1 Unbiased estimation of the population-level motor module

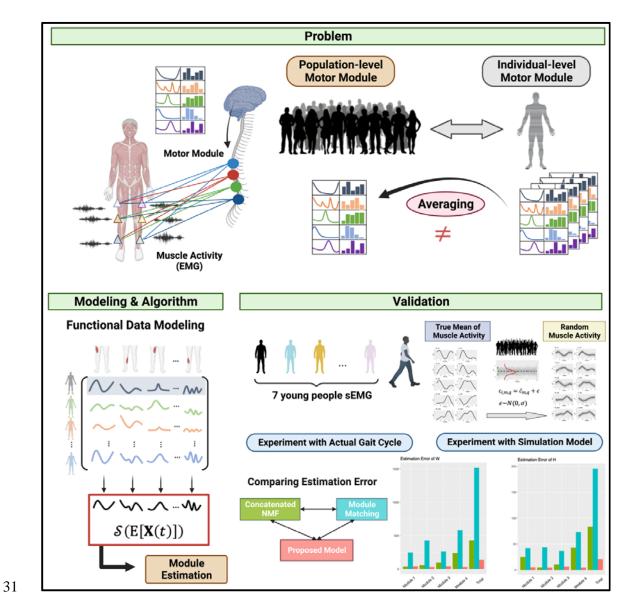
- 2
- 3 Yusuke Matsui^{1,2,*}, Kohei Uno¹, Ippei Nojima³
- 4
- ¹Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya
- 6 University Graduate School of Medicine, 461-8673 Nagoya, Aichi, Japan
- ⁷ ²Institute for Glyco-core Research (iGCORE), Nagoya University, 461-8673 Nagoya, Aichi,
- 8 Japan
- 9 ³Graduate School of Medical Sciences, Department of Physical Therapy, Nagoya City
- 10 University
- 11
- 12 *Corresponding author:
- 13 Yusuke Matsui
- 14

15 Summary

16	Motor module is a functional neurophysiological command for muscle coordination. In
17	clinical settings, population-level characterization and comparison of motor modules are
18	necessary to evaluate pathophysiological mechanisms and intervention effects. Previous
19	studies have estimated individual motor modules and then compared them, but the validity of
20	capturing the distribution of the latent population has not been fully understood. Our study
21	aimed to address this issue by investigating the accuracy of estimating the population mean of
22	motor modules. Through simulation experiments, we found that previous individual-based
23	approach did not converge regardless of sample size and was vulnerable to noise. We
24	developed an unbiased estimation algorithm using the framework of functional data analysis,
25	which significantly improved estimation accuracy. Our findings highlight statistical
26	challenges for motor module analysis and suggest the need for further research on new
27	computational algorithms using large-scale clinical data.
28	Keywords: Motor module, computational approach, muscle activity, functional data analysis,

29 estimation, model

30 Graphical Abstract



33 Introduction

34	Motor control is a complex process that involves coordinated commands for
35	thousands of motor units in hundreds of skeletal muscles, generated by the central nervous
36	system in real-time to produce movements. To help explain this complexity, the concept of a
37	motor module or muscle synergy has been proposed ^{1–6} . A motor module is a set of functional
38	neurophysiological commands that drive muscle coordination ^{1,7} . Currently, motor modules are
39	characterized via dimension-reduction techniques such as non-negative matrix factorization
40	(NMF) $^{8-10}$ (Figure 1A). However, NMF only finds two matrices that minimize residual errors
41	for each dataset, and the resulting values have no biological meaning ^{11,12} . This makes it
42	challenging to compare or summarize motor modules across multiple subjects (Figure 1C).
43	Previous computational methodological study has mainly focused on developing
44	sophisticated models for individual motor modules and improving their estimation
45	reproducibility ^{13–15} . However, to gain a better understanding of the generality of motor
46	modules, it is also crucial to establish their structure at the population level. Unfortunately,
47	however, statistical and computational methods for this purpose have not yet been fully
48	elucidated.

To address these challenges, two main approaches have been emerged. One approach involves module matching between subjects^{16–20}, where individual motor modules are estimated and then matched to each other. However, this approach is not always guaranteed

52 to give a one-to-one solution, and the repeated application of NMF individually can 53 contaminate motor module estimates by local solutions due to initial value dependence. 54 Another approach is joint learning called concatenated NMF (cNMF), where subjects' data are combined into one pseudo-data as input^{11,21,22}. This approach can help to avoid some of 55 56 the problems with module matching, but it can also be numerically unstable and lead to 57 convergence issues as the matrix size increases with the number of subjects. Overall, 58 developing reliable statistical and computational methods for characterizing motor modules at 59 the population level is an ongoing challenge, but it is crucial to advancing our understanding 60 of motor control and its organization across individuals. To address these issues, this study 61 presents an unbiased estimation algorithm for motor modules at the population level using NMF and Functional Data Analysis (FDA)^{23,24} (Figure 1D). Our approach accounts for 62 63 population variability and reduces statistical errors in motor module expectation estimation, 64 particularly in larger sample sizes where other methods fail to converge.

65 **Results**

66

Population-level motor module estimation

In this section, we statistically formulated the population-level motor module borrowing the concept of $FDA^{23,24}$. We decompose the variability in muscle activity into two levels: within-individual variability and between-individual variability. Within-individual variability accounts for variations within a single subject, such as trial-to-trial variation in the

71 gait cycle, which can be reduced through preprocessing steps like filtering and temporal 72 alignment. In contrast, between-individual variability arises from differences between 73 subjects. We use the FDA to model this variability, taking into account the population 74 characteristics. In the discussion that follows, individual muscle activity data shall be 75 subjected to appropriate preprocessing, such as filtering, outlier removal, temporal alignment, 76 and summarization, for inter-subject comparison.

To describe between-subjects variability in muscle activity, individual muscle activity patterns are described by functional random variables. Let $X_m(t)$ be a random functional variable, where the activity of skeletal muscle m at time t is represented by the function. The muscle activity $x_{i,m}(t)$ of subject i that we observe can be viewed as the observed values sampled from the functional population Ω . The observed muscle activity of individual subject can be denoted with the population mean

$$\mu_m(t) = \mathbf{E}[X_m(t)]$$

83 and the error term $\epsilon_m(t)$ as

$$x_{i,m}(t) = \mu_m(t) + \epsilon_{i,m}(t) \#(1)$$

84 where $\epsilon_m(t)$ is parameterized by $E[\epsilon_m(t)] = 0$ and $Var[\epsilon_m(t)] = \sigma$, representing 85 population-level variability. The typical distribution that $X_m(t)$ follows is the normal 86 distribution, but if non-negative constraints are considered, a non-negative exponential family 87 of distribution (such as the Poisson distribution) can also be assumed²⁵. In practice, to deal

88 with digitized discrete data, time t is discretized as a vector t with length T:

$$x_{i,t,m} = \mu_{t,m} + \epsilon_{i,t,m} \#(2)$$

89

Our proposed population-level motor module can be estimated using $\mu_{t,m}$. The

90 population mean of muscle activity, expressed in matrix form with $\mu_{t,m}$ as an element, is

$$\mathbf{U} = \begin{bmatrix} \mu_{1,1} & \mu_{1,2} & \cdots & \mu_{1,M} \\ \mu_{2,1} & \mu_{2,2} & \cdots & \mu_{2,M} \\ \vdots & \vdots & \cdots & \vdots \\ \mu_{T,1} & \mu_{T,2} & \cdots & \mu_{T,M} \end{bmatrix} \#(3)$$

and motor module can be estimated by dimension reduction algorithm. In case of NMF, the

92 mean muscle activity matrix U can be decomposed as

$$\mathbf{U} = \mathbf{W}\mathbf{H} + \mathbf{E}\#(4)$$

93 where **E** is the estimation error term matrix. The resulting matrix **W** and **H** are population

94 version of primitive signals and synergy, respectively.

95 Existing approaches

Next, here we compare the proposed method with two existing approaches to population mean estimation of motor modules: the module matching approach and cNMF approach. The major difference between the proposed method and the two existing approaches is that the population mean is estimated after first estimating each individual motor module. Denote by **X** the matrix whose elements are $x_{i,t,m}$:

$$\mathbf{X}_{i} = \begin{bmatrix} x_{i,1,1} & x_{i,1,2} & \cdots & x_{i,1,M} \\ x_{i,2,1} & x_{i,2,2} & \cdots & x_{i,2,M} \\ \vdots & \vdots & \cdots & \vdots \\ x_{i,T,1} & x_{i,T,2} & \cdots & x_{i,T,M} \end{bmatrix} \#(5)$$

101 For the module matching approach, individual motor modules are first estimated:

$$\mathbf{X}_i = \mathbf{W}_i \mathbf{H}_i + \mathbf{E} \# (6)$$

In contrast to the proposed method, the order of the synthesized variables (i.e., rows of **W** and columns of **H**) is arbitrary, so matching process is critical to make the modules correspond across subjects. One way to find the module of subject j that corresponds to the synergy k of subject i is to find a module of subject j that maximizes the correlation coefficient. That is,

$$k' = \operatorname{argmax}_{l} cor(\mathbf{w}_{ik}, \mathbf{w}_{jl}) \#(7)$$

107 where \mathbf{w}_{ik} and \mathbf{w}_{jl} are column vector of matrix \mathbf{W}_i and \mathbf{W}_j , respectively. To estimate the 108 population mean of the motor module estimation, the mean of the matrix \mathbf{W} or \mathbf{H} is 109 calculated for each subject after matching.

In this approach, the final **W** and **H** include mismatch errors due to the fact that the optimal number of modules (i.e., rows of **W** and columns of **H**) can be different across the subjects and there is no guarantee of a one-to-one correspondence between modules, and estimation errors resulting from local solutions due to initial value dependency of NMF algorithm^{26,28}.

115 On the other hand, cNMF also performs individual module estimation, but it 116 estimates individual motor modules by combining subjects as one pseudo-subject, applying 117 NMF, and re-splitting the obtained results for each subject. To construct the input matrix, the

118 individual muscle activity matrices $X_1, X_2, ..., X_n$ are concatenated row by row

$$\mathbf{X}^{c} = \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \vdots \\ \mathbf{X}_{n} \end{bmatrix} \#(8)$$

119 then, estimate the motor module:

$$\mathbf{X}^{c} = \mathbf{W}^{[c]} \mathbf{H}^{[c]}$$

Splitting $\mathbf{W}^{[c]}$ into the original sample-wise blocks for 1,2, ..., *n* corresponds to the primitive signal for each subject. Then, the population mean of the motor module estimation can be estimated by averaging these estimates. The cNMF approach assumes that the synergy $\mathbf{H}^{[c]}$ is common across samples¹¹, which is implicitly considered equivalent to estimating the population mean **H** across subjects. Thus, cNMF can be otherwise described as a method of estimating $\mathbf{W}^{[c]}$ conditioned on the population mean **H**, which is expected to give results close to those of the proposed method.

The cNMF algorithm naturally results in larger matrices with increasing sample sizes, the use of NMF on these matrices can present challenges due to the higher number of parameters that must be estimated. First, the possibility of initial value-dependent local optimum solutions is further exacerbated. Also, the inclusion of some outliers can affect the process of sequential optimization, making it less robust to noise and increasing the likelihood of bias in the estimated results. It also increases the computational cost in terms of memory size and iteration to convergence.

134 **Evaluation with an actual data set**

135	The proposed method was examined using the muscle activity during the gait cycle in seven
136	young healthy subjects (Figure 3A). Based on the preprocessed muscle activities, the
137	expected motor modules were estimated using three methods: the proposed method, module
138	matching approach, and cNMF-based approach (Figure 3B). The number of motor modules
139	was determined by the variance accounted for (VAF) (Star Methods). We selected 4 as the
140	number of motor modules based on a VAF \geq 99%.
141	Although both methods showed similar trends for both \mathbf{W} and \mathbf{H} , inter-method
142	variability in the estimates was evident (Figure 3B). For example, module 4 showed a
143	marked difference in the timing of the increase in the primitive signal (Figure 3B). This
144	could lead to substantially conflicting conclusions regarding the timing of CNS activity
145	during gait cycles between the proposed and other methods. There was also significant
146	variation between the methods in module estimation (Figure 3B), with the individual-based
147	approach indicating that the entire muscle was involved in any module, whereas the
148	cNMF-based approach and the proposed method suggested a sparse group structure. There
149	were also significant differences between the cNMF-based approach and the proposed
150	method, for example, in modules 3 and 4, indicating differences in the inference to the motor
151	module during gait cycles (Figure 3B).

152 Simulation model for evaluating methods

153 Next we evaluated the degree to which the expected value of the motor module
154 could be reproduced for numerically generated population-level muscle activity data (**Figure**
155 **4A**). Equation (1) allows us to represent individual muscle activity patterns as samples from a
156 probability distribution with a population mean function and variance. To obtain sample-wise
157 muscle activity that follows a given probability distributions, we first decompose population
158 expectation of muscle activity into several linear combinations based on basis functions (e.g.,
159 B-splines functions). The mean function
$$\mu_m(t)$$
 can be decomposed as
 $\mu_m(t) = \sum_{q=1}^{Q} \bar{c}_{m,q} b_{m,q}(t) \#(9)$

160 A set of mutually orthogonal functions $b_{m,q}(t)$ are used to decompose the population mean

161 function $\mu_m(t)$ into Q functional linear combinations, each of which has weight

162 coefficients $\bar{c}_{m,q}$. Here the coefficient vector $\bar{\mathbf{c}}_m = (\bar{c}_{m,1}, \bar{c}_{m,2}, \dots, \bar{c}_{m,Q})$ has sufficient

163 information to reconstruct the population mean function under the basis function. In the FDA

164 framework, the variation of muscle activity among subjects in a population can be described

165 by variation with respect to this coefficient vector. In the numerical experiments, a normal

166 distribution with mean average $\bar{c}_{m,q}$ and variance σ was assumed for individual muscle

167 activity.

$$c_{i,m,q} = \bar{c}_{m,q} + \epsilon \# (10)$$

 $\epsilon \!\sim\! N(0,\sigma)$

168 Substituting the sampled coefficient vectors back into equation (9) yields the individual

169 muscle activities that follow the population distribution.

$$x_{i,m}(t) = \sum_{q=1}^{Q} c_{i,m,q} b_{m,q}(t) \#(11)$$

170 The FDA-based simulation model can be used to evaluate whether the expected

171 values estimated from individual motor module estimates reproduce the expected values of

the motor modules derived from the population mean of muscle activity. The residual sum of

- 173 squares (RSS) of the true motor module was evaluated to assess the performance of each
- 174 method. In other words, for the RSS of k –th module, we evaluated the

$$RSS_{k}^{[W]} = \sum_{t=1}^{T} \left(w_{tk}^{[true]} - w_{tk}^{[estimated]} \right)^{2} \#(12)$$
$$RSS_{k}^{[H]} = \sum_{m=1}^{M} \left(h_{km}^{[true]} - h_{km}^{[estimated]} \right)^{2} \#(13)$$

175 where $w_{tk}^{[estimated]}$ and $h_{km}^{[estimated]}$ are estimated values for $\mathbf{W}^{[true]}$ and $\mathbf{H}^{[true]}$,

176 respectively.

177 The proposed model allows for control of estimation bias

178 We used a simulation model to assess each method (Figure 4A) with generated muscle

179 activity for n=10, 50, and 100 (Figure 4B). While all methods captured the primitive signal's

- 180 trend, there was a bias in estimated motor modules based on individual and cNMF compared
- 181 to the true motor module (Figure 4C). The individual approaches showed a tendency to
- 182 overestimate the module weights i.e., averaged H_i in equation (6) over subjects after

183	matching (Figure 4C). Our proposed method had accuracy close to that of cNMF, but with
184	less estimation bias (Figure 4D). The fourth module showed an overestimation of the weight
185	of the right leg TA (n=50) and underestimation of the left leg LG with cNMF (n=100)
186	compared to the proposed method, with differences in the timing of peak signals (Figure 4C,
187	4D). We assessed the estimation bias of each method by calculating the RSS residuals for
188	incremental changes in sample size. Our results showed that the proposed method converges
189	to an estimation bias of zero as the sample size increases, in contrast to the other methods
190	(Figure 5B). This suggests that existing methods lack asymptotic properties when estimating
191	the population mean of motor modules.
192	Evaluating noise robustness
192 193	Evaluating noise robustness To assess the impact of deviating values on estimation accuracy, we conducted a similar
193	To assess the impact of deviating values on estimation accuracy, we conducted a similar
193 194	To assess the impact of deviating values on estimation accuracy, we conducted a similar evaluation as in the previous section with 10% of the samples containing deviating signal
193 194 195	To assess the impact of deviating values on estimation accuracy, we conducted a similar evaluation as in the previous section with 10% of the samples containing deviating signal values (Figure 6A, 6B). For small samples (n=10), all methods showed large estimation
193 194 195 196	To assess the impact of deviating values on estimation accuracy, we conducted a similar evaluation as in the previous section with 10% of the samples containing deviating signal values (Figure 6A, 6B). For small samples (n=10), all methods showed large estimation errors (Figure 6C, 6D). However, as the sample size increased (n=50, n=100), the proposed
193 194 195 196 197	To assess the impact of deviating values on estimation accuracy, we conducted a similar evaluation as in the previous section with 10% of the samples containing deviating signal values (Figure 6A, 6B). For small samples (n=10), all methods showed large estimation errors (Figure 6C, 6D). However, as the sample size increased (n=50, n=100), the proposed method significantly reduced the error compared to the other methods (Figure 7A). When we

significantly compared to the case without deviating values (Figures 5A, 5B; Figures 7A,

- 202 **7B**), indicating its sensitivity to such values.
- 203 Discussion

204	We proposed an algorithm for estimating the motor module at the population level
205	using Non-Negative Matrix Factorization (NMF) within the framework of Functional Data
206	Analysis (FDA). Our method first estimates the population mean of muscle activity and then
207	performs motor module estimation based on it. In contrast, the existing approach estimates
208	the population mean after estimating the motor module for individual. The difference
209	between the two approaches may seem simple, but our approach has been shown to
210	significantly reduce estimation bias beyond a certain sample size and is also robust to noise.
211	Although our proposed algorithm showed convergence to the true motor module
212	patterns with only 25 to 30 samples, the existing approaches failed as the sample size
213	increased (Figure 5B). This was true even in the presence of samples that contained some
214	deviant signal values (Figure 6B). Various factors can contribute to the failure of existing
215	methods to converge. For example, the module-matching method can cause forced matching
216	errors when there is no corresponding module, while cNMF may suffer from numerical
217	instability or bias contamination due to collinearity or deviation values as the number of
218	parameters to be optimized increases with the number of samples.

219	Our results indicate that our proposed algorithm outperforms existing methods in
220	terms of noise robustness and convergence to true motor module estimates. However, we also
221	found that the presented algorithm had a rather large estimation bias in small-sample
222	conditions, and full convergence required larger samples (Figure6B-D, Figure 7A, 7B).
223	Therefore, while our proposed algorithm is an improvement over existing methods, its
224	application may be limited in situations where the variability of the population is high and the
225	sample size is very small. These results highlighted the need for statistical improvements in
226	computational algorithms.
227	Alternative methods, such as principal component analysis (PCA) ^{27,29,30} and factor
228	analysis (FA) ^{31,32} , can also be utilized for motor module estimation, but in this study, we
229	focused on NMF. One of the reasons for this choice is that NMF has been frequently
230	employed and shown promise in estimation accuracy for various tasks, such as walking and
231	running ¹³ . However, all these methods share common issues related to dimensionality
232	reduction, such as the matching of synthetic variables' order and sign, and potential
233	contamination from heterogeneous observations, such as outliers ^{33,34} . Therefore, it is essential
234	to further investigate and improve upon the accuracy and estimation methods for
235	population-level motor module parameter estimation based on dimensionality reduction in the
236	future direction.

237	This study has several limitations. Firstly, the validity of the estimation algorithm
238	needs to be comprehensively evaluated for other commonly used movement tasks besides
239	periodic walking. Secondly, the actual data analysis was performed using a small number of
240	samples, and further evaluation with a larger clinical dataset is necessary. Thirdly, the
241	presented algorithm assumes a homogeneous distribution of the latent population, and when
242	multiple heterogeneous subpopulations are mixed, subpopulations must be identified and
243	stratified. In this regard, future tasks include identifying subgroups based on dimension
244	reduction ³⁵ and clustering ^{36,37} and developing methods to test for heterogeneity based on
245	functional data representation.
246	Characterizing motor modules at the population level is a crucial step towards
247	translating experimental findings into clinical applications. For example, evaluation of
247 248	
	translating experimental findings into clinical applications. For example, evaluation of
248	translating experimental findings into clinical applications. For example, evaluation of intervention effects on motor function before and after intervention ^{38–49} , and large
248 249	translating experimental findings into clinical applications. For example, evaluation of intervention effects on motor function before and after intervention ^{38–49} , and large cross-sectional clinical studies ^{38,50,51} need to capture effects as a population. The present
248 249 250	translating experimental findings into clinical applications. For example, evaluation of intervention effects on motor function before and after intervention ^{38–49} , and large cross-sectional clinical studies ^{38,50,51} need to capture effects as a population. The present study is the first to investigate the motor module estimation algorithm from a
248249250251	translating experimental findings into clinical applications. For example, evaluation of intervention effects on motor function before and after intervention ^{38–49} , and large cross-sectional clinical studies ^{38,50,51} need to capture effects as a population. The present study is the first to investigate the motor module estimation algorithm from a population-level perspective. Although the study has its limitations, such as the small sample

256 Acknowledgments

- 257 We would like to thank Editage (http://www.editage.jp) for editing and reviewing this
- 258 manuscript for English language.

259 Author Contributions

- 260 The study conceptualization was led by YM. Data analysis and interpretation were carried out
- by YM and IN. Algorithm development and evaluation were spearheaded by YM and KU.
- 262 Manuscript drafting was a joint effort by YM and IN. All authors extensively reviewed,
- 263 revised, and approved the final version of the manuscript for submission.

264 **Declaration of Interests**

265 The authors declare no competing interests.

266

- 268
- 269
- 270
- 271
- 272
- 273
- _..
- 274

275 Figure Legends

276 Figure 1. Conceptual view of this study

277	A) Description of the general motor module estimation algorithm. Multichannel
278	Electromyography (EMG) data is given by a time \times muscle matrix. Motor module analysis
279	is a problem of unsupervised low-dimensional structural learning based on muscle activity
280	data from multiple sites. Non-negative matrix factorization (NMF) is widely used as one of
281	them. Each estimated dimension is considered to reflect the activity of the central nervous
282	system, where \mathbf{W} is called the primitive signal and is considered to be the input signal of the
283	central nervous system, and \mathbf{H} is called synergy and is considered to represent a potentially
284	cooperating muscle group, or motor module. B) Population-level motor module and
285	individual-level module. When conducting a multi-subject motor module analysis, there are
286	two approaches depending on the purpose. The first is population-level motor module
287	analysis, which is intended for characterization and inference at the population level and for
288	comparison among populations. The second is individual-level motor module analysis, the
289	main objectives of which are individual-level characterization and inter-individual
290	comparisons. Our goal is to estimate population-level motor module expectations in an
291	unbiased manner. We show that conventional methods are not consistent with true
292	expectations where they estimate the expectation by aggregating individual-level motor
293	modules. C) Problems with conventional methods. The main causes are 1) the arbitrariness

294	of the solution due to the unsupervised learning of NMF, 2) local minima problem with an
295	initial value, 3) errors associated with integrating the results of motor module analysis from
296	different subjects, and 4) instability of the numerical solution of the NMF algorithm. D)
297	Proposed method. We introduce the framework of functional data analysis. Assuming a
298	stochastic population of muscle activity, the unbiased motor module expectation is estimated
299	based on the expectation of muscle activity.
300	
301	Figure 2. Comparison of algorithms between existing and proposed methods
302	A) Module matching approach. Multichannel Electromyography (EMG) data given in a

and then they are matched and averaged across subjects. **B)** Concatenated NMF-based approach. The NMF is applied by concatenating the EMG matrices across subjects in the row direction. Since the columns of the muscle activity matrix are fixed, the estimated synergy **H** approximates the average across subjects, and the primitive signal **W** conditioned

time × muscle matrix for each individual was used to estimate the motor module using NMF,

303

308 by the common synergy **H** is estimated for each subject. **C**) **Proposed method.** First, 309 expectations of muscle activity are estimated from the EMG matrices of multiple subjects, 310 and NMF is applied to the obtained expected values of muscle activity. Since the expected 311 values of EMG reflect the population structure, the obtained motor modules also reflect the 312 population structure.

313

314 Figure 3. Actual data example

315	A) Data overview and analysis design. The Multichannel Electromyography (EMG) signals
316	of 10 left and right muscles and foot pressure were measured in seven healthy young adults.
317	The data were processed using an in-house analysis pipeline that implements standard muscle
318	activity preprocessing. These preprocessed data were used to compare results from existing
319	and proposed methods. B) Comparison of estimated motor modules. Four modules were
320	identified based on variance accounted for. The left panel represents module composition H,
321	the columns represent each method, and each row represents motor modules 1 through 4.
322	Although all modules represent close trends between methods, there is variation in the
323	estimates and different interpretations of the muscle groups that constitute the motor module.
324	The right panel represents the primitive signal W corresponding to the four synergies, which
325	also shows a similar trend between methods, but some of the modules show different timing
326	of activation, suggesting that the clinical interpretation, such as the correspondence with the
327	gait phase, can be different.

329

330 Figure 4. Simulation experiments of estimation bias

331	A) Simulation model. The model was constructed to generate Multichannel
332	Electromyography (EMG) based on functional data representation. True muscle activity μ_m
333	in skeletal muscle m was approximated by linear combination by a small set of B-spline
334	orthogonal basis functions $b_{m,q}$ by regression splines with coefficients $\bar{c}_{m,q}$. To mimic the
335	simulation of real data, the mean muscle activity derived from the actual muscle activity of
336	seven subjects was used. Assuming a normal distribution for the probabilistic distribution in
337	the population, spline regression coefficients corresponding to individual subjects $c_{i,m,q}$
338	were generated by adding noise which follows a multivariate normal distribution to $\bar{c}_{m,q}$, and
339	by multiplying the B-spline basis $b_{m,q}$ which was used for the true muscle activity
340	approximation μ_m . Resulting individual muscle activity profiles follow a normal distribution
341	in the sense of functional data representation. B) Generated individual muscle activity and
342	its expectation. The individual muscle activity profiles generated for n=10, 50, and 100
343	samples (gray lines) and their expected values (red) and true muscle activity (black) are
344	shown. C) Comparison of estimation bias of motor module expectation. We estimated the
345	expectation of motor modules and compared the estimation bias with each method. Here, we
346	defined "true" expectation of motor module (black) as one estimated from true muscle
347	activity μ_m . The proposed method (red) gave an estimate close to the true motor module

- 348 expectation (black) in both primitive signal and modules. On the other hand, exiting methods
- 349 exhibited estimation bias in at least one of the modules.

351

352 Figure 5. Comparison of residual sum of squares for estimation biases

353	A) Accuracy of each method. The residual sum of squares (RSS) calculated based on the
354	results shown in Figure 4 are displayed for each motor module. The rightmost RSS in each
355	panel shows the sum of the RSS over all modules. In the simulation, the proposed method
356	(red) has the lowest RSS for all modules. B) Asymptotics of RSS with sample size. The RSS
357	for each module is shown when the sample size is increased by 5 from 5 to 100 samples.
358	With the nature of statistical error, RSS should asymptotically approach zero as the sample

- 359 size increases. Only the proposed method (red) showed asymptotic behavior in the
- 360 simulations.

362

363 Figure 6. Simulation experiment of noise robustness

364	A) Simulation model. The simulation model shown in Figure 4 was modified to include
365	some outliers. The muscle activity was generated by simulation assuming a population with
366	10% of outlier samples contaminated in addition to the normal sample. The generation of
367	outlier samples was accomplished by adding errors with excess variance to a subset of the
368	coefficients of the regression splines. The samples were then multiplied with the B-spline
369	basis functions to obtain samples with distinct muscle activity profiles. B) Generated
370	individual muscle activity and its expectation. The individual muscle activity profiles
371	generated for n=10, 50, and 100 samples (gray lines) and their expected values (red) and true
372	muscle activity (black) are shown. C) Comparison of the estimation robustness of motor
373	module expectation. We estimated the expectation of the motor module and compared the
374	robustness of estimation between methods. Under small-sample conditions, all methods
375	showed estimation errors, but as the number of samples increased, the proposed method (red)
376	gave estimates closer to the true motor module expectation.

378

379 Figure 7. Comparison of the residual sum of squares for robustness

380	A) Robustness of	of each method.	The residual	sum of squares	(RSS)	calculated	based	on t	he
-----	------------------	-----------------	--------------	----------------	-------	------------	-------	------	----

- 381 results shown in Figure 5 are displayed for each motor module. The rightmost RSS in each
- 382 panel shows the sum of RSS over all modules. In the simulation, the proposed method (red)
- 383 has the lowest RSS for all synergies, which indicates robustness to outliers. B) Stability of
- 384 **RSS with sample size.** The RSS for each module is shown when the sample size is increased
- by 10 from 10 to 100 samples. It is expected that the effect of outliers will decrease as the
- sample size increases. However, only the proposed method (red) showed stability along with
- 387 the sample size in this simulation.
- 388

390 STAR★Methods

- **Resource availability**
- 392 Lead contact
- 393 matsui@met.nagoya-u.ac.jp
- 394 Materials availability
- 395 Data and code availability
- 396 The analysis code used in the paper can be accessed from the following repository URL
- 397 (https://github.com/ymatts/RoMMS). The acquired data from this study are available from
- the lead contact upon reasonable request.

399 Method details

- 400 Data acquisition
- 401 Wireless electromyograms (EMGs) (Trigno EMG sensors, DELSYS, Boston, MA, United
- 402 States) were recorded from the bilateral tibial anterior (TA), soleus (SOL), medial
- 403 gastrocnemius (MG), lateral gastrocnemius (LG), rectus femoris (RF), vastus medialis (VM),
- 404 medial hamstring (MH), and lateral hamstring (LH) muscles, according to SENIAM
- 405 recommendations. The skin was gently abraded and cleaned with alcohol before the EMG
- 406 recording. The sensors were placed as far as possible each other anatomically to minimize the
- 407 potential risk of crosstalk between the EMG recordings. Data were collected for two minutes
- 408 at a self-selected speed and used to examine steady-state gait by removing the first 10 s of the

gait. All the participants walked independently without walkers or crutches. The EMG signals

409

410 were amplified (with a 909 gain preamplifier), band-pass filtered (10–450 Hz), and sampled 411 at 1,000 Hz. Footswitches were attached to the heels to determine the time of foot contact. 412 Preprocessing 413 The foot pressure signal values acquired from the foot sensors were used to identify the gait 414 cycle. The time point at which the signal value increased from zero was defined as the heel 415 contact. sEMG signals were processed for each muscle. They were first low-pass filtered at 416 30 Hz using a fourth-order Butterworth filter and then rectified. Maximum voluntary 417 contraction (MVC) normalization was performed at the maximum observation as 100%. An 418 epoch was created for each gait cycle and identified using a foot sensor. To identify and 419 exclude abnormal cycles, each trial was projected onto a two-dimensional space using a robust principal component analysis^{52–54}. Using these coordinate values, trials that deviated 420 421 significantly from the projected space were defined as outliers and were excluded. The 422 threshold settings for the anomaly values followed the default values in the R package rospca⁵⁵. The variation in time between the gait cycles was corrected according to linear 423 424 length normalization (LLN), with 0% for the first heel contact and 100% for the next heel 425 contact. Finally, a 10-Hz envelope was derived, and the average was calculated to obtain the 426 muscle activity. 427 Computational algorithm

428 Because the parameter of time t is observed as a discrete value in the real world, the muscle

429 activity $x_{i,m}(t)$ is expressed as $x_{i,t,m}$ using the discretized time t = 1, 2, ..., T. Equation

430 (3) can be obtained using the time-discretized version of (4).

$$\overline{m} = \mathcal{S}(\mu_t) + \delta_{\mathcal{S}} \#(8)$$

431 where $\mu_t = (\mu_{t,1}, \mu_{t,2}, ..., \mu_{t,M})$ and

$$\mu_{t,m} = \frac{1}{n} \sum_{i=1}^{n} x_{i,t,m} \, \#(9)$$

432 The explicit form of the motor module by NMF in equation (6) can be defined using

433 muscle activity matrix $\mathbf{U}^{[T \times M]} = \{\mu_{t,m}; t = 1, 2, ..., T, m = 1, 2, ..., M\}$. The primitive signals

434 $\mathbf{W}^{[T \times K]}$ and synergy $\mathbf{H}^{[K \times M]}$ obtained by the NMF are derived as follows:

$$\mathbf{U} = \mathbf{W}\mathbf{H} + \mathbf{E}\#(10)$$

435 where **E** is the estimation error term with the $T \times M$ matrix.

436 Analysis pipeline

- 437 The workflow of the analysis is shown in Figure 3A. The first step was to perform standard
- 438 signal processing on the raw sEMG signal for each subject, including bandpass filtering,
- 439 rectification, MVC normalization, envelope smoothing, and epoching. Then, time alignment
- 440 was performed, if necessary. Finally, the trial average was calculated for each muscle to
- 441 characterize the muscle activity pattern for one trial per subject. We then estimated the
- 442 expected mean of the muscle activity in the subject population according to equation (9) and
- 443 applied the NMF to obtain an estimate of the population mean of the motor module shown in

444 equation (10). For the number of modules, we used variance accounted for (VAF), defined

445 below:

$$VAF_{K'} = 1 - \frac{RSS_{K'}}{\sum_{t=1}^{T} \sum_{m=1}^{M} x_{t,m}^2} \#(11)$$
$$RSS_{K'} = \sum_{t=1}^{T} \sum_{m=1}^{M} (\hat{x}_{t,m} - x_{t,m})^2$$

446 where $\hat{x}_{t,m}$ is reconstructed matrix of muscle activities using K' synergy.

- 447 Simulation model
- 448 This section presents a simulation model for comparing the performance of each method.

449 Two simulations are conducted. The first is the accuracy with which each approach can

- 450 reproduce the "true" motor modules in the population (Figure 3A). Here, "true" refers to the
- 451 motor modules "estimated from the true population mean of muscle activity." Individual
- 452 muscle activities were generated by adding normally distributed variations with a zero mean
- 453 and a certain standard deviation to the predefined true population mean.
- 454 The second is the robustness of motor module estimation in the presence of outliers
- 455 (Figure 7A). Assuming muscle activity from unrelated populations, the muscle activity
- 456 distributed around different population means was prepared, and the muscle activity
- 457 distributed around it was generated as an outlier sample. By mixing this with samples from
- 458 the population of interest, we generated muscle activity that contained outliers and performed
- 459 a simulation similar to the first to evaluate the reproducibility of the true motor modules.

The muscle activity patterns of each subject, which varied based on the population mean, were generated using the FDA framework (**Figure 3A**). Let the muscle activity in skeletal muscle *m* of subject *i* be the function value $x_{i,m}(t)$, and let the population mean be $\mu_m(t)$ and the population variance be $\sigma_m(t) = \int_{i=1}^n \left(x_{i,m}(t) - \mu_m(t)\right)^2$. Functional observations can be expressed using several orthogonal basis functions: $b_{m,q}(t)$; q =1,2,...,Q.

$$\mu_m(t) = \sum_{q=1}^{Q} \bar{c}_{m,q} b_{m,q}(t) \,\#(12)$$

466 This simulation used a B-spline basis, which is a typical orthogonal basis function in the FDA. The coefficients $\bar{c}_{m,q}$ were estimated based on a regression spline and the number 467 468 of basis functions were determined by cross-validation. To mimic the actual muscle activity pattern, we derive the mean function $\mu_m(t)$, which we would like to estimate, from a real 469 470 dataset. The average of the preprocessed muscle activity of the seven young healthy subjects 471 was calculated, and this was set as $\mu_m(t)$. For the coefficient vector $\bar{\mathbf{c}}_m = (\bar{c}_{m,1}, \bar{c}_{m,2}, \dots, \bar{c}_{m,Q})$, a subject-specific coefficient 472 vector $\mathbf{c}_{i,m} = (c_{i,m,1}, c_{i,m,2}, \dots, c_{i,m,Q})$ was generated by adding an independently generated 473 474 noise normal distribution, which is considered biological variability (Figure 4A). That is, for

475 q = 1, 2, ..., Q,

$$c_{i,m,q} = \bar{c}_{m,q} + \epsilon \# (13)$$
$$\epsilon \sim N(0,\sigma)$$

476 In this simulation, we set $\sigma = 1$ assuming that the subject population follows a standard

477 normal distribution. Finally, the orthogonal basis functions were multiplied again to generate

478 the functional observations for each subject.

$$x_{i,m}(t) = \sum_{q=1}^{Q} c_{i,m,q} b_{m,q}(t) \#(14)$$

479 We compared the algorithms for estimating the population mean of the motor modules using

480 muscle activity $\mathbf{X}_i = \{x_{t,m}\}$ consisting of $x_{i,t,m}$ discretized by t in equation (14).

481 For another simulation of the effects of outliers, heterogeneous samples were mixed

482 (Figure 6A). The muscle activity patterns of these samples were generated using equation

483 (13). That is, assume a different population of no interest with population mean $\mu_m(t)$;

$$\mu_{m}'(t) = \sum_{q=1}^{Q} \bar{c}'_{m,q} b_{m,q}(t) \#(15)$$

484 The coefficients $\bar{c}'_{m,q}$ were randomly selected from the coefficients $\bar{c}_{m,q}$ of the population 485 mean of interest in equation (9), to which was added a noise of normal distribution with large

486 standard deviation $\sigma' (> \sigma)$ (**Figure 6A**);

$$\bar{c}'_{m,q} = \bar{c}_{m,q} + \epsilon' \#(16)$$
$$\epsilon \sim N(0,\sigma')$$

487 In this simulation on the effect of outlier, two coefficients $r_1, r_2 (\leq Q)$) were randomly

488 selected from q = 1, 2, ..., Q and equation (13) was applied and obtained outlier samples;

$$x_{i',m}(t) = \sum_{q=1}^{Q} c_{i',m,q}^{\prime} b_{m,q}(t) \#(17)$$

489 The percentage of outlier samples was simulated as 10% of the total sample size, *N*.

- 490 Evaluation of methods
- 491 In this section, we evaluate the performance of these methods using a simulation dataset. We
- 492 defined the motor module derived on the basis of equation (12) as the "true" motor module.

493 Let $\mathbf{W}^{[true]}$ and $\mathbf{H}^{[true]}$ denote the true motor module estimates obtained by using the

- 494 NMF algorithm. Each matrix element is denoted as $w_{tk}^{true} \in \mathbf{W}^{[true]}$ and $h_{km}^{true} \in \mathbf{H}^{[true]}$.
- 495 Here, the primitive signal is represented as $\mathbf{W}^{[true]}$ and the weight of each muscle, that is,
- 496 the module, is denoted by $\mathbf{H}^{[true]}$.

497 The residual sum of squares (RSS) of the true motor module was evaluated to assess 498 the performance of each method. In other words, for the RSS of k –th synergy, we evaluated 499 the

$$RSS_{k}^{[W]} = \sum_{t=1}^{T} \left(w_{tk}^{[true]} - w_{tk}^{[estimated]} \right)^{2} \#(18)$$
$$RSS_{k}^{[H]} = \sum_{m=1}^{M} \left(h_{km}^{[true]} - h_{km}^{[estimated]} \right)^{2} \#(19)$$

500 where $w_{tk}^{[estimated]}$ and $h_{km}^{[estimated]}$ are estimated values for $\mathbf{W}^{[true]}$ and $\mathbf{H}^{[true]}$,

501 respectively.

Note that we normalized the values $w_{tk}^{[estimated]}$ and $h_{km}^{[estimated]}$ for each method because the scale of the estimated values differs from method to method. Normalization was performed for each estimated motor module by each method; each element was divided by

505	the value of maximum value in the estimated primitive signal $\mathbf{W}^{[estimated]}$ and synergy
506	$\mathbf{H}'^{[estimated]}$, and multiplied by 100. This was also true for $\mathbf{W}'^{[true]}$ and $\mathbf{H}'^{[true]}$. After
507	normalization, these estimates were used to calculate the RSS using equations (18) and (19).
508	
509	
510	
511	
512	
513	
514	
515	
516	
517	
518	
519	
520	
521	
522	
523	

524 **References**

525	1. 7	Ting, L.H., Chiel, H.J., Trumbower, R.D., Allen, J.L., McKay, J.L., Hackney, M.E.,						
526	and Kesar, T.M. (2015). Neuromechanical principles underlying movement modularity and							
527	their implications for rehabilitation. Neuron 86, 38–54.							
528	2. E	Bizzi, E., and Cheung, V.C.K. (2013). The neural origin of muscle synergies. Front.						
529	Comput. Neurosci. 7, 51.							
530	3. E	Bizzi, E., Cheung, V.C.K., d'Avella, A., Saltiel, P., and Tresch, M. (2008).						
531	Combining modules for movement. Brain Res. Rev. 57, 125–133.							
532	4. d	l'Avella, A., Saltiel, P., and Bizzi, E. (2003). Combinations of muscle synergies in						
533	the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308.							
534	5. 7	Fing, L.H., and McKay, J.L. (2007). Neuromechanics of muscle synergies for						
535	posture and movement. Curr. Opin. Neurobiol. 17, 622-628.							
536	6. 7	Fresch, M.C., and Jarc, A. (2009). The case for and against muscle synergies. Curr.						
537	Opin. Neurobiol. 19, 601–607.							
538	7. S	Safavynia, S.A., Torres-Oviedo, G., and Ting, L.H. (2011). Muscle Synergies:						
539	Implications for Clinical Evaluation and Rehabilitation of Movement. Top. Spinal Cord Inj.							
540	Rehabil. 17, 16–24.							

- 541 8. Tresch, M.C., Saltiel, P., and Bizzi, E. (1999). The construction of movement by the
- 542 spinal cord. Nat. Neurosci. 2, 162–167.
- 543 9. Godlove, J., Gulati, T., Dichter, B., Chang, E., and Ganguly, K. (2016). Muscle
- 544 synergies after stroke are correlated with perilesional high gamma. Ann Clin Transl Neurol 3,
- 545 956–961.
- 546 10. Ting, L.H., and Macpherson, J.M. (2005). A limited set of muscle synergies for force
- 547 control during a postural task. J. Neurophysiol. 93, 609–613.
- 548 11. Shourijeh, M.S., Flaxman, T.E., and Benoit, D.L. (2016). An approach for improving
- 549 repeatability and reliability of non-negative matrix factorization for muscle synergy analysis.
- 550 J. Electromyogr. Kinesiol. 26, 36–43.
- 551 12. Cheung, V.C.K., and Seki, K. (2021). Approaches to revealing the neural basis of
- muscle synergies: a review and a critique. J. Neurophysiol. *125*, 1580–1597.
- 13. Rabbi, M.F., Pizzolato, C., Lloyd, D.G., Carty, C.P., Devaprakash, D., and Diamond,
- 554 L.E. (2020). Non-negative matrix factorisation is the most appropriate method for extraction
- of muscle synergies in walking and running. Sci. Rep. 10, 8266.
- 556 14. Turpin, N.A., Uriac, S., and Dalleau, G. (2021). How to improve the muscle synergy
- analysis methodology? Eur. J. Appl. Physiol. 121, 1009–1025.

558	15.	Chiovetto,	E., Salatiello,	A., d'	Avella, A.,	and Giese,	, M.A.	(2022).	. Toward	a
-----	-----	------------	-----------------	--------	-------------	------------	--------	---------	----------	---

559 unifying framework for the modeling and identification of motor primitives. Front. Comput.

560 Neurosci. 16, 926345.

- 561 16. Amundsen Huffmaster, S.L., Van Acker, G.M., 3rd, Luchies, C.W., and Cheney, P.D.
- 562 (2018). Muscle Synergies Obtained from Comprehensive Mapping of the Cortical Forelimb
- 563 Representation Using Stimulus Triggered Averaging of EMG Activity. J. Neurosci. 38,
- 564 8759-8771.
- 565 17. Tan, C.K., Kadone, H., Miura, K., Abe, T., Koda, M., Yamazaki, M., Sankai, Y., and

566 Suzuki, K. (2019). Muscle Synergies During Repetitive Stoop Lifting With a

- 567 Bioelectrically-Controlled Lumbar Support Exoskeleton. Front. Hum. Neurosci. 13, 142.
- 568 18. Valk, T.A., Mouton, L.J., Otten, E., and Bongers, R.M. (2019). Fixed muscle
- 569 synergies and their potential to improve the intuitive control of myoelectric assistive
- technology for upper extremities. J. Neuroeng. Rehabil. 16, 6.
- 571 19. Ma, Y., Shi, C., Xu, J., Ye, S., Zhou, H., and Zuo, G. (2021). A Novel Muscle
- 572 Synergy Extraction Method Used for Motor Function Evaluation of Stroke Patients: A Pilot
- 573 Study. Sensors 21. 10.3390/s21113833.

574	20.	Cheung,	V.C.K.,	Cheung,	B.M.F.,	Zhang,	J.H.,	Chan,	Z.Y.S.,	Ha, S	3.C.W.,	Chen,

- 575 C.-Y., and Cheung, R.T.H. (2020). Plasticity of muscle synergies through fractionation and
- 576 merging during development and training of human runners. Nat. Commun. 11, 4356.
- 577 21. Mehryar, P., Shourijeh, M.S., Rezaeian, T., Iqbal, N., Messenger, N., and
- 578 Dehghani-Sanij, A.A. (2017). Changes in synergy of transtibial amputee during gait: A pilot
- 579 study. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics
- 580 (BHI), pp. 325–328.
- 581 22. Mehryar, P., Shourijeh, M.S., Rezaeian, T., Khandan, A.R., Messenger, N., O'Connor,
- 582 R., Farahmand, F., and Dehghani-Sanij, A. (2020). Differences in muscle synergies between
- 583 healthy subjects and transfemoral amputees during normal transient-state walking speed. Gait
- 584 Posture 76, 98–103.
- 585 23. Ferraty, F., and Vieu, P. (2006). Nonparametric Functional Data Analysis (Springer
 586 New York).
- 587 24. Ramsay, J.O., and Silverman, B.W. (2005). Functional Data Analysis (Springer New
 588 York).
- 589 25. Backenroth, D., Shinohara, R.T., Schrack, J.A., and Goldsmith, J. (2020).
- 590 Nonnegative decomposition of functional count data. Biometrics 76, 1273–1284.

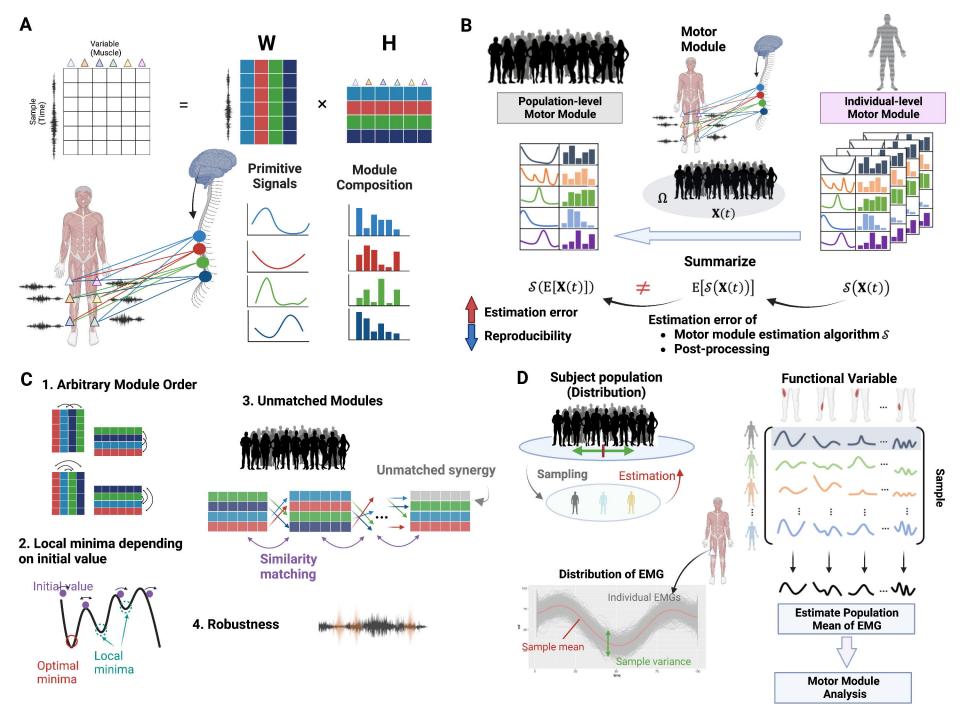
- 591 26. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., and Plemmons, R.J. (2007).
- 592 Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat.
- 593 Data Anal. 52, 155–173.
- 594 27. Santello, M., and Soechting, J.F. (2000). Force synergies for multifingered grasping.
- 595 Exp. Brain Res. 133, 457–467.
- 596 28. Guan, N., Tao, D., Luo, Z., and Yuan, B. (2012). NeNMF: An Optimal Gradient
- 597 Method for Nonnegative Matrix Factorization. IEEE Trans. Signal Process. 60, 2882–2898.
- 598 29. Kaminski, T.R. (2007). The coupling between upper and lower extremity synergies
- 599 during whole body reaching. Gait Posture *26*, 256–262.
- 600 30. Chiovetto, E., Patanè, L., and Pozzo, T. (2012). Variant and invariant features
- 601 characterizing natural and reverse whole-body pointing movements. Exp. Brain Res. 218,
- 602 419–431.
- 603 31. Smith, C., Gilleard, W., Hammond, J., and Brooks, L. (2006). The Application of an
- 604 Exploratory Factor Analysis to Investigate the Inter-Relationships amongst Joint Movement
- 605 During Performance of a Football Skill. J. Sports Sci. Med. 5, 417–524.
- 506 32. Steinberg, F., and Bock, O. (2013). Influence of cognitive functions and behavioral
- 607 context on grasping kinematics. Exp. Brain Res. 225, 387–397.

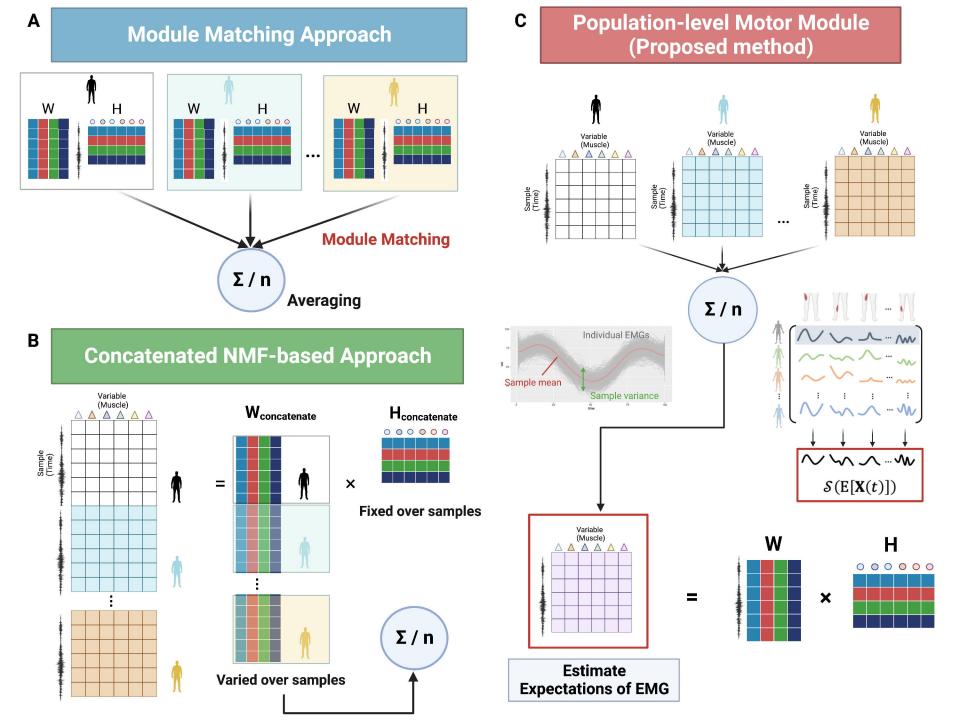
- 608 33. Jolliffe, I.T., and Cadima, J. (2016). Principal component analysis: a review and
- 609 recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150202.
- 610 34. Yuan, K.-H., and Zhong, X. (2008). 8. Outliers, Leverage Observations, and
- 611 Influential Cases in Factor Analysis: Using Robust Procedures to Minimize Their Effect.
- 612 Sociol. Methodol. *38*, 329–368.
- 613 35. Berrendero, J.R., Justel, A., and Svarc, M. (2011). Principal components for
- 614 multivariate functional data. Comput. Stat. Data Anal. 55, 2619–2634.
- 615 36. Jacques, J., and Preda, C. (2014). Functional data clustering: a survey. Adv. Data
- 616 Anal. Classif. 8, 231–255.
- 617 37. Zhang, M., and Parnell, A. (2022). Review of Clustering Methods for Functional
- 618 Data. arXiv [stat.ME].
- 619 38. Goudriaan, M., Papageorgiou, E., Shuman, B.R., Steele, K.M., Dominici, N., Van
- 620 Campenhout, A., Ortibus, E., Molenaers, G., and Desloovere, K. (2021). Muscle synergy
- structure and gait patterns in children with spastic cerebral palsy. Dev. Med. Child Neurol. 64,
 462–468.
- 623 39. Kubota, K., Hanawa, H., Yokoyama, M., Kita, S., Hirata, K., Fujino, T., Kokubun, T.,
- 624 Ishibashi, T., and Kanemura, N. (2021). Usefulness of Muscle Synergy Analysis in

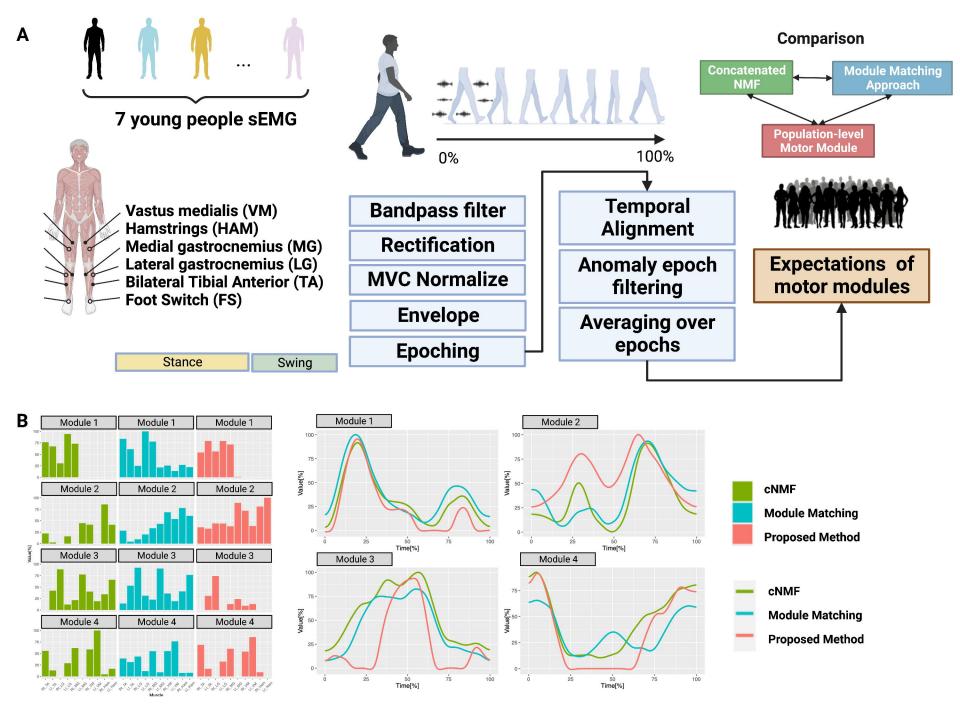
- Individuals With Knee Osteoarthritis During Gait. IEEE Trans. Neural Syst. Rehabil. Eng. 29,
 239–248.
- 40. Hashiguchi, Y., Goto, R., and Naka, T. (2023). Effects of orthoses on muscle activity
- and synergy during gait. PLoS One 18, e0281541.
- 41. Cabaraux, P., Agrawal, S.K., Cai, H., Calabro, R.S., Casali, C., Damm, L., Doss, S.,
- 630 Habas, C., Horn, A.K.E., Ilg, W., et al. (2022). Consensus Paper: Ataxic Gait. Cerebellum.
- 631 10.1007/s12311-022-01373-9.
- 42. Tan, C.K., Kadone, H., Watanabe, H., Marushima, A., Hada, Y., Yamazaki, M.,
- 633 Sankai, Y., Matsumura, A., and Suzuki, K. (2020). Differences in Muscle Synergy Symmetry
- 634 Between Subacute Post-stroke Patients With Bioelectrically-Controlled Exoskeleton Gait
- Training and Conventional Gait Training. Front Bioeng Biotechnol 8, 770.
- 43. Alnajjar, F., Zaier, R., Khalid, S., and Gochoo, M. (2020). Trends and Technologies
- 637 in Rehabilitation of Foot Drop: A Systematic Review. Expert Rev. Med. Devices 18, 31–46.
- 638 44. Lim, J., Lim, T., Lee, J., Sim, J., Chang, H., Yoon, B., and Jung, H. (2021).
- 639 Patient-specific functional electrical stimulation strategy based on muscle synergy and
- 640 walking posture analysis for gait rehabilitation of stroke patients. J. Int. Med. Res. 49,
- 641 3000605211016782.

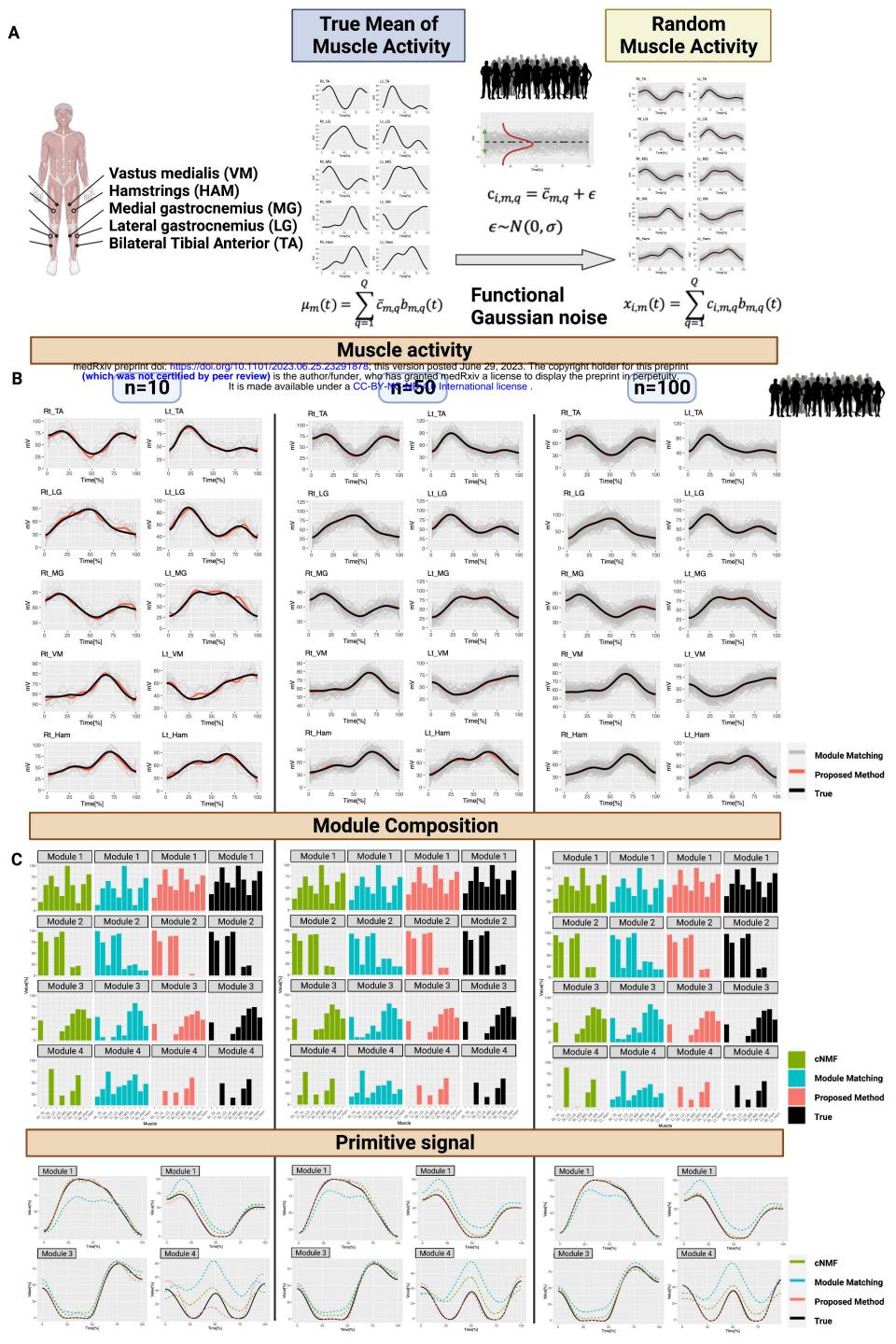
- 45. Michaud, F., Shourijeh, M.S., Fregly, B.J., and Cuadrado, J. (2020). Do Muscle
- 643 Synergies Improve Optimization Prediction of Muscle Activations During Gait? Front.
- 644 Comput. Neurosci. 14, 54.
- 645 46. Mehrabi, N., Schwartz, M.H., and Steele, K.M. (2019). Can altered muscle synergies
- 646 control unimpaired gait? J. Biomech. 90, 84–91.
- 47. Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., and
- 648 Chang, S.-H. (2021). Effects of an exoskeleton-assisted gait training on post-stroke
- lower-limb muscle coordination. J. Neural Eng. 18. 10.1088/1741-2552/abf0d5.
- 48. Afzal, T., Zhu, F., Tseng, S.-C., Lincoln, J.A., Francisco, G.E., Su, H., and Chang,
- 651 S.-H. (2022). Evaluation of Muscle Synergy During Exoskeleton-Assisted Walking in
- Persons With Multiple Sclerosis. IEEE Trans. Biomed. Eng. 69, 3265–3274.
- 49. Zwaan, E., Becher, J.G., and Harlaar, J. (2011). Synergy of EMG patterns in gait as
- an objective measure of muscle selectivity in children with spastic cerebral palsy. Gait
- 655 Posture *35*, 111–115.
- 656 50. VAN Criekinge, T., Saeys, W., Hallemans, A., Herssens, N., Lafosse, C., VAN Laere,
- 657 K., Dereymaeker, L., VAN Tichelt, E., DE Hertogh, W., and Truijen, S. (2020). SWEAT2
- 658 study: effectiveness of trunk training on muscle activity after stroke. A randomized controlled
- 659 trial. Eur. J. Phys. Rehabil. Med. 57, 485–494.

- 660 51. Acuña, S.A., Tyler, M.E., and Thelen, D.G. (2022). Individuals with Chronic
- 661 Mild-to-Moderate Traumatic Brain Injury Exhibit Decreased Neuromuscular Complexity
- During Gait. Neurorehabil. Neural Repair *36*, 317–327.
- 52. Hubert, M., Rousseeuw, P., and Verdonck, T. (2009). Robust PCA for skewed data
- and its outlier map. Comput. Stat. Data Anal. 53, 2264–2274.
- 53. Engelen, S., Hubert, M., and Vanden Branden, K. (2005). A Comparison of Three
- 666 Procedures for Robust PCA in High Dimensions. AJS 34, 117–126.
- 667 54. Hubert, M., Rousseeuw, P.J., and Vanden Branden, K. (2005). ROBPCA: A New
- 668 Approach to Robust Principal Component Analysis. Technometrics 47, 64–79.
- 669 55. Reynkens, T. (2018). Robust Sparse PCA using the ROSPCA Algorithm [R package
- 670 rospca version 1.0.4].

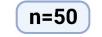


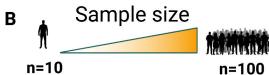




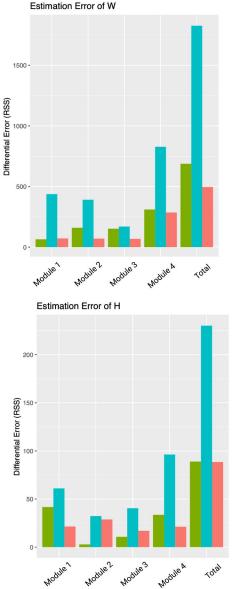


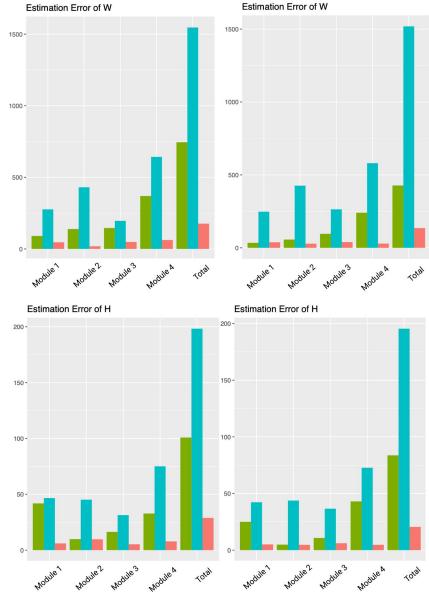
Α

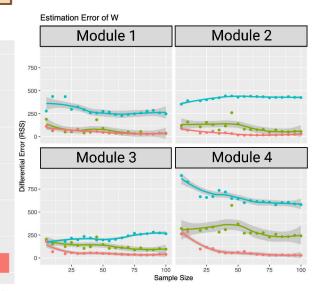




Residual Sum of Squares without Outliers







Estimation Error of H

