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Abstract  

Introduction: Intracerebral hemorrhage (ICH) is the second most common cause of stroke and 

remains the second leading cause of disability impacting underserved areas. Since 2015, there 

has been a paradigm shift in managing ischemic stroke through applying AI and ML. However, 

ICH patients lack such protocol. 

 

Objective: To create a rapid, cloud-based, and deployable ML method to detect ICH potentially 

across the Mayo Clinic enterprise then expand to involve underserved areas.  

 

Methods: We utilized RSNA dataset for ICH. We made four total iterations using Google Cloud 

Vertex AutoML. We trained an AutoML model with 2,000 images followed by 6,000 images 

from both ICH positive and negative classes. Pixel values were measured by the Hounsfield units 

presenting a width of 80 Hounsfield and a level of 40 Hounsfield as the bone window. This was 

followed by a more detailed image preprocessing approach by combining the pixel values from 

each of the brain, subdural, and soft tissue window-based grayscale images into 

R(red)G(green)B(blue)-channel images to boost the binary ICH classification performance. Four 

experiments with AutoML were applied to study the impacts of training sample size and image 

preprocessing on model performance.  

 

Results: Out of the four AutoML experiments, the best-performing model achieved a 95.8% 

average precision, 91.4% precision, and 91.4% recall. Based on this analysis, our binary ICH 

classifier HEADS UP is both accurate and performant.  
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Conclusion:  HEADS UP, is a rapid, cloud-based, deployable ML method to detect ICH. This 

tool can help expedite the care of patients with ICH in resource-limited hospitals.  
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Introduction  

Strokes are the second most common cause of death and disability globally 1. Despite the 

ischemic subtype being more prevalent (80-85%), the intracerebral hemorrhage (ICH) subtype is 

considered deadlier and more disabling. ICH carries an average mortality rate of 40% by 30 days 

2 and can reach up to 60% in one year 3. Increasing age, female gender, rurality, and history of 

chronic illnesses are risk factors for increased ICH mortality 4. 

 

Primary ICH can be caused by hypertension, atherosclerosis, or amyloid angiopathies. To 

a lesser extent, ruptured aneurysms, bleeding tumors, vascular malformations, coagulopathies, 

and previous thrombolysis can cause secondary ICH 5. Patients develop a myriad of short and 

long-term complications ranging from re-bleeding, expansion, vasospasm, seizures, cognitive 

decline, and multi-systemic neurological injuries inflicted on the myocardium and lungs 5. 

 

Early detection directing timely intervention is paramount and crucial in determining 

outcome 6. Regrettably, while medical history can be the first guide towards unraveling the 

etiology of strokes 7, sole clinical examination lacks a particular role in distinguishing ischemic 

from hemorrhagic strokes as the presenting symptoms can be somewhat similar. Hence, non-

contrast head CT scans (NCCT) remain the gold standard differentiation method 5, 8-11. 

 

Machine learning (ML) utilizes unique models such as feedforward artificial neural 

networks (ffANNs), Random forest (RF), support vector machine (SVM), logistic regression 

(LR), Stacked Convolutional Denoising Auto-encoders, Principal Component Analysis (PCA), 

and Multi-layer Perceptron (MLP). The aforesaid feedforward artificial neural networks 
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(ffANNs) is the most utilized to predict case-specific outcomes competing with the decisions 

made by clinicians 12-14. 

 

Since 2018, there has been a paradigmatic change in the management of ischemic strokes 

through the implementation of Artificial Intelligence (AI) and ML methods in processing NCCT 

and CT perfusion scans to predict large vessel occlusion (LVO) in the prehospital setting, 

improve precise detection of clots, decrease latency until intervention, improve reperfusion and 

predict clinical outcomes 15-20.  

 

ICH patients lack such a predictive model in a streamlined system to improve the acute 

stroke systems of care, earlier detection, and outcome. There is an unfulfilled need to create an 

earlier ICH detection method that accelerates interventions. Hemorrhage Evaluation And 

Detector System for Underserved Populations (HEADS UP) is a high-precision, rapid, and 

cloud-based deployable model created using Google Cloud VertexAI AutoML to detect ICH 

remotely. Hence, HEADS UP can detect ICH in a time-efficient manner, makes the most of our 

health system, and improves outcomes. We aim to implement HEADS UP across the Mayo 

Clinic enterprise and expand to involve underserved areas.  

 

The main novelty in HEADS UP is based on the incorporated joint efforts between ML 

scientists, neurologists, and neurosurgeons to generate a deployable and high-precision model 

within two weeks and individualize towards patient care, future discovery, and translation of 

sciences.  
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Materials and methods  

Dataset  

We aim to develop a binary image classifier to identify positive ICH cases in two-

dimensional NCCT images. We downloaded the original dataset from the Radiological Society 

of North America (RSNA) intracranial hemorrhage database 21. The images in the dataset were 

categorized into seven annotation groups representing the five known intracranial hemorrhage 

subtypes (intraparenchymal, subarachnoid, subdural, intraventricular, and epidural), along with 

another two groups that include any type of hemorrhage, and none hemorrhage 21. Totally, we 

attained 752,803 labeled images (Table 1).  

 

Data Pre-Processing  

After excluding duplicates, we pooled the images from the six hemorrhage subtypes as a 

single ICH positive class and images from the non-hemorrhage group as the ICH negative class 

to apply a binary image classifier and detect ICH cases when present. Two thousand randomly 

selected images were used for model development and testing as one thousand images from each 

ICH positive and negative class. To better understand the impact of training sample size  

on model performance, we created another dataset using the same method but with 6,000 images, 

including 3,000 images from each ICH positive and negative class.  

 

Original image data from the RSNA hemorrhage dataset was saved as Digital Imaging 

and Communications in Medicine (DICOM) standard format 22. Since the VertexAI AutoML did 

not directly support the DICOM format, the raw image pixel arrays were extracted from the 

DICOM files and were saved as PNG formats.  
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We further arranged each image into brain, subdural, and soft tissue windows with 

different Hounsfield units. The difference in the Hounsfield units enhanced further 

differentiation between ICH and non-ICH cases. An additional approach combined the pixel 

values from each of the brain, subdural, and soft tissue window gray-scale images into three-

channeled R(red)G(green)B(blue) images.  

 

To be more precise, each of the original PNG format pixel arrays was filtered into brain, 

subdural, and soft tissue windows based on their unique window width and level values in 

Hounsfield units. The brain window has a width value of 80 Hounsfield units and a level value of 

40 Hounsfield units. The subdural window has a width value between 130 and 300 Hounsfield 

units and a level value between 50 and 100 Hounsfield units. The soft tissue window has a width 

value of 250 to 400 Hounsfield units and a level value of 50 Hounsfield units 23,24. Then, the 512 

x 512-dimensional pixel arrays of the brain, subdural, and soft tissue window gray-scale images 

were placed into the red, green, and blue channels to form the RGB images.  

 

The final combined three-channeled RGB images were used to train AutoML-based 

binary ICH classifiers. The images with the corresponding labels were randomly split into 90% 

for model development and 10% for model testing and applied to each patient level. 

 

Model Training and Testing 
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Images within the model development sets were used to optimize model predictions 

during the training phase. However, images in the testing set were used to evaluate the 

performance of the developed model. 

 

We applied the XRAI method, the latest approach for AI model interpretation. XRAI 

utilizes region-based image attribution to determine regions from the inference images with the 

highest predictions for binary ICH classes 25. Further, XRAI combines the integrated gradients 

method with additional steps to determine regions with the highest contributions for class 

prediction. The implementation of this study was programmed in Python (Python 3.11), and the 

data pre-processing source code is publicly available at  https://github.com/quincy-125/MG-

HEADSUP.  

 

Four experiments were executed to fully understand the impacts of training sample size 

and data pre-processing on AutoML-based binary ICH classification performance 

(Supplementary Table 1). We started by increasing the training sample size from 2,000 to 

6,000. We further trained the binary ICH classifier on gray-scale images with pixel values 

filtered by the Hounsfield unit range corresponding to the brain window. This was followed by 

training the binary ICH classifier on the combined three-channeled RGB images.  

 

The first experiment was training the AutoML model on 2,000 gray-scale brain window 

images (E1). The following three experiments used the combined three-channeled RGB images 

to train the binary ICH classifier. The second experiment (E2) assigned equal weight to every 

pixel from the red, green, and blue channels. The resulting pixel values from the combined three-
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channeled RGB images were saved as floating numbers with 64 bits (float64). The third 

experiment (E3) is similar, but the resulting pixel values from the combined three-channeled 

RGB image were saved in the format as integers with eight bits (uint8).  

 

The last experiment (E4) performed best by duplicating the pixels from each brain, 

subdural, and soft tissue window gray-scale image to generate window-based combined RGB 

images with heavily-weighted red channel pixel values. We further combined each of the three 

window-based RGB images and produced the final combined equally-weighted RGB image with 

each pixel value saved in the float64 format (Figure 1). 

 
 
Results  
 

Precision and recall values were reported for each of the four experiments discussed in 

the Model Training and Testing Section with a threshold value of 0.5. In addition,  

average precision (the area under the precision-recall curve) was considered as a measurement of 

our models' performance. All of the reported statistical metrics regarding each of the four 

experiments are listed in Table 2. 

 

Discussion  

ICH is a medical emergency that requires vigorous intervention, particularly with 

hemorrhage in deep structures such as the basal ganglia, pons, or cerebellum. Elderly patients are 

more prone to amyloid angiopathy, causing lobar hemorrhages 26. Despite the etiologies, the use 

of anticoagulants, especially if combined with the aforementioned, potentiates the risk of 

expansion and rebleeding with a 0.6% risk or less per year 27, 28. 
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Headache as a presenting sign is followed by loss of function that can be seen in both 

ischemic and hemorrhagic strokes, despite being more common in the latter. Hematoma 

expansion within the confined intracranial space drastically increases the intracranial pressure 

(ICP), jeopardizing blood flow and culminating in herniation. This mass effect is reflexively 

accommodated by the increase in mean arterial pressure (MAP) to overcome the increased ICP 

and ensure cerebral perfusion. However, Increased MAP can contribute to hematoma expansion, 

and it may ultimately fail to ensure perfusion due to an exponential increase in ICP with 

worsening hemorrhage. Hence, urgent interventions to decrease ICP and expansion of the 

hematoma, such as mannitol or hypertonic saline infusion, raising the head of the bed, and 

optimal blood pressure control, are mandated to prevent further herniation, loss of function, and 

death 5, 27, 28. 

 

Cerebral edema is a fatal complication that may last for weeks. It begins with a clot 

contraction phase in the first few hours with mottled appearance on NCCT scans. Upon further 

coagulation, it peaks in the next 48 hours with hyperdensity. As ICH is resorbed, NCCT scans 

will show the hypodensity of the lesion. However, continuous expansion may render secondary 

involvement of the ventricles, a potentially fatal complication with a high 30-day mortality rate 

of 40% that may result from hydrocephalus unless diagnosed early and intervened timely 5, 29, 31. 

 

ICH causes the highest stroke mortality rates in rural areas and underserved populations. 

This can be attributed to limited health education, primary prevention, and access to healthcare. 

However, the need for early detection due to absent transportation methods, imaging facilities, or 
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healthcare professionals capable of interpreting the imaging results is still the most profound 

factor affecting management and outcome 31-37. While modifiable risk factors remain a focus of 

interest, providing a streamlined approach to expedite ICH diagnosis followed by guided 

management in the acute phase is critical to improve outcomes.   

 

Given the rising era of AI and ML in various medical fields and the application of ML in 

diagnosing ischemic strokes and predicting LVO, we perceive similar roles in processing NCCT 

scans and diagnosing ICH. These roles improved accuracy, time latency, and outcome. Davis et 

al. incorporated an ML algorithm, “Aidoc,” based on a convolutional neural network (CNN) to 

detect ICH on the NCCT scans. They reported reduced turnaround time to detect hemorrhage 

during the acute phase, while no change in the length of emergency department stay compared to 

non-ICH patients 38. Arbabshirani et al. aimed to develop a model capable of detecting ICH 

through large numbers of head NCCT scans and predict the reduction in time taken for 

interpretation. They reported decreased latency for interpretation by 96% and the ability to 

identify missed hemorrhage by radiologists 39. Further, Lyu et al. used logistic regression 

analysis of NCCT scans for 238 patients to report a diagnostic accuracy that surpasses 

radiologists when differentiating between primary and secondary ICH. They also reported that 

lobar hemorrhages in females could be correlated with secondary ICH, while hypertension will 

most likely cause primary ICH in all patients 40.  

 

We created HEADS UP using Google Cloud VertexAI AutoML, which automatically 

identifies the most appropriate models to maximize the binary ICH classification performance. It 

is a rapid, cloud-based, and deployable ML method to detect ICH. The co-author (WDF) used 
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BARD, a conversational generative artificial intelligence chatbot developed by Google, to 

generate the acronym HEADS UP. Hence, drawing attention to the currently limited care in 

underserved areas around the globe regarding ICH, a debilitating disease requiring timely 

intervention and efficient management (Figure 3).  

 

Out of the four experiments conducted through our AutoML model, experiment E4 was 

conducted on 6,000 combined RGB images and achieved the highest values regarding average 

precision (95.80%), optimal precision (91.40%), and recall (91.40%). This emphasizes the 

significance of levitating the capability of AutoML in detecting ICH-positive cases from NCCT 

images. In addition, experiment E4 outperformed the remaining three experiments with a 4.30%, 

0.60%, and 0.60% boost in average precision. This suggests that increasing the training sample 

size with appropriate image preprocessing could boost the performance of binary ICH 

classification.  

 

However, given the ability of XRAI to interpret AutoML predictions, we believe that the 

annotations provided by the RSNA dataset were not entirely accurate. For instance, in Figure 2, 

one of the testing results using XRAI in E3 considered the available image extracted from the 

RSNA dataset as ICH negative. At the same time, our AutoML model predicted it as ICH 

positive and labeled it with a yellow polygon. This was consistent with a subsequent evaluation 

by a senior neurosurgeon in our department, who used the red polygon shown in Figure 1 to 

highlight the same lesion. Further, this red polygon contained the yellow polygon that was 

already highlighted by the XRAI and was confirmed as a true positive ICH lesion. We believe 

this false positive prediction is due to the incorrect labeling in the RSNA dataset.  
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The incorrect labels from the RSNA dataset could be the reasons preventing our AutoML 

model from achieving higher performance metrics. Hence, training an AutoML model with more 

accurate labels may boost performance. Further, a thorough evaluation is highly recommended 

for the models pre-trained on the RSNA dataset before clinical implementation. 

 

To our knowledge, this is the first binary ICH classifier that utilized XRAI for model 

interpretation. XRAI in Google VertexAI AutoML is considered a low-code software 

development approach, ensuring better team communication despite different backgrounds. 

Hence, we were able to develop HEADS UP within two weeks.  

 

Wang et al. reported a similar binary ICH classifier that utilized class activation mapping 

(CAM) 41 to find the regions contributing to predicting the classification model. They directly 

used 674,258 two-dimension scans for model development and generated a 95.8% recall from a 

completely different test set than ours 42. In comparison, we started applying our model to a 

small sample size and expanded in size to understand the correlation between sample size and 

performance more thoroughly. Further, as described previously, we applied XRAI interpretation 

and manual qualitative evaluation by an expert neurosurgeon. Hence, we concluded that the 

labels provided in the original RSNA hemorrhage dataset lack complete accuracy. We believe 

such mislabeling could cause a significant risk of misleading model predictions, especially when 

directly deploying models trained on the RSNA dataset clinically without a thorough clinical 

evaluation. Further, we did four experiments (Figure 1) that elevated performance metrics with a 
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more complicated image preprocessing, while Wang et al. carried an image preprocessing similar 

to our E2 and E3 experiments.     

 

Through HEADS UP, we aim to establish independence from third-party vendors by 

relying on internal expertise and talents, staying ahead of developing technologies, and 

developing a self-sufficient system to replace external offers. While planning this gradual 

transition, it is critical to ensure compatibility with general medical knowledge as we gain 

experience. We further aim to maintain medical evaluation on a case-to-case basis, decreasing 

our dependency. Hence, top-quality services can be provided directly to underserved areas in 

need. 

 

Conclusion  

Hemorrhage Evaluation and Detector System for Underserved Populations, HEADS UP, 

is a rapid, cloud-based, and deployable ML method to detect ICH. We are considering 

implementing this system across the Mayo Clinic enterprise and expanding to involve 

underserved areas to help patients and their clinical teams while creating scientific and 

intellectual independence from third-party vendors. Utilizing Google VertexAI AutoML 

catalyzed the communication between our team members to generate the Heads UP model 

within two weeks.  
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Table 

Table 1. Summary of RSNA Intracranial Hemorrhage Dataset Information.  

RSNA ICH Dataset Category Number of Images 

Intraparenchymal 36,118 

Subarachnoid 35,675 

Subdural 47,166 

Intraventricular 26,205 

Epidural 3,145 

Any Hemorrhage 107,933 

None-Hemorrhage 644,870 

Total 752,803 

 

Table 2. Inference results for each of the four experiments. 

Experiment Index Recall 
(Threshold=0.5) 

Precision 
(Threshold=0.5) 

Average Precision 

E1 88.90% 88.90% 91.50% 

E2 90.00% 90.00% 95.20% 

E3 90.00% 90.00% 95.20% 

E4 91.40% 91.40% 95.80% 
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Figure 

Figure 1. Diagram of the entire dataset preparation, image pre-processing, model training and 
inference pipeline. A). Dataset preparation including downloading original DICOM format files 
from the RSNA dataset, and converting DICOM format image into PNG format; B). Image pre-
processing for AutoML training and inference pipeline, which corresponds to the experiment 
indexed as E1 in Supplementary Table 1; C). Image pre-processing for AutoML training and 
inference pipeline, which corresponds to the experiment indexed as E2 in Supplementary Table 
1; D). Image pre-processing for AutoML training and inference pipeline, which corresponds to 
the experiment indexed as E3 in Supplementary Table 1; E). Image pre-processing for AutoML 
training and inference pipeline, which corresponds to the experiment indexed as E4 in 
Supplementary Table 1. 
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Figure 2. VertexAI AutoML inference results from the experiment E3. A). One false positive 
prediction inference example derived from experiment E3 with the XRAI interpretation results. 
The red polygon was the annotation provided by a senior neurosurgeon at the Mayo Clinic with 
the true ICH positive lesion. The yellow polygon was highlighted by the XRAI corresponding to 
the false positive prediction from the VertexAI AutoML model.  
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Figure 3: Courtesy of Co-Author WDF, describes the role of HEADS UP to detect ICH in the 
underserved areas and expedite efficient and timely intervention.   
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Appendix A. Supplementary Table 

Supplementary Table 1. Details of  the four executed training experiments along with the  
corresponding training sample size and data pre-processing approaches.. 

Experiment Index Training Sample Size Image Pre-Processing 
Approach 

E1 2,000 Grayscale Brain Window 
Image 

E2 2,000 Combined RGB-Channel 
Image with Equal Weighted 

RGB Channel Pixel Values in 
Float64 

E3 2,000 Combined RGB-Channel 
Image with Equal Weighted 

RGB Channel Pixel Values in 
Uint8  

E4 6,000 Combined RGB-Channel 
Image Resulting from Each of 

the Three Window-based 
RGB images with a Higher 

Weighted Red Channel Pixel 
Values in Float64 
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