	 0  and Var������ 	 � , representing 84 

population-level variability. The typical distribution that �����  follows is the normal 85 

distribution, but if non-negative constraints are considered, a non-negative exponential family 86 

of distribution (such as the Poisson distribution) can also be assumed25. In practice, to deal 87 
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with digitized discrete data, time � is discretized as a vector � with length �:  88 

��,�,� 	 ��,� � �,�,�#�2�  

Our proposed population-level motor module can be estimated using ��,�. The 89 

population mean of muscle activity, expressed in matrix form with ��,� as an element, is 90 

� 	 ���,� ��,� � ��,���,� ��,� � ��,�� � � ���,� ��,� � ��,�

� #�3�  

and motor module can be estimated by dimension reduction algorithm. In case of NMF, the 91 

mean muscle activity matrix � can be decomposed as  92 

� 	 � � !#�4�  

where ! is the estimation error term matrix. The resulting matrix � and   are population 93 

version of primitive signals and synergy, respectively. 94 

Existing approaches 95 

Next, here we compare the proposed method with two existing approaches to 96 

population mean estimation of motor modules: the module matching approach and cNMF 97 

approach. The major difference between the proposed method and the two existing 98 

approaches is that the population mean is estimated after first estimating each individual 99 

motor module. Denote by # the matrix whose elements are ��,�,�:  100 

#	 	 ���,�,� ��,�,� � ��,�,���,�,� ��,�,� � ��,�,�� � � ���,�,� ��,�,� � ��,�,�

� #�5�  
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 For the module matching approach, individual motor modules are first estimated:  101 

#	 	 �	 	 � !#�6�  

In contrast to the proposed method, the order of the synthesized variables (i.e., rows of � 102 

and columns of H) is arbitrary, so matching process is critical to make the modules 103 

correspond across subjects. One way to find the module of subject & that corresponds to the 104 

synergy ' of subject � is to find a module of subject & that maximizes the correlation 105 

coefficient. That is,  106 

'
 	 argmax� +,-./�� , /�1  #�7�  

where /�� and /� are column vector of matrix ��  and �, respectively. To estimate the 107 

population mean of the motor module estimation, the mean of the matrix � or   is 108 

calculated for each subject after matching.  109 

In this approach, the final � and   include mismatch errors due to the fact that 110 

the optimal number of modules (i.e., rows of � and columns of  ) can be different across 111 

the subjects and there is no guarantee of a one-to-one correspondence between modules, and 112 

estimation errors resulting from local solutions due to initial value dependency of NMF 113 

algorithm26,28. 114 

 On the other hand, cNMF also performs individual module estimation, but it 115 

estimates individual motor modules by combining subjects as one pseudo-subject, applying 116 

NMF, and re-splitting the obtained results for each subject. To construct the input matrix, the 117 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.25.23291878doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.25.23291878
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

individual muscle activity matrices #�, #�, … , #� are concatenated row by row 118 

#� 	 �#�#�� #�

� #�8�  

then, estimate the motor module: 119 

#� 	 ���� ��� 

Splitting ���� into the original sample-wise blocks for 1,2, … , 5 corresponds to 120 

the primitive signal for each subject. Then, the population mean of the motor module 121 

estimation can be estimated by averaging these estimates. The cNMF approach assumes that 122 

the synergy  ��� is common across samples11, which is implicitly considered equivalent to 123 

estimating the population mean   across subjects. Thus, cNMF can be otherwise described 124 

as a method of estimating ���� conditioned on the population mean  , which is expected to 125 

give results close to those of the proposed method.  126 

The cNMF algorithm naturally results in larger matrices with increasing sample 127 

sizes, the use of NMF on these matrices can present challenges due to the higher number of 128 

parameters that must be estimated. First, the possibility of initial value-dependent local 129 

optimum solutions is further exacerbated. Also, the inclusion of some outliers can affect the 130 

process of sequential optimization, making it less robust to noise and increasing the 131 

likelihood of bias in the estimated results. It also increases the computational cost in terms of 132 

memory size and iteration to convergence.  133 
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Evaluation with an actual data set 134 

The proposed method was examined using the muscle activity during the gait cycle in seven 135 

young healthy subjects (Figure 3A). Based on the preprocessed muscle activities, the 136 

expected motor modules were estimated using three methods: the proposed method, module 137 

matching approach, and cNMF-based approach (Figure 3B). The number of motor modules 138 

was determined by the variance accounted for (VAF) (Star Methods). We selected 4 as the 139 

number of motor modules based on a VAF 8 99%.  140 

Although both methods showed similar trends for both W and H, inter-method 141 

variability in the estimates was evident (Figure 3B). For example, module 4 showed a 142 

marked difference in the timing of the increase in the primitive signal (Figure 3B). This 143 

could lead to substantially conflicting conclusions regarding the timing of CNS activity 144 

during gait cycles between the proposed and other methods. There was also significant 145 

variation between the methods in module estimation (Figure 3B), with the individual-based 146 

approach indicating that the entire muscle was involved in any module, whereas the 147 

cNMF-based approach and the proposed method suggested a sparse group structure. There 148 

were also significant differences between the cNMF-based approach and the proposed 149 

method, for example, in modules 3 and 4, indicating differences in the inference to the motor 150 

module during gait cycles (Figure 3B). 151 

Simulation model for evaluating methods 152 
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Next we evaluated the degree to which the expected value of the motor module 153 

could be reproduced for numerically generated population-level muscle activity data (Figure 154 

4A). Equation (1) allows us to represent individual muscle activity patterns as samples from a 155 

probability distribution with a population mean function and variance. To obtain sample-wise 156 

muscle activity that follows a given probability distributions, we first decompose population 157 

expectation of muscle activity into several linear combinations based on basis functions (e.g., 158 

B-splines functions). The mean function ����� can be decomposed as 159 

����� 	 ; +<�,�=�,�����

���

#�9�  

A set of mutually orthogonal functions =�,���� are used to decompose the population mean 160 

function ����� into > functional linear combinations, each of which has weight 161 

coefficients +<�,�. Here the coefficient vector ?<� 	 .+<�,�, +<�,�, … , +<�,�1 has sufficient 162 

information to reconstruct the population mean function under the basis function. In the FDA 163 

framework, the variation of muscle activity among subjects in a population can be described 164 

by variation with respect to this coefficient vector. In the numerical experiments, a normal 165 

distribution with mean average +<�,� and variance � was assumed for individual muscle 166 

activity. 167 

c�,�,� 	 +<�,� � #�10�  

~B�0, �� 
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Substituting the sampled coefficient vectors back into equation (9) yields the individual 168 

muscle activities that follow the population distribution. 169 

��,���� 	 ; +�,�,�=�,�����

���

#�11�  

The FDA-based simulation model can be used to evaluate whether the expected 170 

values estimated from individual motor module estimates reproduce the expected values of 171 

the motor modules derived from the population mean of muscle activity. The residual sum of 172 

squares (RSS) of the true motor module was evaluated to assess the performance of each 173 

method. In other words, for the RSS of ' Cth module, we evaluated the  174 

RSS�
���  	  ; FG��

������ C G��
��������� �H�

�

���

#�12�  

RSS�
�!�  	  ; FI��

������ C I��

��������� �H�
�

���

#�13�  

where G��
��������� � and I��

�"#$%&'$"(� are estimated values for ������� and  ������ , 175 

respectively. 176 

The proposed model allows for control of estimation bias 177 

We used a simulation model to assess each method (Figure 4A) with generated muscle 178 

activity for n=10, 50, and 100 (Figure 4B). While all methods captured the primitive signal's 179 

trend, there was a bias in estimated motor modules based on individual and cNMF compared 180 

to the true motor module (Figure 4C). The individual approaches showed a tendency to 181 

overestimate the module weights i.e., averaged  	 in equation (6) over subjects after 182 
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matching (Figure 4C). Our proposed method had accuracy close to that of cNMF, but with 183 

less estimation bias (Figure 4D). The fourth module showed an overestimation of the weight 184 

of the right leg TA (n=50) and underestimation of the left leg LG with cNMF (n=100) 185 

compared to the proposed method, with differences in the timing of peak signals (Figure 4C, 186 

4D). We assessed the estimation bias of each method by calculating the RSS residuals for 187 

incremental changes in sample size. Our results showed that the proposed method converges 188 

to an estimation bias of zero as the sample size increases, in contrast to the other methods 189 

(Figure 5B). This suggests that existing methods lack asymptotic properties when estimating 190 

the population mean of motor modules. 191 

Evaluating noise robustness 192 

To assess the impact of deviating values on estimation accuracy, we conducted a similar 193 

evaluation as in the previous section with 10% of the samples containing deviating signal 194 

values (Figure 6A, 6B). For small samples (n=10), all methods showed large estimation 195 

errors (Figure 6C, 6D). However, as the sample size increased (n=50, n=100), the proposed 196 

method significantly reduced the error compared to the other methods (Figure 7A). When we 197 

also examined the convergence of the estimation error with increasing sample size, the 198 

estimation bias of the proposed method converged to zero, while the other methods showed 199 

no tendency to converge (Figure 7B). Specifically, the estimation bias of cNMF increased 200 
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significantly compared to the case without deviating values (Figures 5A, 5B; Figures 7A, 201 

7B), indicating its sensitivity to such values. 202 

Discussion 203 

We proposed an algorithm for estimating the motor module at the population level 204 

using Non-Negative Matrix Factorization (NMF) within the framework of Functional Data 205 

Analysis (FDA). Our method first estimates the population mean of muscle activity and then 206 

performs motor module estimation based on it. In contrast, the existing approach estimates 207 

the population mean after estimating the motor module for individual. The difference 208 

between the two approaches may seem simple, but our approach has been shown to 209 

significantly reduce estimation bias beyond a certain sample size and is also robust to noise. 210 

Although our proposed algorithm showed convergence to the true motor module 211 

patterns with only 25 to 30 samples, the existing approaches failed as the sample size 212 

increased (Figure 5B). This was true even in the presence of samples that contained some 213 

deviant signal values (Figure 6B). Various factors can contribute to the failure of existing 214 

methods to converge. For example, the module-matching method can cause forced matching 215 

errors when there is no corresponding module, while cNMF may suffer from numerical 216 

instability or bias contamination due to collinearity or deviation values as the number of 217 

parameters to be optimized increases with the number of samples.  218 
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Our results indicate that our proposed algorithm outperforms existing methods in 219 

terms of noise robustness and convergence to true motor module estimates. However, we also 220 

found that the presented algorithm had a rather large estimation bias in small-sample 221 

conditions, and full convergence required larger samples (Figure6B-D, Figure 7A, 7B). 222 

Therefore, while our proposed algorithm is an improvement over existing methods, its 223 

application may be limited in situations where the variability of the population is high and the 224 

sample size is very small. These results highlighted the need for statistical improvements in 225 

computational algorithms. 226 

Alternative methods, such as principal component analysis (PCA) 27,29,30 and factor 227 

analysis (FA) 31,32, can also be utilized for motor module estimation, but in this study, we 228 

focused on NMF. One of the reasons for this choice is that NMF has been frequently 229 

employed and shown promise in estimation accuracy for various tasks, such as walking and 230 

running13. However, all these methods share common issues related to dimensionality 231 

reduction, such as the matching of synthetic variables' order and sign, and potential 232 

contamination from heterogeneous observations, such as outliers33,34. Therefore, it is essential 233 

to further investigate and improve upon the accuracy and estimation methods for 234 

population-level motor module parameter estimation based on dimensionality reduction in the 235 

future direction. 236 
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This study has several limitations. Firstly, the validity of the estimation algorithm 237 

needs to be comprehensively evaluated for other commonly used movement tasks besides 238 

periodic walking. Secondly, the actual data analysis was performed using a small number of 239 

samples, and further evaluation with a larger clinical dataset is necessary. Thirdly, the 240 

presented algorithm assumes a homogeneous distribution of the latent population, and when 241 

multiple heterogeneous subpopulations are mixed, subpopulations must be identified and 242 

stratified. In this regard, future tasks include identifying subgroups based on dimension 243 

reduction35 and clustering36,37 and developing methods to test for heterogeneity based on 244 

functional data representation. 245 

Characterizing motor modules at the population level is a crucial step towards 246 

translating experimental findings into clinical applications. For example, evaluation of 247 

intervention effects on motor function before and after intervention38–49, and large 248 

cross-sectional clinical studies38,50,51 need to capture effects as a population. The present 249 

study is the first to investigate the motor module estimation algorithm from a 250 

population-level perspective. Although the study has its limitations, such as the small sample 251 

size, it provides valuable insights into the estimation of motor modules at the population level. 252 

Continued development of the algorithms will fully realize their application to a broader 253 

range of movement tasks and clinical situations. 254 

 255 
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Figure Legends 275 

Figure 1. Conceptual view of this study  276 

A) Description of the general motor module estimation algorithm. Multichannel 277 

Electromyography (EMG) data is given by a time J muscle matrix. Motor module analysis 278 

is a problem of unsupervised low-dimensional structural learning based on muscle activity 279 

data from multiple sites. Non-negative matrix factorization (NMF) is widely used as one of 280 

them. Each estimated dimension is considered to reflect the activity of the central nervous 281 

system, where W is called the primitive signal and is considered to be the input signal of the 282 

central nervous system, and H is called synergy and is considered to represent a potentially 283 

cooperating muscle group, or motor module. B) Population-level motor module and 284 

individual-level module. When conducting a multi-subject motor module analysis, there are 285 

two approaches depending on the purpose. The first is population-level motor module 286 

analysis, which is intended for characterization and inference at the population level and for 287 

comparison among populations. The second is individual-level motor module analysis, the 288 

main objectives of which are individual-level characterization and inter-individual 289 

comparisons. Our goal is to estimate population-level motor module expectations in an 290 

unbiased manner. We show that conventional methods are not consistent with true 291 

expectations where they estimate the expectation by aggregating individual-level motor 292 

modules. C) Problems with conventional methods. The main causes are 1) the arbitrariness 293 
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of the solution due to the unsupervised learning of NMF, 2) local minima problem with an 294 

initial value, 3) errors associated with integrating the results of motor module analysis from 295 

different subjects, and 4) instability of the numerical solution of the NMF algorithm. D) 296 

Proposed method. We introduce the framework of functional data analysis. Assuming a 297 

stochastic population of muscle activity, the unbiased motor module expectation is estimated 298 

based on the expectation of muscle activity. 299 

 300 

Figure 2. Comparison of algorithms between existing and proposed methods  301 

A) Module matching approach. Multichannel Electromyography (EMG) data given in a 302 

time × muscle matrix for each individual was used to estimate the motor module using NMF, 303 

and then they are matched and averaged across subjects. B) Concatenated NMF-based 304 

approach. The NMF is applied by concatenating the EMG matrices across subjects in the 305 

row direction. Since the columns of the muscle activity matrix are fixed, the estimated 306 

synergy H approximates the average across subjects, and the primitive signal W conditioned 307 

by the common synergy H is estimated for each subject. C) Proposed method. First, 308 

expectations of muscle activity are estimated from the EMG matrices of multiple subjects, 309 

and NMF is applied to the obtained expected values of muscle activity. Since the expected 310 

values of EMG reflect the population structure, the obtained motor modules also reflect the 311 

population structure. 312 
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 313 

Figure 3. Actual data example  314 

A) Data overview and analysis design. The Multichannel Electromyography (EMG) signals 315 

of 10 left and right muscles and foot pressure were measured in seven healthy young adults. 316 

The data were processed using an in-house analysis pipeline that implements standard muscle 317 

activity preprocessing. These preprocessed data were used to compare results from existing 318 

and proposed methods. B) Comparison of estimated motor modules. Four modules were 319 

identified based on variance accounted for. The left panel represents module composition H, 320 

the columns represent each method, and each row represents motor modules 1 through 4. 321 

Although all modules represent close trends between methods, there is variation in the 322 

estimates and different interpretations of the muscle groups that constitute the motor module. 323 

The right panel represents the primitive signal W corresponding to the four synergies, which 324 

also shows a similar trend between methods, but some of the modules show different timing 325 

of activation, suggesting that the clinical interpretation, such as the correspondence with the 326 

gait phase, can be different. 327 

  328 
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 329 

Figure 4. Simulation experiments of estimation bias 330 

A) Simulation model. The model was constructed to generate Multichannel 331 

Electromyography (EMG) based on functional data representation. True muscle activity �� 332 

in skeletal muscle � was approximated by linear combination by a small set of B-spline 333 

orthogonal basis functions =�,�  by regression splines with coefficients +<�,�. To mimic the 334 

simulation of real data, the mean muscle activity derived from the actual muscle activity of 335 

seven subjects was used. Assuming a normal distribution for the probabilistic distribution in 336 

the population, spline regression coefficients corresponding to individual subjects +�,�,� 337 

were generated by adding noise which follows a multivariate normal distribution to +<�,�, and 338 

by multiplying the B-spline basis =�,� which was used for the true muscle activity 339 

approximation ��. Resulting individual muscle activity profiles follow a normal distribution 340 

in the sense of functional data representation. B) Generated individual muscle activity and 341 

its expectation. The individual muscle activity profiles generated for n=10, 50, and 100 342 

samples (gray lines) and their expected values (red) and true muscle activity (black) are 343 

shown. C) Comparison of estimation bias of motor module expectation. We estimated the 344 

expectation of motor modules and compared the estimation bias with each method. Here, we 345 

defined “true” expectation of motor module (black) as one estimated from true muscle 346 

activity ��. The proposed method (red) gave an estimate close to the true motor module 347 
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expectation (black) in both primitive signal and modules. On the other hand, exiting methods 348 

exhibited estimation bias in at least one of the modules. 349 

  350 
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 351 

Figure 5. Comparison of residual sum of squares for estimation biases 352 

A) Accuracy of each method. The residual sum of squares (RSS) calculated based on the 353 

results shown in Figure 4 are displayed for each motor module. The rightmost RSS in each 354 

panel shows the sum of the RSS over all modules. In the simulation, the proposed method 355 

(red) has the lowest RSS for all modules. B) Asymptotics of RSS with sample size. The RSS 356 

for each module is shown when the sample size is increased by 5 from 5 to 100 samples. 357 

With the nature of statistical error, RSS should asymptotically approach zero as the sample 358 

size increases. Only the proposed method (red) showed asymptotic behavior in the 359 

simulations. 360 

  361 
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 362 

Figure 6. Simulation experiment of noise robustness 363 

A) Simulation model. The simulation model shown in Figure 4 was modified to include 364 

some outliers. The muscle activity was generated by simulation assuming a population with 365 

10% of outlier samples contaminated in addition to the normal sample. The generation of 366 

outlier samples was accomplished by adding errors with excess variance to a subset of the 367 

coefficients of the regression splines. The samples were then multiplied with the B-spline 368 

basis functions to obtain samples with distinct muscle activity profiles. B) Generated 369 

individual muscle activity and its expectation. The individual muscle activity profiles 370 

generated for n=10, 50, and 100 samples (gray lines) and their expected values (red) and true 371 

muscle activity (black) are shown. C) Comparison of the estimation robustness of motor 372 

module expectation. We estimated the expectation of the motor module and compared the 373 

robustness of estimation between methods. Under small-sample conditions, all methods 374 

showed estimation errors, but as the number of samples increased, the proposed method (red) 375 

gave estimates closer to the true motor module expectation. 376 

  377 
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 378 

Figure 7. Comparison of the residual sum of squares for robustness 379 

A) Robustness of each method. The residual sum of squares (RSS) calculated based on the 380 

results shown in Figure 5 are displayed for each motor module. The rightmost RSS in each 381 

panel shows the sum of RSS over all modules. In the simulation, the proposed method (red) 382 

has the lowest RSS for all synergies, which indicates robustness to outliers. B) Stability of 383 

RSS with sample size. The RSS for each module is shown when the sample size is increased 384 

by 10 from 10 to 100 samples. It is expected that the effect of outliers will decrease as the 385 

sample size increases. However, only the proposed method (red) showed stability along with 386 

the sample size in this simulation. 387 

 388 

  389 
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STAR★Methods 390 

Resource availability  391 

Lead contact 392 

matsui@met.nagoya-u.ac.jp 393 

Materials availability  394 

Data and code availability 395 

The analysis code used in the paper can be accessed from the following repository URL 396 

(https://github.com/ymatts/RoMMS). The acquired data from this study are available from 397 

the lead contact upon reasonable request.  398 

Method details  399 

Data acquisition 400 

Wireless electromyograms (EMGs) (Trigno EMG sensors, DELSYS, Boston, MA, United 401 

States) were recorded from the bilateral tibial anterior (TA), soleus (SOL), medial 402 

gastrocnemius (MG), lateral gastrocnemius (LG), rectus femoris (RF), vastus medialis (VM), 403 

medial hamstring (MH), and lateral hamstring (LH) muscles, according to SENIAM 404 

recommendations. The skin was gently abraded and cleaned with alcohol before the EMG 405 

recording. The sensors were placed as far as possible each other anatomically to minimize the 406 

potential risk of crosstalk between the EMG recordings. Data were collected for two minutes 407 

at a self-selected speed and used to examine steady-state gait by removing the first 10 s of the 408 
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gait. All the participants walked independently without walkers or crutches. The EMG signals 409 

were amplified (with a 909 gain preamplifier), band-pass filtered (10–450 Hz), and sampled 410 

at 1,000 Hz. Footswitches were attached to the heels to determine the time of foot contact. 411 

Preprocessing 412 

The foot pressure signal values acquired from the foot sensors were used to identify the gait 413 

cycle. The time point at which the signal value increased from zero was defined as the heel 414 

contact. sEMG signals were processed for each muscle. They were first low-pass filtered at 415 

30 Hz using a fourth-order Butterworth filter and then rectified. Maximum voluntary 416 

contraction (MVC) normalization was performed at the maximum observation as 100%. An 417 

epoch was created for each gait cycle and identified using a foot sensor. To identify and 418 

exclude abnormal cycles, each trial was projected onto a two-dimensional space using a 419 

robust principal component analysis52–54. Using these coordinate values, trials that deviated 420 

significantly from the projected space were defined as outliers and were excluded. The 421 

threshold settings for the anomaly values followed the default values in the R package 422 

rospca55. The variation in time between the gait cycles was corrected according to linear 423 

length normalization (LLN), with 0% for the first heel contact and 100% for the next heel 424 

contact. Finally, a 10-Hz envelope was derived, and the average was calculated to obtain the 425 

muscle activity. 426 

Computational algorithm 427 
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Because the parameter of time � is observed as a discrete value in the real world, the muscle 428 

activity ��,���� is expressed as ��,�,� using the discretized time � 	  1,2, … , �. Equation 429 

(3) can be obtained using the time-discretized version of (4). 430 

�K 	 L���� � M)#�8�  

where �$ 	 .��,�, ��,�, … , ��,�1 and 431 

��,� 	 15 ; ��,�,�

�

���

#�9�  

The explicit form of the motor module by NMF in equation (6) can be defined using 432 

muscle activity matrix ���*�� 	 N��,�; � 	 1,2, … , �, � 	 1,2, … , PQ. The primitive signals 433 

���*+� and synergy  �+*�� obtained by the NMF are derived as follows: 434 

� 	 � � !#�10�  

where ! is the estimation error term with the � J P matrix. 435 

Analysis pipeline 436 

The workflow of the analysis is shown in Figure 3A. The first step was to perform standard 437 

signal processing on the raw sEMG signal for each subject, including bandpass filtering, 438 

rectification, MVC normalization, envelope smoothing, and epoching. Then, time alignment 439 

was performed, if necessary. Finally, the trial average was calculated for each muscle to 440 

characterize the muscle activity pattern for one trial per subject. We then estimated the 441 

expected mean of the muscle activity in the subject population according to equation (9) and 442 

applied the NMF to obtain an estimate of the population mean of the motor module shown in 443 
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equation (10). For the number of modules, we used variance accounted for (VAF), defined 444 

below: 445 

RST+� 	 1 C UVV+� ∑ ∑ ��,�
��

���
�
���

 #�11�
 

UVV+� 	 ; ; .�X�,� C ��,� 1�

�

���

�

���

 

where �X�,� is reconstructed matrix of muscle activities using Y
 synergy.  446 

Simulation model 447 

This section presents a simulation model for comparing the performance of each method. 448 

Two simulations are conducted. The first is the accuracy with which each approach can 449 

reproduce the “true” motor modules in the population (Figure 3A). Here, “true” refers to the 450 

motor modules “estimated from the true population mean of muscle activity.” Individual 451 

muscle activities were generated by adding normally distributed variations with a zero mean 452 

and a certain standard deviation to the predefined true population mean.  453 

The second is the robustness of motor module estimation in the presence of outliers 454 

(Figure 7A). Assuming muscle activity from unrelated populations, the muscle activity 455 

distributed around different population means was prepared, and the muscle activity 456 

distributed around it was generated as an outlier sample. By mixing this with samples from 457 

the population of interest, we generated muscle activity that contained outliers and performed 458 

a simulation similar to the first to evaluate the reproducibility of the true motor modules.  459 
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The muscle activity patterns of each subject, which varied based on the population 460 

mean, were generated using the FDA framework (Figure 3A). Let the muscle activity in 461 

skeletal muscle � of subject � be the function value ��,����, and let the population mean 462 

be ����� and the population variance be ����� 	 Z F��,���� C �����H��

���
. Functional 463 

observations can be expressed using several orthogonal basis functions: =�,����; [ 	464 

1,2, … , >. 465 

����� 	 ; +<�,�=�,�����

���

#�12�  

This simulation used a B-spline basis, which is a typical orthogonal basis function in 466 

the FDA. The coefficients +<�,� were estimated based on a regression spline and the number 467 

of basis functions were determined by cross-validation. To mimic the actual muscle activity 468 

pattern, we derive the mean function �����, which we would like to estimate, from a real 469 

dataset. The average of the preprocessed muscle activity of the seven young healthy subjects 470 

was calculated, and this was set as �����.  471 

For the coefficient vector ?<� 	 .+<�,�, +<�,� , … , +<�,�1, a subject-specific coefficient 472 

vector ?�,� 	 .+�,�,�, +�,�,�, … , +�,�,�1 was generated by adding an independently generated 473 

noise normal distribution, which is considered biological variability (Figure 4A). That is, for 474 

[ 	 1,2, … , >, 475 

c�,�,� 	 +<�,� � #�13�  

~B�0, �� 
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In this simulation, we set � 	 1 assuming that the subject population follows a standard 476 

normal distribution. Finally, the orthogonal basis functions were multiplied again to generate 477 

the functional observations for each subject. 478 

��,���� 	 ; +�,�,�=�,�����

���

#�14�  

We compared the algorithms for estimating the population mean of the motor modules using 479 

muscle activity #	 	 N��,�Q consisting of ��,�,� discretized by � in equation (14). 480 

For another simulation of the effects of outliers, heterogeneous samples were mixed 481 

(Figure 6A). The muscle activity patterns of these samples were generated using equation 482 

(13). That is, assume a different population of no interest with population mean ��

′���;  483 

��

′��� 	 ; +<′�,�=�,�����

���

#�15�  

The coefficients +<′�,�were randomly selected from the coefficients +<�,� of the population 484 

mean of interest in equation (9), to which was added a noise of normal distribution with large 485 

standard deviation �′�\ ��(Figure 6A);  486 

+<′�,� 	 +<�,� � ′#�16�  

~B F0, �′H 

In this simulation on the effect of outlier, two coefficients -�, -� �] >�) were randomly 487 

selected from [ 	 1,2, … , > and equation (13) was applied and obtained outlier samples;  488 

�
�′,�

��� 	 ; +
�′,�,�

′ =�,�����

���

#�17�  
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The percentage of outlier samples was simulated as 10% of the total sample size, B. 489 

Evaluation of methods 490 

In this section, we evaluate the performance of these methods using a simulation dataset. We 491 

defined the motor module derived on the basis of equation (12) as the “true” motor module.  492 

Let ������� and  ������  denote the true motor module estimates obtained by using the 493 

NMF algorithm. Each matrix element is denoted as G��
$-." ^  ������� and I��

$-." ^   ������. 494 

Here, the primitive signal is represented as ������� and the weight of each muscle, that is, 495 

the module, is denoted by  ������. 496 

The residual sum of squares (RSS) of the true motor module was evaluated to assess 497 

the performance of each method. In other words, for the RSS of ' Cth synergy, we evaluated 498 

the  499 

RSS�
���  	  ; FG��

������ C G��
��������� �H�

�

���

#�18�  

RSS�
�!�  	  ; FI��

������ C I��

��������� �H�
�

���

#�19�  

where G��
��������� � and I��

�"#$%&'$"(� are estimated values for ������� and  ������ , 500 

respectively. 501 

Note that we normalized the values G��

��������� � and I��

�"#$%&'$"(� for each method because 502 

the scale of the estimated values differs from method to method. Normalization was 503 

performed for each estimated motor module by each method; each element was divided by 504 
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the value of maximum value in the estimated primitive signal �′

��������� �

 and synergy 505 

 ′��������� �

, and multiplied by 100. This was also true for �′

������

 and  ′������

. After 506 

normalization, these estimates were used to calculate the RSS using equations (18) and (19). 507 

 508 

 509 

 510 
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 512 
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 515 
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