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Abstract 
The rapid adoption of machine learning (ML) algorithms in a wide range of biomedical applications 
has highlighted issues of trust and the lack of understanding regarding the results generated by ML 
algorithms. Recent studies have focused on developing interpretable ML models and establish 
guidelines for transparency and ethical use, ensuring the responsible integration of machine learning 
in healthcare. In this study, we demonstrate the effectiveness of ML interpretability methods to 
provide important insights into the dynamics of brain network interactions in epilepsy, a serious 
neurological disorder affecting more than 60 million persons worldwide. Using high-resolution 
intracranial electroencephalogram (EEG) recordings from a cohort of 16 patients, we developed 
high accuracy ML models to categorize these brain activity recordings into either seizure or non-
seizure classes followed by a more complex task of delineating the different stages of seizure 
progression to different parts of the brain as a multi-class classification task. We applied three 
distinct types of interpretability methods to the high-accuracy ML models to gain an understanding 
of the relative contributions of different categories of brain interaction patterns, including multi-focii 
interactions, which play an important role in distinguishing between different states of the brain. The 
results of this study demonstrate for the first time that post-hoc interpretability methods enable us to 
understand why ML algorithms generate a given set of results and how variations in value of input 
values affect the accuracy of the ML algorithms. In particular, we show in this study that 
interpretability methods can be used to identify brain regions and interaction patterns that have a 
significant impact on seizure events. The results of this study highlight the importance of the 
integrated implementation of ML algorithms together with interpretability methods in aberrant brain 
network studies and the wider domain of biomedical research.  

1. Introduction 
Brain network dynamics play a critical role in various cognitive functions of the brain. 
Understanding changes in these network dynamics has been crucial in exploring disease 
mechanisms in complex neurological disorders such as epilepsy [1]. Epilepsy is a serious 
neurological disease, affecting over 60 million individuals worldwide. More than 40% of epilepsy 
patients suffer from seizures that cannot be controlled with traditional anti-epileptic medications. 
Epilepsy as a chronic disorder has significant detrimental effects on the quality of life (QoL) of 
patients and it imposes substantial economic burden together with an increased risk of mortality [2]. 
Therefore, the systematic characterization of changes in brain network dynamics before and during 
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epileptic seizure has been a major focus of research studies, which aim to accurately predict seizures 
[3], precisely localize  seizure onset zone to enhance surgical outcomes in patients refractory to 
medication[4], and identify biomarkers for poorly understood phenomena such as Sudden and 
Unexpected Death in Epilepsy (SUDEP) [5].  

At present, we have limited understanding of the underlying principles that influence changes 
in interactions patterns of neurons that lead to the creation of coordinated complexes to generate 
seizure activities [2]. To address the limitations of existing computational methods that relied on 
graph-based models of binary brain interactions, recent studies have demonstrated the effectiveness 
of rigorous mathematical models based on algebraic topology [6]. Algebraic topology methods have 
successfully modeled higher-order brain interactions between multiple brain regions using a 
generalization of the graph structures called a simplex, which together with robust methods such as 
persistent homology enables the precise 
characterization of epilepsy networks. In our 
previous work [6], we have developed 
topological data analysis (TDA) methods to 
characterize seizure networks using a visual 
representation called a persistent diagram, 
which systematically tracks the formation and 
disintegration of high dimensional topological 
structures during different stages of a seizure. 
However, persistent diagrams are challenging to 
analyze using quantitative methods and they 
provide limited insights into the details of 
aberrant brain network dynamics in epilepsy 
patients. 

2. Background  

2.1 Framework for brain network analysis in 
epilepsy 
To address this challenge, we developed a 
machine learning (ML) framework (Figure 1) 
for the analysis of topological structures derived 
from high-resolution EEG data recorded from refractory epilepsy patients who undergo pre-surgical 
evaluation at the University Hospitals Cleveland Medical Center epilepsy monitoring unit, which is 
a level 4 facility that regularly performs epilepsy surgery. The data is recorded using electrodes 
implanted in the brain using the stereotactic placement scheme to record EEG (SEEG) [7]. 
Intracranial EEG recordings have gained recognition as the “gold standard” for pre-surgical 
evaluation as the recordings provide high-quality signals recorded directly from brain regions, 
without interference from intermediate layers that often affect other types of recordings such as 
scalp EEG data [5]. These multi-channel signals correspond to electrical activity from different brain 
regions, and various methods have been developed to characterize the coupling between different 

Figure 1: An overview of the machine learning 
interpretability framework developed within this study. 
In this work, we use Shapley Additive Value (SHAP) and 
Partial Dependence Plot (PDP) to emphasize the 
importance of brain interaction patterns in characterizing 
brain states. 
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signal channels during seizure-related events [8]. One widely used method for the computation of 
the nonlinear regression coefficient h2 by Pijn et al., which encapsulates the coupling between two 
EEG signals during seizure events. The nonlinear correlation measures are presented as a matrix 
(Mij) showing the signal channel coupling and directionality weights [9]. 

In this study, we used topological structures called clique complexes, which were derived from 
coupling measures computed from SEEG recordings using a widely applied non-linear correlation 
coefficient (h2) [Pijn]. The clique complexes represent all-to-all connected components that are well-
suited for studying co-activated brain structures during seizure events. Although ML algorithms 
have been used to analyze EEG data [10]; however, previous studies have relied only on signal 
processing methods to generate learning features for ML models, which limit their scalability and 
accuracy as it is difficult to represent interaction patterns across multiple electrode channels. Recent 
studies have employed ML algorithms to identify brain states and interaction patterns between 
different brain regions [11, 12], including pilot studies focused on using topological structures for 
classification of seizure and non-seizure brain states [13, 14]. Building on our previous studies and 
pilot studies performed by other groups, we have developed high accuracy classical and deep neural 
network (DNN) models for the following classification tasks: 

• Task 1: Binary classification of SEEG recordings during seizures (ictal events) and during 
baseline events with limited or no seizure related brain activities (e.g., sleep, awake)  

• Task 2: Multiclass classification of brain interaction patterns recorded during different stages of 
seizure propagation, including seizure onset, ictal phase 1 (first spread of seizure to additional 
brain regions), ictal phase 2, etc. 

Following the development of ML algorithms that demonstrated high accuracy for the above 
two tasks, we implemented three interpretability methods, which were used to characterize the 
individual contributions of different categories of brain interaction patterns (represented by the 
corresponding clique complexes). The rest of the paper is organized as follows: In Section 4, we 
describe implementation of the ML algorithms for the binary and multiclass classification tasks and 
the interpretability methods for characterizing these classification analysis. In section 5, we discuss 
the results from this classification and subsequent interpretability analysis. Finally, in section 6 we 
provide discussion and conclusions from these studies. 

3. Related Work 

Use of algebraic topology for characterizing epileptic seizure networks: Existing network 
analysis techniques, which utilize graph models where nodes symbolize brain structures and edges 
symbolize neural interactions, are constrained to modeling binary interactions between pairs of 
nodes. However, in neurological conditions such as epilepsy, it is common to witness simultaneous 
interactions involving three or more brain structures. As a result, Topological Data Analysis (TDA) 
methods, such as persistent homology capable of characterizing topological structures in noisy 
datasets, have garnered considerable interest in brain network studies. TDA allows data to be 
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represented as a simplicial complex, an extension of a graph consisting of simplices that portray 
multidimensional interactions. A k-simplex refers to the convex hull encompassing k+1 interactive 
nodes, with the value of k representing the dimension of the simplex. 

TDA analyzes simplicial complexes to identify topological structures, called homology 
classes, which are the boundary of a collection of k-simplices that form a closed structure (such as 
a loop or a tunnel) For a more in depth understanding of simplicial complex analysis, we direct the 
readers to the work of Edelsbrunner et. al [15]. The dimension of a homology class is equivalent to 
the dimension of the simplices forming the closed structure. A dimension 0 homology class 
represents the vertices in a network; a dimension 1 homology class represents the boundary of a 1-
dimensional closed structure (e.g., line); a dimension 2 homology class represents the boundary of 
a 2-dimensional closed structure (e.g., a triangle), and higher dimensional homology classes 
represent multi-dimensional interaction structures[16]. Persistent homology is a TDA method that 
tracks the lifespan of these homology classes across different thresholds values (called filtration) 
and the lifespan of these homology classes, that is difference between the formation and termination 
of homology classes, can be used to describe the strength of interaction between brain regions. 
Homology classes with larger lifespans are assumed to describe more fundamental features of the 
complex; however, short-lived homology classes may be equally as important in characterizing 
networks [17]. In this work we use lifespans values of different homology classes as input features 
for ML algorithms and use interpretability methods to characterize the significance of specific 
homology classes across different dimensions in the two classification tasks. 

4. Methods 

4.1 Dataset and Patient Cohort  

A cohort consisting of 16 patients was selected based on clinically determined inclusion exclusion 
criteria to identify patients who were considered for surgical intervention to disrupt epileptic seizure 
network. The study dataset included SEEG recordings for two seizure events in each patient. In 
addition to seizure event, recordings from non-seizure events (without seizure activity) were also 
selected for each patient and matched in duration to the longer of the two seizure events. Using the 
Neuro-Integrative Connectivity (NIC) tool [6], bidirectional network graphs for one-second epochs 
were computed using the h2 nonlinear correlation coefficient measure  [9]. The NIC TDA module 
was used to compute persistent homology for each bidirectional network graph to determine the 
lifespan of homology classes in each one-second epoch. The lifespan values of all homology classes 
in each epoch were grouped together in a list and labeled with either seizure or non-seizure class 
label. These lists together with their class labels were used as input features for the various ML 
algorithms. 

4.2 Data Augmentation for Imbalanced Data  

High quality data, including a representative distribution of class labels, is an essential component 
of high-performance ML algorithm development process. In our study, the original dataset consisted 
of data with six distinct class labels with the class label, seizure onset, occurring in 294 epochs ( 9% 
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of total class labels) class label ictal 3, occurred in 755 epochs (comprising 23% of the total class 
labels). Therefore, this skewed distribution of class labels resulted in an imbalanced dataset. To 
address this issue, we used the Synthetic Minority Oversampling Techniques (SMOTE) data 
augmentation method [18]. Imbalanced data, where the number of samples from each class differs 
significantly, is a common challenge in real-world scenarios such as healthcare. SMOTE uses 
randomized interpolation of neighboring minority labels from a set of instances representing the 
minority classes to generate new instances of minority classes, enhancing classifier generalizability. 
It does not introduce new information or variation but rather generates new data points using the K-
nearest method from the feature space.  

4.3 Machine Learning Models for binary and multi class classification 

We used three ML algorithms in this study, that is Support Vector Machine (SVM), Random Forest 
(RF), and Deep Neural Network (DNN), to distinguish between different brain states and understand 
the interactions between different brain regions.  To implement the SVM model, we used the scikit-
learn package with hyperparameters values selected using the automated grid search method (C = 
10, kernel type = poly). The DNNmodel was, implemented using TensorFlow Keras API with five 
hidden layers with a varying number of nodes using the rectified linear unit (ReLU) activation. We 
employed the "rmsprop" optimizer, "Binary_crossentropy" loss, and a learning rate of 0.001. The 
final output layer used sigmoid activation for binary classification and softmax for multiclass. 
Random Forest, used for ensemble learning, employed RandomForestClassifier from scikit-learn 
with specific parameters (n_estimators = 100, max_depth = 5, min_samples_leaf = 1, 
min_samples_split = 15). Hyperparameter optimization utilized the Keras grid search library. The 
primary objective of the three ML models consisted of achieving high accuracy results for binary as 
well as multiclass classification tasks and subsequently the use of ML interpretability methods to 
characterize the contribution of homology classes across dimensions to the accuracy results.  

4.4 Interpretability methods 

In the second phase of the study, we implemented three model agnostic ML interpretability methods: 
Shapley Additive Value (SHAP), Permutation Feature Importance (PFI) and Partial Dependence 
Plots (PDP) [19-21]. In this study, we distinguish between ML interpretability methods, which 
characterizes the changes in results of ML algorithm based on variation of input features, which 
characterize the dynamics of the ML model [22]. The SHAP method, grounded in cooperative game 
theory, offers comprehensive insights into the importance of individual features for a model, and 
illustrates how each feature contributes to individual predictions. The SHAP features importance 
and SHAP decision plot were employed as interpretability method, enabling visualization of the 
result derived from machine learning models. These interpretability methods provide insights into 
the model's decision-making process and the impact of different input features on the predictions. 
The PFI method was also used, as it is more computationally efficient than SHAP. PFI allows the 
evaluation of feature importance by manipulating the value of individual features and observing the 
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subsequent change in model performance. This method gave us with further insights regarding the 
of relative importance of each feature in the predictive process.  

In addition to the two ML interpretability methods, we also charted partial dependency plots 
(PDP) to visually characterize the performance of the ML algorithms as the value of other features 
of interest were varied. PDP enable users to characterize feature importance, linearity, interactions, 
and potential biases of input features and enhancing transparency as well as understanding of model 
behavior. These three interpretability methods provide insights into the model’s decision-making 
process and impact of different input features on the predictions. 

5. Results 

We utilized a standardized approach to evaluate 
the classification performance. We used the 
Random Forest ML model with the highest 
accuracy values of 0.88 and 0.70 for binary and 
multiclass classification, respectively for 
implementation of the ML interpretability 
methods. We applied interpretability methods to 
identify important features in classifying seizure 
and non-seizure using homology classes in 
multiple dimensions. By identifying important 
homology classes per dimension, the 
interpretability method provides insights into 
which features of the data are most relevant for 
distinguishing between seizure and non-seizure 
states. For multiclass classification, interpretability 
methods help understand the mechanism of how 
the model is identifying different stages of seizure 
propagation. This helps to understand which 
dimension of homology classes the model uses to 
differentiate between different stages of seizures. 

5.1. Interpretability results for binary classification task   
We first applied interpretability methods to ascertain the contribution of homology classes and their 
lifespans to the classification of seizure and non-seizure states in a Random Forest model. We show 
that the lifespan of homology classes in dimension 0, representing the filtration (strength of 
correlation) at which an electrode becomes involved in any sort of connection (pairwise or 
multidimensional), are consistently the most distinguishing features in seizure or non-seizure 

Machine 
learning 

algorithms 

Binary 
Classification 
(Seizure and 
non-seizure 

states) 

Multiclass 
classification 

(States of 
seizure 

progressions) 

Support 
Vector 
Machine 

0.78(0.76-0.80) 0.62(0.58-
0.64) 

Deep Neural 
Network 

0.80(0.78-0.82) 0.60(0.57-
0.63) 

Random 
Forest 

0.88 (0.86-
0.89) 

0.70(0.67-
0.73) 

Table 1: Mean accuracy values of binary and 
multiclass classification across all three 
algorithms for the complete study cohort (95% 
Confidence interval) 
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classification in single patient analyses or across all patients (Figure 2). We also show that there is 
some importance of the dimension 1 homology class lifespans in both SHAP and PFI methods.  

A homology class in dimension 1 is the boundary of a collection of 1-simplices (pairwise 
connections) that form a closed path (such as a loop or a cycle). for each dimension 1 homology 

class, there is a set of electrodes for which there is a continuous and closed path of pairwise 
interaction; however, at least one pair of electrodes in the interacting set does not directly interact. 
The lifespan of a dimension 1 homology class thus represents how much more interaction is needed 
for an existing path of pairwise interactions to interact with other electrodes. Our results indicate 
that the lifespans of these lower-dimensional interactions are the most influential in classifying 
seizure and non-seizure states in both feature importance methods, SHAP and PFI. 

To identify the impact of different homology classes on the classification of seizure and non-
seizure events in EEG samples, we selected the first one-second epoch from seizure and non-seizure 
periods from a randomly selected patient and visualized them using a SHAP decision plot (Figure 
3). In this plot, homology classes are labeled with their dimension and their order in the lifespan list 
(homology class 1 (HC1), HC2, etc.), and are organized in decending order of their importance as 
determined by their SHAP values. The features depicted in Figure 3 are arranged in a descending 
sequence based on the feature importance scores calculated by the SHAP methodology. SHAP 
values show the difference between the expected and the actual outputs of a machine learning 
algorithm. Consequently, the decision plots for both patients begin at the base of the y-axis, 
corresponding to the shown result determined by the machine learning algorithm. In the subsequent 
process, the SHAP value associated with each feature is cumulatively added to this expected value, 
culminating in the final classification output produced by the machine learning algorithm.  
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Figure 2: Feature importance scores for homology classes along each dimension calculated using SHAP 
and PFI (to space constraints, we present only 10 patients results) 
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The findings illustrated in Figure 3 
highlight that a significant number of 
homology classes in dimension 0 play a 
crucial role in accurately classifying seizure 
and non-seizure events. This further 
emphasizes the importance of lower 
dimensional homology classes and their 
lifespans in characterizing seizure and non-
seizure states. Through Figure 3, we are able 
to identify several dimension 0 homology 
classes which are most influential in 
classifying seizure and non-seizure states, 
such as homology class 15, 16, and 17 
(identifiers generated by the GUDHI tool). 
The importance of the difference in lifespan 
values for these homology classes can be seen 
further when looking at persistence diagrams 
of each of the corresponding one-second 
epochs (Figure 4).  For example, using the 
same epochs as selected for SHAP decision 
plot visualization, we suggest that asleep non-
seizure periods might be classified by 
recognizing higher lifespans for homology 
classes 15, 16, and 17 compared to seizure 
onset; however, awake non-seizure periods 
might be characterized by much lower 
lifespans for homology classes 15, 16, and 
17 (identifiers generated by the GUDHI 
tool).   

In addition to feature importance score, 
we also applied PDP to our random forest 
model.  PDP illustrates the functional 
relationship between homology classes, 
dimensions, and seizure probability. While 
SHAP identified dimension 0 homology 
classes to be the most essential for 
classification, PDP reveals some 
relationships in higher dimensions to have 
significant impact on seizure classification 
(Figure 5). Our results show that dimension 
0 homology class 0, dimension 1 homology 

Figure 4: Scatter plots of three most distinguishing 
homology classes for a patient (persistence 
diagrams) corresponding to asleep, awake, seizure 
one onset, and seizure two onset states. Homology 
classes marked by colors red, green, and purple in 
dimension 0  were the most influential features. 

Figure 3: A decision plot visualization of SHAP 
feature importance score computed for different 
homology classes across different dimensions. 

Non-
seizure Seizure 
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class 1, and dimension 5 homology class 0 
have a linear effect on seizure probability, 
with increasing dimensions and classes 
lifespan values corresponding to higher 
probabilities. However, dimension 2 
homology class 2, dimension 3 homology 
class 1, and the maximum dimension 
exhibit nonlinear effects. The relationship 
between these features and seizure 
probability does not follow a linear trend, 
but rather shows fluctuations at specific 
threshold values. In Figure 5, we observe 
an initial increase in seizure probability as 
the lifespan value of dimension 2 
homology class 0 reaches 0.03, followed 
by a substantial decrease beyond this 
threshold. These findings emphasize the 
importance of considering both dimension 
and homology class in analyzing EEG 
recordings and highlight the complex 
nature of their relationship.  

5.2. Interpretability results for multiclass 
classification task 

In order to interpret the random forest 
algorithm results for our multiclass classification of seizure periods, we computed feature 
importance score using SHAP and PFI (Figure 6) to demonstrate the feature importance scores of 
homology classes in each dimension. Similar to binary classification results, our multiclass 
classification results reveal that lifespans of homology classes in dimension 0 (representing the 
lowest filtration at which an electrode interacts with any other electrodes) make significant 
contributions to classification of the seizure periods in both SHAP and PFI interpretability 
methods. 

Figure 6: Feature importance scores calculated using SHAP and permutation methods for multiclass 
classification with RF algorithm. 
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Figure 5: The partial dependence plot (PDP) for five 
homology classes with highest feature importance 
scores together with partial dependency score of the 
number of dimensions. 
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5. Discussion and Conclusions 

The results of the study demonstrate that ML interpretability methods can effectively identify brain 
network connections involved in seizure events. This study provides new avenues for understanding 
complex brain network dynamics in epilepsy and other disorders, highlighting the potential of ML 
interpretability methods to provide insights into neurological disorders and brain network dynamics. 
The lifespan of homology classes in dimension 0 emerged as a consistently distinguishing feature 
in seizure and non-seizure classification. The importance of dimension 0 homology classes is further 
confirmed through SHAP decision plots, which underscore their role in accurately classifying 
seizure and non-seizure events. The life span of lower dimensional homology classes was, hence, 
the most influential in this classification. For the multiclass classification task, the feature 
importance score analysis again emphasizes the vital contribution of lifespans of dimension 0 
homology classes. This study demonstrates the utility of ML interpretability methods such as SHAP 
and PFI to identify the significant features has been underscored. Our findings emphasize the 
importance of continued research into the integration of ML algorithms and interpretability methods 
in medical disciplines, enabling more accurate and personalized diagnosis and treatment options for 
patients. This study also contributes to the growing body of knowledge regarding the use of ML in 
medical applications, providing new avenues for understanding complex brain network dynamics 
in epilepsy and other disorders.  
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