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Background: Type 2 Diabetes (T2D) is a pervasive chronic disease influenced by a complex interplay of 

environmental and genetic factors. To enhance T2D risk prediction, leveraging genetic information is 

essential, with polygenic risk scores (PRS) offering a promising tool for assessing individual genetic risk. 

Our study focuses on the comparison between multi-trait and single-trait PRS models and demonstrates 

how the incorporation of multi-trait PRS into risk prediction models can significantly augment T2D risk 

assessment accuracy and effectiveness. 

Methods: We conducted genome-wide association studies (GWAS) on 12 distinct T2D-related traits 

within a cohort of 14,278 individuals, all sequenced under the Qatar Genome Programme (QGP). This in-

depth genetic analysis yielded several novel genetic variants associated with T2D, which served as the 

foundation for constructing multiple weighted PRS models. To assess the cumulative risk from these 

predictors, we applied machine learning (ML) techniques, which allowed for a thorough risk assessment. 

Results: Our research identified genetic variations tied to T2D risk and facilitated the construction of ML 

models integrating PRS predictors for an exhaustive risk evaluation. The top-performing ML model 

demonstrated a robust performance with an accuracy of 0.8549, AUC of 0.92, AUC-PR of 0.8522, and an 

F1 score of 0.757, reflecting its strong capacity to differentiate cases from controls. We are currently 

working on acquiring independent T2D cohorts to validate the efficacy of our final model. 

Conclusion: Our research underscores the potential of PRS models in identifying individuals within the 

population who are at elevated risk of developing T2D and its associated complications. The use of multi-

trait PRS and ML models for risk prediction could inform early interventions, potentially identifying T2D 

patients who stand to benefit most based on their individual genetic risk profile. This combined approach 

signifies a stride forward in the field of precision medicine, potentially enhancing T2D risk prediction, 

prevention, and management. 

 

 

 

INTRODUCTION 
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Type 2 Diabetes (T2D) is a global public health challenge due to its rapidly rising prevalence and 

related complications (Zimmet et al. 2014; El-Kebbi et al. 2021). There are many factors contributing to 

the incidence of T2D within the population, including lifestyle choices (Tuomilehto et al. 2001; Hu 2011), 

diet (Ley et al. 2014; Schwingshackl et al. 2017) and their interplay with genetic and epigenetic elements 

(Drong et al. 2012), demonstrating a critical role in the disease development (Upadhyay et al. 2018). The 

polygenic nature of T2D has been well-established, indicating that the disease is influenced by multiple 

genetic variants, each with a small effect size (Voight et al. 2010; Mahajan et al. 2018). Genome-wide 

association studies (GWAS) have played a significant role in unraveling the genetic architecture of T2D. 

These studies involve scanning the entire genome of individuals to identify common genetic variants 

associated with the disease (e.g., (Voight et al. 2010). Through GWAS, many single nucleotide 

polymorphisms (SNPs) that are significantly associated with T2D risk have been identified. These genetic 

variants are often located in or near genes involved in critical biological pathways related to insulin 

secretion, insulin resistance, and β-cell function (Mahajan et al., 2018; Voight et al., 2010). 

Polygenic Risk Scores (PRS) are becoming increasingly relevant in the field of genomic medicine 

(Kumuthini et al. 2022). They summarize an individual's risk for a particular disease based on their 

genome-wide genotype data and have been deployed with varying degrees of success for predicting the 

risk of numerous complex diseases, including type T2D (Torkamani et al. 2018; Khera et al. 2018). For 

instance, PRS has shown the ability to identify individuals with a three-fold increased risk for coronary 

artery disease and T2D (Khera et al. 2018). The construction of a multi-trait PRS for T2D demonstrated 

that this approach explained 18% of T2D heritability and outperformed the single-trait PRS (Mahajan et 

al. 2018). However, a considerable limitation of these studies lies in the predominance of populations of 

European descent in the datasets used to calculate PRS. Hence, the applicability of these scores to 

populations with diverse genetic architectures, such as those in the Middle East and North Africa (MENA) 

region, is questionable (Duncan et al., 2019; Martin et al., 2019). 

There exists a significant gap in the literature regarding the application of risk models, including 

PRS, in MENA populations. The prevalence of T2D in these populations is alarmingly high, exceeding 12.2% 

in adults (El-Kebbi et al. 2021). This highlights the urgent need to develop population-specific risk 

prediction models that consider the unique genetic architecture of these populations. In particular, Qatar 

exhibits one of the highest global rates of T2D, with a prevalence of 22% (O’Beirne et al. 2016). The 
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country is predominantly composed of three genetic subpopulations: Bedouin, Persian-South Asian, and 

African (Rodriguez-Flores et al. 2016; Hunter-Zinck et al. 2010). Qatar provides a compelling rationale for 

developing population-specific risk prediction models, particularly for T2D, as the limited contribution of 

European/Asian T2D SNPs to the high T2D prevalence in Qatar implies distinct genetic risks compared to 

Europeans and Asians (O’Beirne et al. 2016). This genetic diversity, coupled with the country's rapid 

economic growth and lifestyle transitions, likely contributes to the heightened prevalence of T2D in Qatar. 

To bridge this gap and address the specific challenges posed by the unique genomic landscape of 

Qatar, machine learning (ML) techniques, particularly ensemble learning, have emerged as a promising 

approach (Chen and Asch 2017). Artificial intelligence and ML algorithms have been integrated into data 

mining pipelines to develop predictive models for T2D complications, achieving an accuracy of up to 83.8% 

(Dagliati et al. 2018). Additionally, an improved feature space-based gradient boosting regression tree 

ensemble approach demonstrated an accuracy of 82.49% and better generalization ability compared to 

single models and other ensemble learning models, contributing to improved risk prediction of T2D 

complications (Wang et al., 2023). In addition, a novel algorithm utilizing an Entropy-based technique, 

ResNet architecture, and Support Vector Machine (SVM) achieved an accuracy rate of 99.09% in 

identifying T2D risk variants from spectrum images (Das 2022). Ensemble learning techniques combine 

multiple learning algorithms to achieve optimal predictive performance (Zhou 2012). These techniques 

have demonstrated a promising impact across various disease contexts, including T2D, improving disease 

prediction and outcome prognosis (Maniruzzaman et al. 2018). Therefore, these approaches could offer 

a robust method for multi-trait PRS development, accounting for the complex trait correlations in disease 

prediction models (Kotsiantis et al. 2006). 

The (QGP), an ambitious initiative that aims to sequence the genomes of all Qatari citizens, 

provides an unprecedented resource for studying genetic factors contributing to T2D and other diseases 

within the context of a Middle Eastern population (Fakhro et al. 2016). By leveraging the wealth of 

genomic data from the QGP and considering the unique genomic landscape of Qatar, our study aims to 

utilize the power of ensemble learning to construct a classifier that integrates multi-trait PRS (Hunter-

Zinck et al. 2010; O’Beirne et al. 2016). Utilizing the comprehensive genomic data from the Qatar Biobank 

cohort (QBB) and targeting the genomic variants linked to T2D, we aim to enhance T2D risk stratification 

in this unique population. The successful application and validation of the ensembl learning classifier in 
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the context of this study will substantially improve T2D risk stratification. This endeavor has the potential 

to improve T2D risk prediction not only in Qatar but also in other similar populations within the MENA 

region. Subsequently, this could inform the development of effective preventative measures and enable 

the provision of targeted treatments, consequently improving health outcomes in this high-risk 

population. 

 

METHODS 
 

Cohort Description 

This study was conducted on the latest release of the QBB (Al Thani et al. 2019) comprising more than 

14k subjects, who were comprehensively phenotyped at QBB and their whole genomes sequenced 

through (QGP)(Mbarek et al. 2022). The QBB is a thorough longitudinal cohort study that focuses on a 

population sample of permanent inhabitants of Qatar. This sample comprises Qataris, Arabs from other 

Arab countries, and non-Arab residents with regular follow-up assessments conducted at five-year 

intervals. The QBB further includes sociodemographic information, clinical and behavioral phenotypic 

data, biological samples (such as blood, urine, saliva, DNA, RNA, viable cells, and others), clinical 

biomarkers, and Omics data (including genomics, transcriptomics, proteomics, metabolomics, and more) 

(Al Thani et al. 2019). 

 

Qatar Biobank Sample Collection 

QBB collected both physical and clinical measurements, along with various biological samples. These 

biological samples consisted of approximately 60 ml of blood, 5 ml of saliva, and 10 ml of urine. 

Participants were instructed to fast for 8 hours before their visit, although due to different visit shifts, 

most of the samples were spot specimens. The blood samples were subjected to analysis in order to assess 

66 different biomarkers associated with disease risk factors. The hematology and blood chemistry 

biomarkers were analyzed specifically at the laboratories of Hamad General Hospital. The blood samples 

collected using EDTA tubes were centrifuged to separate them into plasma, buffy coat (leukocytes), and 

erythrocytes. After collection, all the samples were aliquoted and stored in three different locations (Al 

Thani et al. 2019). 
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Whole Genome Sequencing and Processing 

At the Sidra Clinical Genomics Laboratory Sequencing Facility, the library construction and sequencing 

processes were carried out. After extracting genomic DNA (gDNA), the integrity of the samples was 

assessed using the gDNA assay on the Perkin Elmer Caliper Labchip GXII. The concentration of the DNA 

was measured using the Invitrogen Quant-iT dsDNA Assay on the FlexStation 3. For library construction, 

approximately 150 ng of DNA was utilized with the Illumina TruSeq DNA Nano kit. Each library was indexed 

using the Illumina TruSeq Single Indexes. The quality and concentration of the libraries were evaluated 

using the DNA 1k assay on a Perkin Elmer GX2. Quantification of the libraries was performed using the 

KAPA HiFi Library quantification kit on a Roche LightCycler 480 (Mbarek et al. 2022).  

Phenotype Data Processing 

The phenotype data in the form of lab results and measurement data as well as accompanied subject and 

nurse questionnaire were obtained from QBB. As a first step, the data files obtained were merged to 

produce a single data frame to be queried for relevant phenotypes and integration with genotype data. 

We identified a set of 11 phenotypes as clinical risk factors for type 2 diabetes. These were BMI, waist-to-

hip ratio (WHR), c-peptide, insulin, glucose, HbA1c, high-density lipoprotein cholesterol (HDL), low-density 

lipoprotein cholesterol (LDL), total testosterone, thyroid stimulating hormone (TSH) and triglycerides 

(TGL). The distribution of the raw phenotypes was non-normal and missing data was observed for all 

eleven traits. The phenotypic data was imputed using the R mice package (van Buuren and Groothuis-

Oudshoorn 2011), which offers a variety of imputation approaches for multivariate data, to impute the 

missing data. It can impute mixtures of two-level, continuous, binary, ordered, and unordered categorical 

data. The mice function returns “m” imputed datasets after computing multiple imputations using 

chained equations on an incomplete dataset. We used 250 number of multiple imputations (m) and 

aggregated all the completed datasets returned by the function using the mean of the imputations to get 

a simple imputation. Finally, the rank-based Inverse Normal Transformation (INT) was applied on all 

quantitative phenotypes to obtain properly normalized distributions. 

 

Genotype Data Processing and Quality Control 
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Multiple quality control steps were performed using plink (Purcell et al. 2007) to identify a set of reliable 

markers and subjects to be used for final association testing. We started with ~129 million short variants 

in 14669 individuals and after filtering for SNPs with greater than 10% missing per marker (plink --geno), 

we retained 124 million markers. We extracted autosomal SNPs and removed variants with low minor 

allele frequencies (MAF; (plink --maf 0.05 filter), these filters resulted in a net of 6,609,963 SNPs. Finally, 

Hardy-Weinberg equilibrium (HWE) check was also performed for both case and control subjects 

separately by applying two different stringency levels. We used an HWE cut-off of 1e-06 for controls while 

for cases a cut-off of 1e-10 was used. This resulted in a final set of 5,069,660 SNPs that were considered 

for the association analysis. 

 

On subject level checks, we performed missingness per individual (plink --mind), followed by sex check as 

a quality control measure to identify any individuals with discrepancy between the reported gender and 

the expected gender as based on the X-chromosome heterozygosity/homozygosity rates. This helps to 

identify any sample mix-ups. Males should have an X chromosome homozygosity estimate >0.8 and 

females should have a value <0.2. Using this approach, we identified only few samples that had a 

mismatch between the reported and estimated gender, these samples were discarded for further 

analysis. Similarly, heterozygosity of individuals is an important measure that can indicate sample 

contamination or inbreeding. We plotted the distribution of heterozygosity rate in our subjects and 

removed individuals with a heterozygosity more than three standard deviation (±3 SD) from the mean. 

Checks for heterozygosity are performed on a set of SNPs which are not highly correlated. Therefore, to 

generate a list of non-(highly) correlated SNPs, high LD regions were first excluded. The remaining SNPs 

were pruned using 5 markers at a time in a window size of 50 and 0.2 as the multiple correlation 

coefficient of an SNP being regressed on all other SNPs. The output of the heterozygosity checks resulted 

in 112 individuals deviating more than 3 SD’s from the mean and comprised of 31 T2D and 81 normal 

subjects. After applying all the above filters, we were left with 14278 individuals. 

 

 

 

GWAS Analysis 
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The GWAS analysis was conducted on quality control processed genotype and phenotype data sets using 

the linear mixed-effect model (LMM) implemented in the BOLT-LMM version 2.3 package (Loh et al. 2015, 

2018) . For GWAS analysis of all traits except for the BMI and WHR, the covariates used in the associating 

test model were, age, gender, BMI, WHR, and the first ten principal components of the population. For 

BMI and WHR, only age, gender, and the first ten principal components were used as covariates. 

 

RESULTS 
Genome-Wide Association Analysis 

This study used 14,278 individuals from the QBB cohort corresponding to 7968 females, 6310 males, and 

complied of 4455 diabetic/pre-diabetic cases (T2D) and 9823 controls. Individuals were classified as 

diabetic or prediabetic if they self-reported being clinically diagnosed or had hemoglobin A1c (HbA1c) 

levels equal to or more than 6.5%. To identify genomic variants associated with the disease risk, we 

conducted GWAS with the diabetes status and 11 other established risk factors for T2D, which included: 

BMI, waist-to-hip ratio (WHR), c-peptide, insulin, glucose, HbA1c, (HDL), (LDL), total testosterone, (TSH) 

and triglycerides. We first investigated the heritability estimates of these traits (h2) – the proportion of 

phenotypic variation explained by genetic variants using the GREML analysis implemented in GCTA (Yang 

et al. 2011) (Table 1).  These heritability estimates ranged from 17% for insulin to 41% for HDL. Following 

this, the GWAS analysis for all 12 traits was conducted using LMM for ~5 million common variants, while 

correcting for Age, sex, BMI, and population structure using first 10 principal components. Quantile-

quantile (QQ) plots did not indicate any inflation in our results and genomic inflation factor (λGC) ranged 

from 0.99 to 1.09 (Table 1). For all 12 traits, we identified 397 genomic loci that were in the vicinity of 

protein coding genes (within 1Mb) and showed association at genome-wide significance with at least one 

of the traits. For example, for the BMI GWAS we identified three top associated variants for genes MC4R 

(rs12964203; pvalue = 4.3E-10; beta = 0.08), TMEM18 (rs7570232; pvalue = 6.6E-09; beta= -0.08) and 

FTO (rs8050136; pvalue = 1.6E-08; beta= 0.064). Figure 1 shows the Manhattan plot for the BMI GWAS, 

with 86 variants associating with the trait at a genome-wide significance cut-off (5e-08). These 86 variants 

showed multiple independent hits in three genes Fat mass and obesity associated (FTO), Melanocortin 4 

Receptor (MC4R) and Transmembrane Protein 18 (TMEM18) (Figure 1). Similarly, for T2D status we 

observed significant hits in two protein coding genes, for WHR three genes were identified, for HbA1c 
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nine genes were observed (Table 2), and the number of associated genes rose significantly for other traits 

(Figure 1C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Top variants for each gene associating with the trait  

Trait Gene SNP AF BETA SE pvalue 

Table 1. Estimates for heritability of the traits and genomic inflation for GWAS 

Trait h2 SE λGC    

T2D 0.22 0.017 1.05 

BMI 0.35 0.016 1.09 

C-peptide 0.18 0.015 1.05 

Glucose 0.22 0.015 1.05 

HbA1c 0.36 0.016 1.09 

HDL 0.41 0.017 1.09 

Insulin 0.17 0.015 1.05 

LDL 0.24 0.016 1.05 

Total testosterone 0.20 0.015 1.00 

TSH 0.31 0.016 1.09 

Triglycerides 0.31 0.016 1.09 

WHR 0.29 0.016 1.09 
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T2D FOXD4L6 rs111419667 0.43 0.03 0.01 5.00E-09 

T2D HK1 rs16926246 0.12 -0.04 0.01 9.70E-09 

BMI MC4R rs12964203 0.26 0.08 0.01 4.30E-10 

BMI TMEM18 rs7570232 0.18 -0.08 0.01 6.60E-09 

BMI FTO rs8050136 0.47 0.06 0.01 1.60E-08 

WHR WARS2 rs10923715 0.29 0.06 0.01 1.80E-10 

WHR ZC3H11B rs2494196 0.27 -0.06 0.01 1.10E-08 

WHR LY86 rs1024246 0.48 0.05 0.01 3.10E-08 

HbA1c HK1 rs16926246 0.12 -0.12 0.02 1.00E-15 

HbA1c TACR2 rs16926249 0.14 -0.11 0.01 8.70E-14 

HbA1c FN3K rs7208565 0.31 0.08 0.01 5.20E-13 

HbA1c FN3KRP rs9895455 0.30 0.07 0.01 4.40E-11 

HbA1c TBCD rs12452314 0.24 0.07 0.01 2.80E-10 

HbA1c MTNR1B rs11020124 0.32 0.06 0.01 1.30E-08 

HbA1c THADA rs60027889 0.06 -0.12 0.02 1.70E-08 

HbA1c ZNF750 rs66923264 0.26 0.07 0.01 1.70E-08 

HbA1c ZNF33B rs78809561 0.11 0.10 0.02 2.20E-08 
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Figure 1: (A) Manhattan plot of a large-scale BMI GWAS. The plot depicts the negative log-
base-10 of the P value for each polymorphism in the genome (along the x-axis) on the y-axis. 
The dashed line represents the significance level for genome-wide significance (P < 5 × 10–8). 
(B) Region association plot for the FTO gene. This plot shows a detailed view of the significant 
variants within FTO gene. The significant associations appear higher on the plot. Estimated 
recombination rate is shown in blue (right y-axis). Genomic position is shown on the x-axis. 
Red: Represents SNPs that have reached genome-wide statistical significance. Yellow: 
Indicates SNPs that approach statistical significance but did not reach the stringent thresholds. 
(C) Number of protein coding genes within 1Mb from genome-wide significant SNPs. 

MC4R

FTOTMEM18

2 3 3 9
18 19

60 68
88

106

139

188

T2
D

BM
I

WH
R

Hb
A1
c

HD
L

Glu
co
se

Tri
gly
ce
rid
e LD

L
Ins
uli
n

C-P
ep
tid
e

TS
H

Te
sto
ste
ron

e

A 

B 

C 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.06.23.23291830doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291830


 12 

Development of Polygenic Risk Scores 

We created PRS for our diabetes cohort consisting of 4445 T2D subjects and 9823 controls based on GWAS 

summary stats for each of the 12 traits. PRS is an individual-level score that summarizes the effects of 

multiple genomic variants on the phenotype of an individual. Hence, the score is an estimate of the total 

genetic risk of a particular individual for a specific trait and thus can be used as an outcome predictor in 

clinical prediction and disease screening programs. We used PRSice 2(Choi and O’Reilly 2019) to identify 

the most predictive PRS based on the GWAS results of each trait. PRSice 2 is designed to calculate and 

evaluate the genetic risk scores based on GWAS summary statistics and individual-level genotype data. 

This involves clumping SNPs and performing P-value thresholding for thinning SNPs according to linkage 

disequilibrium and P-value. The clumping parameters --clump-kb 250kb and --clump-r2 0.1 were used to 

remove SNPs that are in linkage disequilibrium with one other, based on maximum likelihood haplotype 

frequency estimations (r2 values). To acquire the best PRS models from the GWAS results, multiple P-value 

thresholds were tried in order to identify the most optimal set of SNPs for the stratification of T2D cases 

and controls. We found that the best PRS models for each trait yielded results of 153970 SNPs for T2D, 

158664 SNPs for HbA1c, 154054 SNPs for glucose, 104424 SNPs for triglycerides, 85672 SNPs for LDL, 

155730 SNPs for insulin, 14112 SNPs for c-peptide, 127263 SNPs for TSH, 137767 SNPs for testosterone, 

109488 SNPs for HDL, 9822 SNPs for WHR, and 78535 SNPs for BMI. Our PRS models displayed a high 

degree of stratification between cases and controls (Figure 2 A & B). The predictive power of the models 

is shown in (Figure 2C) and highlights the power gain by the PRS over the null model (using covariates Age, 

gender, BMI, WHR, first 10 PCs) at an estimated T2D prevalence (Awad et al. 2019) of 0.17 in our 

population. Empirical P-values obtained using 10,000 permutations of randomly shuffling phenotypic 

labels and repeating the analysis were used to control for Type 1 error. The empirical association P-values 

of all PRS models were 9.9e-05, the minimum possible, and hence did not show any indications of inflation 

or overfitting.  
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Figure 2: (A) Density plot showing distribution of T2D PRS scores in the QBB cohort stratified 
for cases and controls.  (B) Strata plot. The Y-axis shows deciles (e.g., decile 9 corresponds to 
those individuals with PRS between the 90th and 100th percentile of the population), and the 
X-axis shows the odds ratio as obtained from the regression model Phenotype ~ decile + 
covariates (C) Trait variance explained by PRS models. The stacked bar shows variance 
explained (R2) by the null model and the PRS model for each trait. Null model is the variance 
explained by covariates only, while the PRS-model is defined as the R2 of the Full model minus 
the R2 of the Null model. P-values in the plot indicate p values of the model fit. 
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Multi-PRS Using Machine Learning 

While PRS based on a single trait can be informative, it may not capture the full complexity of disease risk. 

To address this issue, we went one step further and created a multi-trait PRS model utilizing machine 

learning techniques to better stratify risk. We created sixteen different machine learning models and 

evaluated the performance of each model using a 10-fold stratified cross-validation at a train-test split of 

70:30. Of the 16 models tested, CatBoost classifier was the best performer, followed by Random Forest, 

LightGBM, and XGBoost. Each model included 12 polygenic risk score (PRS) features. The best model 

achieved impressive results, with an accuracy of 0.8549, an area under a receiver operating characteristic 

curve (AUC) of 0.92, an area under the precision-recall curve (AUC-PR) of 0.8522, and an F1 score of 0.757 

at a precision of 0.79 and recall of 0.73. The top features used in this model included PRS scores for T2D 

status, waist-hip ratio (WHR) and HbA1c. Surprisingly, the PRS for BMI was not one of the top features. 

This suggests that those who are genetically predisposed to having a high BMI may not be at an increased 

risk of developing T2D in our population. This is an intriguing result and could have implications for how 

we approach preventing the onset of T2D in the future. 
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Figure 3. (A) The CatBoost classifier's performance is depicted by the Receiver Operating 
Characteristic (ROC) curve. It depicts two values at different thresholds: True Positive Rate (TPR) (on 
the Y-axis) and False Positive Rate (FPR) (on the X-axis).  TPR is proportion of observations that were 
correctly predicted to be positive out of all positive observations (TP/(TP+FN)), FPR is the proportion 
of observations that were incorrectly predicted to be positive out of all negative observations 
(FP/(FP+TN)). The curve is generated by plotting the TPR versus the FPR at various threshold values. 
The area under the ROC curve (AUC) indicates how well the model can differentiate between two 
classes. (B) Precision-Recall curve (PRC) evaluating the effectiveness of the CatBoost classifier. 
Precision shows the model's accuracy in making positive predictions. A high accuracy score means 
that the model produces fewer false positives. Recall represents the model's ability to correctly detect 
positive instances. A high recall score indicates that the model produces fewer false negatives. A 
higher AUC-PR indicates better model performance. (C) Confusion Matrix. The table shows, how 
predicted values by the model compare against the actual values for the test data. (D) SHAP plot: Bee-
swarm plot of the SHAP (SHAPley additive explanations) values that shows the contribution of each 
PRS to the model’s predictive performance. Each dot for each feature represents a single individual 
and the width corresponds to the number of individuals with a given SHAP value. The color of the dot 
reflects the feature value relative to the median value of the feature, while the position on the x-axis 
indicates SHAP value. Positive SHAP values indicate an increased risk for T2D while negative values 
are associated with a lower risk for the disease.  
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DISCUSSION 
 

T2D is a multifaceted and complex metabolic condition that affects millions of people throughout the 

world. While environmental variables such as nutrition and lifestyle play an important role in its 

development, it is becoming increasingly evident that genetics has an equally important role in its 

susceptibility (Vassy et al. 2014; Stančáková and Laakso 2016; Udler 2019). GWAS has emerged as a 

powerful tool to identify genetic variants associated with T2D and its complications and has aided in 

understanding the underlying biology for the disease, improving risk prediction, and advancing 

personalized medicine approaches (Wheeler and Barroso 2011; Stančáková and Laakso 2016; Scott et al. 

2017; Chen et al. 2019). Multiple GWAS studies have examined the genomes of thousands of individuals, 

and specific genetic variants that are statistically linked to T2D were identified. These findings have 

revealed important insights into the biological pathways involved in T2D development, including beta-cell 

dysfunction, insulin resistance, and impaired glucose metabolism [(Fuchsberger et al. 2016; Scott et al. 

2017; Mahajan et al. 2018).  

 

In this study, we conducted twelve robust GWASes to identify genetic loci that can impact the risk of T2D 

in our population. To achieve this, we conducted these studies on common genetic variants that included 

11 risk factors and the T2D status. Prior to GWAS, stringent quality control measures were taken to ensure 

accuracy and reliability in the results. We chose to use common variants, as low MAF SNPs are both rare 

and more likely to have genotyping errors. In addition, HWE checks were conducted for both case and 

control subjects separately, using two different levels of stringency. Deviations from HWE can signify 

either genotyping errors or true association signals, so for control subjects, a stringent value of HWE (less 

than 1e-6) was used while case cohort was filtered for a less stringent HWE threshold (1e-10). This less 

stringent threshold for cases helps to avoid discarding true disease-associated SNPs under selection. We 

also conducted subject level checks for missingness, sex discrepancy and heterozygosity. Average 

heterozygosity of our cohort was observed to be 0.284 with a standard deviation of 0.0156. This helped 

identify 112 outliers that were removed from the subsequent analysis. For the 112 samples removed, 56% 

were with high heterozygosity indicating low sample quality while 44% had low heterozygosity indicating 

inbreeding. Any investigation of quantitative trait loci, such as GWAS, relies on the assumption that the 
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phenotype data is distributed normally. If this assumption is violated, the power and type I error of the 

analysis can be significantly compromised. Additionally, the sample size available for the trait of interest 

will affect the power of the GWAS, as missing phenotypic data can lead to a lack of statistical power. In 

our data, the missingness rates ranged from 0.15 percent for BMI to 1.16 percent for HbA1c, and, 

although low, we still chose to impute the missing values to retain the entire dataset. The imputed values 

showed no signs of skewness across multiple imputations. 

 

PRS have emerged as a powerful tool in genetics research, enabling the aggregation of genetic information 

to estimate an individual's genetic susceptibility to specific traits or diseases. While traditional PRS 

primarily focus on single traits or diseases, there has been a growing interest in the development of multi-

trait PRS. This advancement holds great potential in enhancing our understanding of complex traits, 

improving risk prediction, and identifying shared genetic mechanisms. The multi-trait PRS can help identify 

novel links between risk factors and T2D as well as enable the identification of shared genetic variants and 

pathways that contribute to multiple traits or risk factors for a disease. By considering the shared genetic 

architecture across different traits and risk factors, previously unrecognized connections and associations 

could be uncovered. This broader perspective allows for a more comprehensive understanding of the 

complex interactions between genetic variants, risk factors, and the development of T2D. Thus, this 

approach not only enhances our understanding of the genetic underpinnings of T2D but also holds the 

potential to unravel the interconnectedness of biological processes involved in the disease. 

 

By utilizing 12 different GWASes, we have identified sets of genetic loci that could influence the risk for 

developing T2D. These clusters of genetic loci not only exhibit associations with T2D susceptibility and its 

risk factors but could collectively contribute to the overall risk profile of an individual for T2D.  We used 

multiple P-value thresholds to determine the best-fit PRS for each trait, resulting in maximum segregation 

of T2D cases and controls. The PRS models displayed a significant predictive power over the null model 

with the minimum possible empirical association P-value of 9.9e-05 from 10,000 permutations, which 

indicates that there was no inflation or overfitting in our models due to type1 error. These PRS models 

were further integrated into a multi-trait PRS using Machine learning approaches. The training and testing 

for each ML model was performed on a 70:30 split of the data. After conducting an extensive comparison 
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of 16 different ML models, we identified CatBoost Classifier as the best performing model for our dataset. 

The model showed an accuracy of 0.8549, to correctly classify 85.49% of the samples, demonstrated its 

good ability to distinguish between positive and negative classes (AUC = 0.92). Moreover, the model also 

had a good balance between precision and recall (AUC-PR = 0.8522, F1 = 0.757), suggesting its potential 

to provide effective predictions in real-world applications. Our final model trained on the entire QBB 

dataset has shown even better performance, boasting an AUC of 0.97.  As these results are significantly 

impressive, multiple validations are planned to comprehensively assess its performance on unseen data 

and ensure the reliability and generalizability of the model. We are now in the process of collecting 

independent T2D cohorts in order to validate the efficacy of the model and ensure that it is not overfitting. 

Once these validations are completed, we can be assured of the model's performance and start utilizing 

it to gain insights and further our understanding of type 2 diabetes. 

 

The results of our analysis were also quite surprising in terms of the feature importance for the model, as 

the top features used in the model to predict the T2D risk did not include the PRS for BMI. This suggests 

that those who are genetically predisposed to having a high BMI may not be as susceptible to developing 

T2D in our population. This is a fascinating finding as it could have implications for how we approach the 

prevention of T2D in the future. Instead of focusing solely on BMI, genetic predisposition for factors such 

as WHR and HbA1c, might be better predictors for assessing T2D risk in our population. Therefore, it is 

important to take into account the genetic variants associated with multiple risk factors of T2D to increase 

our understanding of this condition and to develop better prevention strategies.  

 

CONCLUSIONS  

To improve the predictability of T2D risk, our study illustrates the significant potential and power of 

combining multi-trait PRS with ML. In contrast to single-trait PRS models, multiple trait-based PRS models 

have a significant advantage in finding genetic variants linked to T2D. The predictive power of our top ML 

model was evidenced by the impressive metrics, including an accuracy of 0.8549, an AUC of 0.92, an AUC-

PR of 0.8522, and an F1 score of 0.757. These values are indicative of the model's superior performance 

in stratifying cases from controls, providing a robust tool for T2D risk assessment. 
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These findings represent a significant stride forward in the field of precision medicine for T2D. By providing 

a more comprehensive, accurate, and individualized risk assessment, such models can identify high-risk 

individuals who stand to gain the most from early interventions. Thus, this research signals a paradigm 

shift in T2D risk management from a "one-size-fits-all" approach to one that is more individualized and 

targeted. 

However, as with all predictive models, external validation is crucial for assessing their generalizability. 

Our ongoing efforts aim to validate the final model's performance using independent T2D cohorts. Success 

in this endeavor will solidify our model's utility and robustness, further cementing the role of multi-trait 

PRS and ML in T2D risk prediction. 

The emergence of multi-trait PRS in genetics research has brought about exciting possibilities. By 

considering the shared genetic architecture across multiple traits or risk factors, multi-trait PRS offers a 

more comprehensive understanding of complex traits such as T2D. This approach enables the 

identification of shared genetic variants and pathways, fostering the discovery of novel links between risk 

factors and the disease. Ultimately, multi-trait PRS models could be instrumental in informing preventive 

strategies, fostering early interventions and personalized approaches to its prevention and treatment, 

and ultimately reducing the societal and health burden of T2D. 

 

AVAILABILITY OF DATA AND MATERIALS  
Data described in the manuscript, including all relevant raw data, will be freely available to any scientist 

wishing to use them for non-commercial purposes without breaching participant confidentiality. Requests 

should be sent directly to the corresponding author. 

 
 

ABBREVIATIONS  
Type 2 Diabetes  T2D 

polygenic risk scores  PRS 

genome-wide association studies  GWAS 

Qatar Genome Programme  QGP. 

machine learning  ML 
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  Area under the ROC Curve AUC 

nucleotide polymorphisms  SNPs 

Middle East and North Africa  MENA 

Support Vector Machine  SVM 

Qatar Biobank cohort  QBB 

Hamad Medical Corporation  HMC 

Whole genome sequencing  WGS 

high-density lipoprotein cholesterol  HDL 

low-density lipoprotein cholesterol  LDL 

Thyroid stimulating hormone  TSH 

Triglycerides  TGL 

Inverse Normal Transformation  INT 

Hardy-Weinberg equilibrium  HWE 

linear mixed-effect model  LMM 

Fat mass and obesity associated  FTO 

Melanocortin 4 Receptor  MC4R 

Transmembrane Protein 18  TMEM18 

Waist-Hip Ratio  WHR 
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