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Abstract: 22 

Wastewater-based epidemiology has emerged as a critical tool for public health surveillance, building on 23 

decades of environmental surveillance work for pathogens such as poliovirus. Work to date has been 24 

limited to monitoring a single pathogen or small numbers of pathogens in targeted studies; however, few 25 
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studies consider simultaneous quantitative analysis of a wide variety of pathogens, which could greatly 26 

increase the utility of wastewater surveillance. We developed a novel quantitative multi-pathogen 27 

surveillance approach (35 pathogen targets including bacteria, viruses, protozoa, and helminths) using 28 

TaqMan Array Cards (TAC) and applied the method on concentrated wastewater samples collected at 29 

four wastewater treatment plants in Atlanta, GA from February to October of 2020. From sewersheds 30 

serving approximately 2 million people, we detected a wide range of targets including many we expected 31 

to find in wastewater (e.g., enterotoxigenic E. coli and Giardia in 97% of 29 samples at stable 32 

concentrations) as well as unexpected targets including Strongyloides stercoralis (a human threadworm 33 

rarely observed in the USA). Other notable detections included SARS-CoV-2, but also several pathogen 34 

targets that are not commonly included in wastewater surveillance like Acanthamoeba spp., Balantidium 35 

coli, Entamoeba histolytica, astrovirus, norovirus, and sapovirus. Our data suggest broad utility in 36 

expanding the scope of enteric pathogen surveillance in wastewaters, with potential for application in a 37 

variety of settings where pathogen quantification in fecal waste streams can inform public health 38 

surveillance and selection of control measures to limit infections.  39 

Introduction 40 

Wastewater-based epidemiology (WBE) incorporates a range of tools intended to complement traditional 41 

public health surveillance, optimally providing timely and actionable data on pathogens circulating in 42 

populations of interest. Historically, wastewater monitoring has been used as a surveillance tool for 43 

individual pathogens including poliovirus[1,2], hepatitis A[3], Vibrio cholerae[4], Salmonella enterica 44 

serotype Typhi [5] as well as for chemical analytes (e.g., drug use) [6]. This strategy has gained global 45 

prominence in the detection and quantification of SARS-CoV-2 RNA in wastewater[7–9], specifically 46 

focusing on community prevalence[7,10,11], apparent trends in infections over time and space[12], and 47 

emerging variants[13,14]. Advantages and limitations of wastewater as a surveillance matrix have been 48 

widely discussed since 2020[15–17].  49 
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The need to expand wastewater monitoring to screen multiple pathogens or variants is a valuable 50 

approach to better understand the possibility of emerging pathogens or circulating strains in a particular 51 

population. In addition to a rapidly expanding array of sequencing techniques to more completely 52 

characterize microbial composition of environmental samples, more sensitive quantitative or semi-53 

quantitative multiple-target detection approaches exist [18,19] and some have been subjected to cross-54 

method comparisons for pathogen detection and quantification [20–22]. Such tests could complement the 55 

highly sensitive and precisely quantitative emerging digital PCR techniques now considered the gold 56 

standard for single-pathogen detection in wastewater, either as a screening method as a precursor to more 57 

in-depth work on targets of interest or to gain information on a wide range of pathogens of interest. 58 

Emerging and re-emerging infectious diseases[23] – including those with pandemic potential[24] – 59 

represent ongoing risks to society, and wastewater surveillance can fill critical gaps in data to inform 60 

public health responses[25].    61 

Based on the demonstrated potential for WBE to complement traditional diagnostic public health 62 

surveillance for a diverse array of pathogens, we implemented a customized multi-parallel molecular 63 

surveillance tool for simultaneous detection and quantification of 35 common pathogenic bacteria, 64 

viruses, protozoa, and helminths in wastewater. Such approaches can expand the existing WBE platform 65 

by screening for many more pathogens – including rare or emerging microbes of interest – enhancing 66 

monitoring to inform public health response. We demonstrate the utility of this method in an analysis of 67 

primary untreated influent samples from four wastewater treatment plants in metro Atlanta, Georgia, 68 

USA.  69 

Materials & Methods 70 

Sample Collection  71 

We collected one-liter primary influent grab samples (n=30) in high-density polyethylene (HDPE) plastic 72 

bottles from four wastewater treatment plants (anonymized as WWTP A, B, C, D) in Atlanta, GA 73 
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between March 20th, 2020 - November 5th, 2020 between 9:30 AM—11 AM.  We obtained permission for 74 

sample collection from each WWTP manager prior to sampling. Flow values from the WWTPs ranged 75 

from 14 – 80.2 million gallons per day. All samples were transferred to the laboratory on ice and stored at 76 

-80°C until further processing was completed. Initial sample processing began on November 8th, 2021. 77 

Frozen samples were thawed in a 5L bucket of water located in a 4°C walk-in fridge for up to 3 days or 78 

until thawed. Samples were then recorded for temperature and pH, and a 50 mL aliquot was taken for 79 

total suspended solids measurements (S1 Table). Each 1L sample was spiked with 10 µL of Calf-Guard 80 

(Zoetis) resuspended vaccine, containing attenuated bovine coronavirus (BCoV), and 10 µL of MS2 81 

(105/µL), which served as the process recovery controls. A 1:100 ratio of 5% Tween 20 solution was 82 

added to the sample bottle as recommended by InnovaPrep for processing wastewater samples [26]. A 83 

graduated 1L bottle was used as a reference for the total volume in each sample bottle. Samples were 84 

mixed by inverting the bottle 3-4 times. A subset of samples (n=4) were processed using three different 85 

methods to establish a reasonable workflow for the remaining samples: (1) direct extraction, (2) 86 

InnovaPrep Concentrating Pipette (CP) Select, and (3) skim milk flocculation (SMF). 87 

Sample Processing 88 

Direct Extraction 89 

We directly extracted 200 µL of wastewater influent into the DNeasy PowerSoil Pro Manual extraction 90 

kit (Qiagen, Hilden, Germany). Technical representatives indicated kits co-purify DNA and RNA and 91 

others have compared DNA kits with DNA + RNA kits with similar performance [27]. 92 

InnovaPrep Concentrating Pipette 93 

150 mL from the wastewater influent sample was transferred into a 500 mL conical centrifuge tube. 94 

Samples were centrifuged for 20 minutes at 4800 x g. The 500 mL conical tube was placed under the CP 95 

Select, and the fluidics head lowered into the sample. The sample supernatant was filtered using a 0.05 96 

µm unirradiated hollow-fiber CP tip and eluted using the InnovaPrep FluidPrep Tris elution canister. 97 
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Processing times and eluted volumes were recorded. For each day samples were run, one negative control 98 

consisting of 100 mL of DI water was also filtered and processed. 99 

 100 

Skim Milk Flocculation 101 

With the remaining wastewater sample, we proceeded to use the SMF method[28]. We combined 1 mL of 102 

a 5% skimmed milk solution per 100 mL of wastewater sample (average volume = 750 mL) and adjusted 103 

the pH of the skimmed-milk-wastewater solution between 3.0 – 4.0 using 1M HCl. Samples were placed 104 

on a shaker plate at room temperature (20-25°C) at 200 RPM for two hours. After shaking, samples were 105 

centrifuged at 3500 x g at 4°C for 30 minutes. The supernatant was discarded and the pellet was archived 106 

at -80°C until two batch extractions of 15 samples were completed within one week.   107 

A subset of 4 samples were directly extracted and the TaqMan Array Card (TAC) results from CP, SMF, 108 

and the direct extractions were compared to determine an optimal concentration method prior to full scale 109 

downstream processing. Additional details can be found in S2 Table. In the methods trial, SMF resulted 110 

in greater number of pathogen detections and was therefore used for the subsequent full-scale analyses. In 111 

the SMF workflow, skim milk pellets were processed for RNA using the Qiagen DNeasy PowerSoil Pro 112 

manual extraction kit. One extraction blank was run using nuclease-free water for each batch of sample 113 

extractions. Extracts were placed in the -80°C freezer until reverse transcriptase real-time (quantitative) 114 

polymerase chain reaction (RT-qPCR) or digital PCR (dPCR) processing followed within one week. 115 

Skim milk pellets were run on TAC with 7% in duplicate. All CP eluants were extracted for RNA using 116 

Qiagen AllPrep PowerViral manual kits following manufacturer instructions to be further processed using 117 

dPCR. CP and dPCR were used for process controls and fecal indicators in the full-scale analyses. 118 

Molecular Analysis  119 

Two PCR platforms were used to process extracts, the first was an RT-qPCR QuantStudio (QS) 7 Flex 120 

(ThermoFisher Scientific, Waltham, MA) and the second a dPCR QIAcuity Four (Qiagen, Hilden, 121 
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Germany). All skim milk pellets were analyzed using the QS7 Flex. The QS7 works in conjunction with a 122 

custom TAC, which is prespecified with lyophilized primers and probes for 35 enteric pathogen targets 123 

(see S3 Table). The card was designed to include bacterial, viral, protozoan, and helminth targets that may 124 

be circulating in the United States as well as the leading etiologies of diarrhea among children globally 125 

[29,30]. Cq values < 40 were considered positive for the target and confirmed through clear amplification 126 

signals in the amplification and multicomponent plots. We prepared our TAC by combining 38 µL of 127 

template with 62 µL of AgPath-ID One-Step RT-PCR Reagents (Applied Biosystems) and assessed TAC 128 

performance through an 8-fold dilution series (109-102 gene copies/reaction) using 2 plasmids (one for 129 

DNA and one for RNA targets) that were linearized, transcribed, cleaned, and quantified as described in 130 

[29]. The samples were analyzed in single, not replicates on the same TAC. Additional MIQE details are 131 

found in S4 Table. All CP eluant samples were analyzed using the dPCR QIAcuity Four platform 132 

(Qiagen, Hilden, Germany). On the dPCR platform previously designed and optimized multiplex assays 133 

were used for bovine coronavirus (BCoV), pepper mild mottle virus (PMMoV), and human mitochondrial 134 

DNA (mtDNA)[31] (see S5 Table, S1 Text, and S1 Fig)). Gene copy concentration results for PMMoV 135 

and mtDNA were used as normalization markers for the TAC pathogen data so that we divided the 136 

sample gene copy concentrations/liter by the normalization marker gene copy concentrations/liter. 137 

Data Analysis  138 

When multiple gene targets for a single microbial taxon was detected, we used the highest concentration 139 

gene target to calculate summary statistics and supported figures. We used R Studio version 4.2.1 and 140 

specific R packages to complete all data cleaning (dplyr v1.1.2), analyses (janitor v2.2.0, gtsummary 141 

v1.7.1) and generate graphs (ggplot2 v3.4.2). All TAC data was analyzed using QuantStudio Design and 142 

Analysis Real-Time PCR software (v2.6.0, Thermo Fisher Scientific). Equivalent sample volumes (ESV) 143 

have previously been described as the original sample volume processed and analyzed in a PCR 144 

reaction[32]. Here, we calculated ESVs using the following equation: 145 
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 146 

The 95% limit of detections (LODs) were calculated for each assay using probit models[33]. We 147 

translated these 95% analytical LODs (aLODs) into a 95% matrix LOD (mLOD) using the following 148 

equation and the previously calculated effective volumes for SMF: 149 

� ! �
1

��
#�� !$ 

 150 

Results 151 

TAC results were generated using skim milk pellets extracted by the PowerSoil Pro Manual kit to process 152 

the influent samples. The average SMF pellet was 2.2 mL and the average wastewater influent processed 153 

for SMF was 688 mL. Supplemental data on any other method performed (direct extraction or InnovaPrep 154 

CP pellet) is provided in S2 Table and S2-S3 Figs. 155 

Enteric Pathogen Measurement by Skim Milk Flocculation 156 

The log10-transformed gene copy concentrations by pathogen class and specific enteric pathogen (Fig 1) 157 

demonstrates the wide range of pathogens detected in Atlanta wastewater influent (n=30). Enteric 158 

bacteria, specifically enterotoxigenic E. coli (ETEC), were detected most frequently and at higher gene 159 

copy concentrations compared to helminths and viruses. Notable protozoan detections were 160 

Acanthamoeba spp. (28/30), Balantidium coli (29/30), Entamoeba spp. (29/30), and Giardia spp. (29/30). 161 

While virus detections were relatively lower than protozoan detections, astrovirus (26/30), norovirus 162 

GI/GII (28/30), and sapovirus (7/30) were detected in the processed samples. Additional comparison of 163 

prevalence of pathogens by wastewater treatment plant are detailed in Table 2 with Plant C representing 164 

the most samples processed (n=21). S4 Fig demonstrates the log10 gene copies per liter of wastewater 165 

influent stratified by gene targets. Interestingly, with the CP samples we detected Strongyloides 166 

stercoralis in one wastewater sample (S2 Fig and S6 Table). 167 
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 168 

Fig 1. Log10 concentrations of enteric pathogens per liter of wastewater influent using the SMF method 169 

and PowerSoil Pro Manual extraction.  170 

 171 

Of the SMF samples, the bacterial targets of highest concentration were ETEC and enteropathogenic E. 172 

coli (EPEC - atypical), whereas viral targets were mainly astrovirus and norovirus GI/GII. Somewhat 173 

unexpected protozoan targets detected were Cyclospora cayetanensi (3/30) and Entamoeba histolytica 174 

(6/30). Both Cryptosporidium spp. and Giardia spp. were detected at means of 5.0 log10 and 6.5 log10, 175 

respectively. Of the total samples, we detected SARS-CoV-2 RNA in 50% of samples (n=15) at 176 

concentrations between 3.0 log10—6.0 log10 gene copies per liter of wastewater influent.  177 

Table 2. Prevalence of pathogens [n by column (%)] detected in wastewater influent from four treatment 178 

plants in Atlanta, Georgia – using SMF method 179 

MICROBE 
CATEGORY 

TARGET WW Plant A  

(n=3) 

WW Plant B 

(n=4) 

WW Plant C 

(n=20) 

WW Plant D 

(n=3) 

Bacteria Campylobacter jejuni/coli - (0) 1 (25%) 11 (55%) - (0) 

Clostridioides difficile 3 (100%) 2 (50%) 15 (75%) 3 (100%) 

E. coli O157:H7 3 (100%) 3 (75%) 19 (95%) 3 (100%) 

EAEC* 3 (100%) 4 (100%) 20 (100%) 3 (100%) 

EPEC (atypical)† 3 (100%) 2 (50%) 20 (100%) 3 (100%) 

EPEC (typical)† 3 (100%) 2 (50%) 20 (100%) 3 (100%) 

ETEC* 3 (100%) 4 (100%) 20 (100%) 3 (100%) 

Helicobacter pylori - (0) - (0) - (0) - (0) 

Plesiomonas shigelloides 2 (67%) 0% (0) 10 (50%) 2 (67%) 

Salmonella spp. 3 (100%) 1 (25%) 18 (90%) 2 (67%) 

Shigella/EIEC† 2 (67%) 0% (0) 19 (95%) 3 (100%) 

STEC* 3 (100%) 3 (75%) 20 (100%) 3 (100%) 
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Yersinia enterocolitica 3 (100%) 2 (50%) 20 (100%) 3 (100%) 

Fungus/Algae Blastocystis spp. 3 (100%) 3 (75%) 20 (100%) 3 (100%) 

Encephalitozoon 
intestinalis 3 (100%) 1 (25%) 13 (65%) 3 (100%) 

Enterocytozoon bieneusi 2 (67%) 1 (25%) 75% (12) 1 (33%) 

Helminth Ancylostoma duodenale - (0) - (0) - (0) - (0) 

Ascaris lumbricoides - (0) - (0) - (0) - (0) 

Enterobius vermicularis 0% (0) 0% (0) 3 (15%) - (0) 

Hymenolepis nana - (0) - (0) - (0) - (0) 

Necator americanus - (0) - (0) - (0) - (0) 

Strongyloides stercoralis - (0) - (0) - (0) - (0) 

Trichuris trichiura - (0) - (0) - (0) - (0) 

Protozoa Acanthamoeba spp. 3 (100%) 3 (75%) 19 (95%) 3 (100%) 

Balantidium coli 3 (100%) 3 (75%) 20 (100%) 3 (100%) 

Cryptosporidium spp. - (0) - (0) 8 (40%) - (0) 

Cyclospora cayetanensi - (0) - (0) 3 (15%) - (0) 

Cystoisospora belli - (0) - (0) - (0) - (0) 

Entamoeba histolytica - (0) - (0) 6 (30%) - (0) 

Entamoeba spp. 3 (100%) 3 (75%) 20 (100%) 3 (100%) 

Giardia spp. 3 (100%) 3 (75%) 20 (100%) 3 (100%) 

Virus astrovirus 3 (100%) 2 (50%) 19 (95%) 2 (67%) 

norovirus GI/GII* 3 (100%) 2 (50%) 20 (100%) 3 (100%) 

rotavirus 2 (67%) 1 (25%) 15 (75%) 3 (100%) 

sapovirus* 0% (0) 0% (0) 5 (25%) 2 (67%) 

SARS-CoV-2 2 (67%) 1 (25%) 9 (45%) 1 (33%) 

*Enteroaggregative E. coli (EAEC) combined gene targets aatA and aaiC; enterotoxigenic E. coli (ETEC) 180 

combined targets from gene LT, STh, and STp; norovirus included GI and GII targets; sapovirus 181 

combined gene targets for I, II, IV, and V; shiga toxin-producing E. coli (STEC) combined gene targets 182 

stx1 and stx2.  183 

†Enteropathogenic E. coli (EPEC); enteroinvasive E. coli (EIEC)  184 
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 185 

dPCR for Concentrating Pipette and normalization markers 186 

A total of n=30 CP samples were processed for PMMoV, mtDNA, and BCoV. Fig 2 demonstrates the 187 

log10 gene copies per liter of wastewater influent and indicates PMMoV concentrations exceed mtDNA 188 

concentrations. The average concentrations for BCoV dPCR reactions was 43.3 gene copies (gc)/μL, 189 

PMMoV was 1602 gc/μL, and mtDNA was 4.33 gc/μL. The average concentrations of log10 gene 190 

copies/liter per reaction of wastewater was 5.2 x 104 for mtDNA and 1.9 x 107 for PMMoV. All positive 191 

controls and non-template controls performed without suspicion and additional details on control 192 

performance is included in S2 Text and in the dMIQE checklist (S7 Table). Additionally, BCoV as a 193 

process control yielded a 29% average recovery with a standard deviation of 28, with recovery by sample 194 

available as S8 Table.  195 

 196 

Fig 2. Log10 gene copies per liter of wastewater influent using the InnovaPrep Concentrating Pipette (CP) 197 

method. The dashed line represents the limit of detection when calculated as 3 partitions out of the total 198 

valid partitions. Figure includes all technical replicates per sample.  199 

 200 

Pathogen concentrations normalized by mtDNA and PMMoV   201 

Quantitative log10 gene copies per liter of wastewater influent before (S9 Table) and after normalization 202 

(S10-11 Tables), with mtDNA normalization resulting in overall higher log10 ratios. In Fig 3, we note a 203 

considerably smaller ratio when using PMMoV normalization over mtDNA. These concentrations are 204 

caused by increased PMMoV concentrations in wastewater influent compared to mtDNA concentrations.  205 

 206 
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Fig 3. A) Pathogen data normalized by mtDNA. B) Pathogen data normalized by PMMoV. The dashed 207 

line represents where pathogen and normalizer count are equivalent. Figure includes all technical 208 

replicates per sample for mtDNA and PMMoV marker.  209 

  210 

TAC Performance Interpretation 211 

Standard Curves 212 

The standard curves for this custom TAC included two assays (Adenovirus 40/41 and Hepatitis A) with 213 

poor standard curve performances (r2 < .95) and therefore were excluded from all analyses. Of the 214 

remaining 40 enteric targets, the DNA control was phocine herpes virus and RNA control was MS2. For 215 

performance metrics (S12 Table), reasonable linearity was detected for all included assays with an 216 

average R2 value of 0.997 across all assays with the lowest R2 of 0.967 for STEC (stx2) and the highest 217 

R2 of 1 for Acanthamoeba spp., Balantidium coli, E. coli O157:H7, Giardia spp., Plesiomonas 218 

shigelloides, Salmonella spp., and STEC (stx1). The lowest efficiency assay was Astrovirus at 87% while 219 

the highest was Entamoeba spp. at 104%.         220 

   221 

Effective Volume 222 

The effective volume, which does not account for recovery efficiency, is calculated as the proportion of 223 

original wastewater sample assayed in a single qPCR reaction. The effective analyzed wastewater volume 224 

for InnovaPrep CP was 0.155 mL (SD 0.0605) per reaction and SMF was 0.410 mL of wastewater per 225 

reaction (SD 0.121).  226 

Limit of Detection and matrix LOD 227 

The 95% aLOD was calculated for each assay in S12 Table, reported as gene copies per reaction. The 228 

lowest detectable target as Cryptosporidium spp. at 0.6 gene copies per reaction and the highest as 291 229 

gene copies per reaction for ETEC (LT), followed by 96 gene copies per reaction for STEC (stx2).  230 
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A comprehensive mLOD table for each assay indicates the gene copy per mL of sewage is found in S13 231 

Table and includes the minimum, maximum, mean, standard deviations, standard error, and confidence 232 

intervals. These results indicate average gene copies per mL of wastewater influent as low as 1.591 for 233 

Cryptosporidium spp. and 16S marker or as high as 264.7 gc/mL for ETEC (LT & ST). SARS-CoV-2 234 

mLOD was 16.4 gc/mL influent. 235 

Inhibition 236 

We used MS2 as the extraction control and the average Cq for negative extraction controls (n=7) was 237 

17.8 gene copies per reaction [confidence interval 0.821], whereas all SMP samples (n=30) had an 238 

average Cq of 19.3 gene copies per reaction [CI 2.04]. With a Cq difference of 1.5, we can reasonably 239 

conclude inhibition was not a major issue with our sample matrix since samples and controls had Cq 240 

difference less than 2. 241 

Discussion 242 

Wastewater surveillance sampling, processing, storage, and analysis methods have advanced rapidly since 243 

the emergence of SARS-CoV-2. Most studies have examined primary influent[34,35] and solids[36,37]. 244 

Sampling methods have also varied from grab, composite, and more recently passive techniques[38]. In 245 

addition to testing different matrices, many laboratories have implemented various methods to 246 

concentrate SARS-CoV-2 in wastewater using ultracentrifugation, polyethylene glycol precipitation, 247 

electronegative membrane filtration, and ultrafiltration[28,39], but few have considered a concentration 248 

step followed by a simultaneous, multi-parallel quantitative assay or multiple pathogen detection assays. 249 

The possibility of high-plex, high throughput platforms are of particular interest to stakeholders looking 250 

to expand wastewater monitoring nationally in the US and abroad. For example, the CDC has expanded 251 

upon the previously single-plex N1 assay for SARS-CoV-2 to include influenza A and/or B for increased 252 

testing capacity[40]. Practical applications of surveillance suggest that downstream sampling analyses of 253 
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3 or 4 samplings per week could provide useful results regarding trends, but the specific design would 254 

have to be driven by local public health trends and goals [41–43]. 255 

TAC performance metrics  256 

We compared our traditional metrics such as R2 trends of standard curves and found that our TAC results 257 

are within a reasonable R2 range for almost all assays (R2>0.96), except for two explicitly excluded due to 258 

poor standard curve performance. Our 95% LODs calculated also indicate a broad range of analytical 259 

sensitivities across all pathogen targets. With the lowest detections at 0.6 gene copies per reaction, we 260 

also have targets on the higher end of 291 gene copies per reaction for ETEC.  While other studies 261 

indicate a loss of sensitivity when using TAC, there was still an 89% detection rate compared to single-262 

plex assays run[44].   263 

Prevalence of bacteria, protozoan, and viral targets 264 

Our qPCR data indicated 104-106 gene copies per liter for SARS-CoV-2 prior to normalization efforts, 265 

which is comparable to other studies [45]. Researchers had previously detected Giardia duodenale., 266 

Cryptosporidium spp., and Enterocytozoon bieneusi at 82.6%, 56.2% and 87.6%, in combined sewer 267 

overflows (CSO) around China[46]. These molecular surveillance findings were also similar to ours at 268 

97% (n=29/30) for Giardia spp., not specifically Giardia duodenale, and 27% (n=8/30) for 269 

Cryptosporidium spp., and 53% (n=16/30) for E. bieneusi. Our data showed the presence of Strongyloides 270 

stercoralis in urban wastewater, a human parasite typically associated with rural, underserved 271 

settings[47]. This finding is an example of the utility of screening for uncommon or unexpected targets, 272 

revealing novel information that can supplement existing public health surveillance.   273 

 274 

Groundwater and runoff can intrude into wastewater collection systems through inflow and infiltration 275 

(I&I), which may be relevant for fungi and a possibility for other microbial species to mix with 276 

wastewater flows[48]. Other potential explanations of sources into wastewater may include animal waste, 277 

commercial and/or industrial waste. These influent flows and their sources are difficult to determine, but 278 
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routine surveillance – including with the addition of source-tracking –  may provide additional insight 279 

into influent pathogens, their possible origins, and their utility in understanding infection transmission and 280 

control in the sewershed.  281 

Value of multiple detections on TAC 282 

Multi-parallel detection of pathogens of interest using TAC can be helpful in long-term surveillance or 283 

monitoring of pathogens, including in rapid screening programs or where numerous pathogens may be of 284 

interest. Apart from known, emerging, or suspected pathogens, antimicrobial resistance genes or other 285 

PCR-detectable targets of public health relevance can be included in TAC design. One key premise of 286 

WBE and monitoring is the potential value of using the method as an early detection for the onset of a 287 

potential outbreak [49,50], yet most detection methods have a needle in a haystack approach versus a 288 

wider screening that could be especially applicable to state health departments or in routine monitoring. 289 

Most clinical testing is conducted one sample at a time and a high throughput method for simultaneous 290 

testing could expand the early warning potential to many other pathogens. 291 

The customizability of TAC has proven useful in other applications such as surveillance of respiratory 292 

illness[51,52], acute-febrile illness for outbreak or surveillance purposes[53], and to improve etiological 293 

detection of difficult neonatal infectious diseases for low-resource clinical settings[54]. Some studies 294 

have focused on applications of combining nucleic acid detection with quantitative microbial risk 295 

assessments[55], but none have considered such a broad set of applications to wastewater monitoring and 296 

surveillance, although some have applied these methods qualitatively on fecal sludge samples[56,57]. It is 297 

possible to create a multiplex assay for digital PCR, the leading technology for wastewater monitoring, 298 

for up to five different genes, but no other platform provides quantitative data on up to 48 gene targets 299 

during a single experimental run. 300 

TAC methods can fill a critical gap in existing molecular monitoring tools. As a method yielding 301 

quantitative estimates of potentially dozens of targets, it offers complementary advantages over emerging 302 

digital PCR platforms (greater sensitivity and lower limits of quantification, but fewer targets) and 303 
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sequencing methods (many more targets, but high limits of detection and generally not quantitative). TAC 304 

should be considered where targets are present in high numbers – like in wastewaters and fecal sludges – 305 

and where many pathogens are of interest.  306 

The application of improved methods for the detection and quantification of enteric pathogens in 307 

wastewater, in addition to other enteric pathogens of interest, can then be translated into relevant 308 

intervention and monitoring efforts[21].  As SARS-CoV-2 surveillance in wastewater reaches scale 309 

[7,34,58], detection and quantification of other pathogens has been proposed. Researchers have expanded 310 

on wastewater monitoring to focus increased surveillance on other respiratory viruses such as human 311 

influenza and rhinovirus[59], norovirus[60], or as an outbreak detection tool for influenza,[61] and are 312 

also considering other emerging infections such as monkeypox[62].  313 

 314 

Value of sensitivity of dPCR 315 

The current and suggested methodology to process wastewater samples using a molecular platform is 316 

dPCR due to its low limit of detection and quantification. While these efforts make sense to consider 317 

when focused on one particular pathogen, it is not as feasible and consumes several resources if 318 

considering a truly practical monitoring system for wastewater. Time, technical staff labor and resources 319 

are always a challenge for laboratories and especially public health laboratories that have been tasked 320 

with monitoring wastewater for SARS-CoV-2. We can expect enteric targets to be present in wastewater, 321 

but to further identify which enteric pathogens are present and their concentrations with respect to each 322 

other would be a useful application towards building a wastewater monitoring system.  323 

While SARS-CoV-2 was detected through TAC, we were also interested in detecting additionally relevant 324 

targets, including BCoV, PMMoV, and mtDNA, which were not previously included on the TAC. The 325 

normalization of pathogen concentrations using mtDNA consistently lowered concentrations across 326 

samples and may be useful as a normalization variable instead of or in addition to PMMoV. While 327 
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PMMoV has been widely used for normalization of wastewater data[63,64], we found the normalization 328 

efforts did not drastically reduce the noise-to-signal ratio. While several studies have used PMMoV as a 329 

normalization marker for SARS-CoV-2[12,65,66], fewer studies have considered human mitochondrial 330 

DNA markers and those who have found the marker to have strong correlations to clinical case 331 

counts[67]. Additional studies have also considered the use of crAssphage[12,64], HF183[41,68], and 332 

Bacteroides ribosomal RNA (rRNA) and human 18S rRNA as other normalization markers to explore 333 

using for wastewater fecal concentration data[12]. Normalization techniques using a variety of biological 334 

(PMMoV, HF183, crAssphage) and chemical markers (ammonia, total kjeldahl nitrogen, total 335 

phosphorous, biochemical oxygen demand) have been proposed as a way of accounting for non-human 336 

inputs to sewers (i.e., dilution effects) and improving correlation with clinical data and comparability 337 

between sites. However, the effects of normalization with a variety of techniques on correlations with 338 

clinical data have been mixed [41,63,69–71]. Our observations are consistent with those of previous 339 

studies. Normalization with mtDNA nor PMMoV reduced the coefficient of variation for single analytes. 340 

 341 

Limitations 342 

Wastewater sample recovery for SARS-CoV-2 has been successful when using fresh samples, but for 343 

many WWTP and their partners it may be unrealistic to complete same-day processing for logistical 344 

reasons[72]. This work demonstrated the recovery of pathogen targets using archived grab samples, 345 

which makes this approach open to a broader range of applications such as retrospective analyses where 346 

clinical data is available or can be linked to these environmental surveillance results. However, more 347 

research is needed to understand which recovery methods work best and can be performed efficiently for 348 

archived samples. While we did not optimize methods for recovery across all targets, it will be 349 

increasingly important to consider such methods when screening for multiple targets and depending on 350 

target selection [68,73,74].  351 
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A major limitation to interpreting this work is limited data on using multiple TAC targets and their 352 

incorporation into predictive models. Researchers have gained interest in calculating community-specific 353 

or dorm-specific fecal shedding rates specifically for SARS-CoV-2[75,76], but there was no specific 354 

information on the fecal shedding rates for this particular population to consider a modeling approach to 355 

relate pathogen concentration and clinical case data for asymptomatic individuals. Additionally, 356 

sewersheds of different sizes may have specific challenges in determining accurate shedding rates. Robust 357 

data on enteric shedding rates is not widely available for high-income countries, but efforts to estimate 358 

these variables and their uncertainties have been attempted[77].  359 

 360 

TAC methods are also limited by the number of gene target detections one can consider. With the option 361 

of detecting many pathogens comes with a need for determining the most relevant genes of interest. 362 

While TAC can run up to 48 unique targets, the total amount of template that enters each individual well 363 

is ~ 0.6 μL. This low template volume, compared to a 2-5 μL of template included in other molecular 364 

assays can affect the overall limits of detection for this platform. While singleplex assays may have lower 365 

limits of detection, the likelihood of optimizing a multiplex for up to 46 or more agents is unrealistic; 366 

therefore, giving TAC a considerable advantage as a high parallel, multiple detection platform[44]. 367 

Additionally, these targets and the QA/QC involved require dedicated time and effort to include relevant 368 

targets that may change based on future applications. The need for additional replicates run to produce 369 

robust analytical limits of quantification are encouraged for future work. Using this multiple pathogen 370 

detection tool does not account for variant changes and may not be suitable for all applications. Our 371 

findings indicate TAC offers a multi-parallel platform for screening wastewater for a diverse array of 372 

enteric pathogens of interest to public health with strong potential for screening other targets of interest 373 

including respiratory viruses and antibiotic resistance genes. 374 

 375 
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