12

Interim Safety and Immunogenicity of COVID-19 Omicron-BA.1 Variant-Containing Vaccine in Children

3 4

5

6

7

Avika Dixit, MBBS^a, Richard Bennett, MD^b, Kashif Ali, MD^c, Carl Griffin, MD^d, Robert A. Clifford, MD^e, Mark Turner, MD^f, Rosanne Poston, BS^a, Kelly Hautzinger, BS^a, Anne Yeakey, MD^a, Bethany Girard, PhD^a, Wen Zhou, PhD^a, Weiping Deng, PhD^a, Honghong Zhou, PhD^a, Sabine Schnyder Ghamloush, MD^a, Barbara J. Kuter, PhD^a, Karen Slobod, MD^a, Jacqueline M.

- 8 Miller, MD^a, Frances Priddy, MD^a, Rituparna Das, MD^a, for the ROVER Study Investigators†
- 9
- 10 Affiliations: ^aModerna, Inc., Cambridge, Massachusetts; ^bClinical Research Partners LLC,
- 11 Richmond, Virginia; ^cTexas Center for Drug Development, Houston, Texas; ^dLynn Health
- 12 Science Institute ERN PPDS, Oklahoma City, Oklahoma; ^eCoastal Pediatric Research,
- 13 Charleston, South Carolina; ^fVelocity Clinical Research Boise ERN PPDS, Meridian, Idaho
- 14 †A list of the ROVER Study Investigators is provided in the Supplementary Appendix.
- 15
- Address corresponding to: Avika Dixit, Clinical Development, Moderna, Inc., 200 Technology
 Square, Cambridge, MA 02139 [avika.dixit@modernatx.com], 617-949-6614
- 18
- 19
- 20
- 21

- 22 Abstract
- 23 **Objectives:** We report interim safety and immunogenicity results from a phase 3 study of
- 24 omicron-BA.1 variant-containing (mRNA-1273.214) primary vaccination series (Part 1) and
- 25 booster dose (Part 2) in children aged 6 months to 5 years (NCT05436834).
- 26
- 27 Methods: In Part 1, SARS-CoV-2 unvaccinated participants, including participants who
- received placebo in the KidCOVE study (NCT04796896), received 2 doses of mRNA-1273.214
- 29 (25-µg omicron-BA.1 and ancestral Wuhan-Hu-1 mRNA 1:1 co-formulation) primary series. In
- 30 Part 2, participants who previously completed the mRNA-1273 (25-µg) primary series in
- 31 KidCOVE received a mRNA-1273.214 (10-µg) booster dose. Primary objectives were safety,
- 32 reactogenicity, and immunogenicity, including prespecified immune response success criteria.
- 33
- **Results:** At the data cutoff (December 5, 2022), 179 participants had received ≥ 1 dose of
- 35 mRNA-1273.214 primary series (Part 1) and 539 participants had received a mRNA-1273.214
- 36 booster dose (Part 2). The safety profile of mRNA-1273.214 primary series and booster dose was
- 37 consistent with that of the mRNA-1273 primary series in this same age group, with no new
- 38 safety concerns identified and no vaccine-related serious adverse events observed. Compared
- 39 with neutralizing antibody responses induced by the mRNA-1273 primary series, both the
- 40 mRNA-1273.214 primary series and booster elicited responses that were superior against
- 41 omicron-BA.1 and non-inferior against ancestral Wuhan-Hu-1(D614G).
- 42

43 Conclusions: mRNA-1273.214 was immunogenic against BA.1 and D614G in children aged 6

- 44 months to 5 years, with a comparable safety profile to mRNA-1273, when given as a 2-dose
- 45 primary series or as a booster dose after the mRNA-1273 primary series.
- 46
- 47 Clinical Trial Registry: NCT05436834
- 48

49 Introduction

50	mRNA-based vaccines have been an essential approach to mitigate COVID-19 burden
51	among children and adults worldwide. ¹ However, with the predominance of immune-evasive
52	omicron sublineages globally, ²⁻⁴ COVID-19 vaccines targeting the ancestral SARS-CoV-2 strain
53	have shown reduced effectiveness. ^{5, 6} A 2-dose mRNA-1273 primary series (SPIKEVAX;
54	Moderna, Inc., Cambridge, USA) was well-tolerated in children aged 6 months to 11 years in the
55	phase 2/3 KidCOVE trial, eliciting immune responses against the ancestral strain that were
56	noninferior to those in young adults. ^{7, 8} When the delta variant prevailed, the primary series
57	demonstrated 88.0% (95% CI, 70.0-95.8; modified intent to treat [mITT]) efficacy in children
58	aged 6-11 years. ⁸ However, during omicron predominance, vaccine efficacy was 45.8% (95%
59	CI, 19.0-63.4; mITT) and 39.6% (95% CI, 19.1-54.6; mITT) in children aged 6-23 months and 2-
60	5 years, respectively. ⁷ Consistent with clinical trial data, real-world effectiveness of 2 doses of
61	mRNA-1273 among children aged 3-5 years is reported at 36% (95% CI, 15-52) during
62	circulation of omicron sublineages.9 A higher infection and disease burden among children was
63	observed after the emergence of omicron, with COVID-19 now the leading cause of infectious-
64	and respiratory disease-related deaths among US individuals aged 0-19 years, surpassing
65	influenza and pneumonia. ¹⁰
66	Accordingly, COVID-19 vaccination strategies have been devised to broaden protection
67	against SARS-CoV-2 variants. Variant-updated vaccines containing mRNAs encoding for both
68	the ancestral SARS-CoV-2 strain (as in mRNA-1273) and omicron subvariant BA.1 (mRNA-
69	1273.214) or BA.4/BA.5 (mRNA-1273.222) have been developed. In the United States, mRNA-

701273.222 is authorized as a booster dose among individuals aged ≥ 6 months and as a primary

series for age groups recommended to receive a primary series.¹¹ In individuals aged ≥ 16 years, a

72	booster dose of either variant-containing vaccine has elicited superior neutralizing antibody
73	(nAb) responses against the relevant omicron strain with a safety profile similar to mRNA-
74	1273. ¹²⁻¹⁴ Given the consistent immunogenicity profile for the mRNA-1273 primary series
75	between pediatric populations and young adults, ^{7, 8, 15} variant-containing vaccination could
76	provide similar benefits to children as seen in adults.
77	Here, we report interim safety and immunogenicity results from a phase 3 study of mRNA-
78	1273.214 primary vaccination series (Part 1) and booster dose (Part 2) in children aged 6 months
79	to 5 years, as a model for variant-containing COVID-19 vaccination in children.
80	
0.1	
81	Methods
82	Study Design and Participants
83	The open label where 2 DOVED trial annulled mentionents each 6 menths to 5 years at 24
05	The open-label, phase 5 KOVEK that enrolled participants aged 6 months to 5 years at 24
84	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled
83 84 85	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants
83 84 85 86	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants who received placebo in KidCOVE (NCT04796896). Participants received 2 doses of mRNA-
83 84 85 86 87	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants who received placebo in KidCOVE (NCT04796896). Participants received 2 doses of mRNA-1273.214 (25-µg omicron-BA.1 and ancestral Wuhan-Hu-1 spike mRNA 1:1 co-formulation)
83 84 85 86 87 88	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants who received placebo in KidCOVE (NCT04796896). Participants received 2 doses of mRNA-1273.214 (25-µg omicron-BA.1 and ancestral Wuhan-Hu-1 spike mRNA 1:1 co-formulation) primary series on Days 1 and 29, with a 12-month follow-up period after dose 2. Part 2 enrolled
84 85 86 87 88 89	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants who received placebo in KidCOVE (NCT04796896). Participants received 2 doses of mRNA-1273.214 (25-µg omicron-BA.1 and ancestral Wuhan-Hu-1 spike mRNA 1:1 co-formulation) primary series on Days 1 and 29, with a 12-month follow-up period after dose 2. Part 2 enrolled participants who previously completed mRNA-1273 (25-µg) primary series in KidCOVE.
84 85 86 87 88 88 89 90	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants who received placebo in KidCOVE (NCT04796896). Participants received 2 doses of mRNA- 1273.214 (25-µg omicron-BA.1 and ancestral Wuhan-Hu-1 spike mRNA 1:1 co-formulation) primary series on Days 1 and 29, with a 12-month follow-up period after dose 2. Part 2 enrolled participants who previously completed mRNA-1273 (25-µg) primary series in KidCOVE. Participants received a mRNA-1273.214 (10-µg) booster ≥4 months after mRNA-1273 primary
83 84 85 86 87 88 88 89 90 91	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants who received placebo in KidCOVE (NCT04796896). Participants received 2 doses of mRNA- 1273.214 (25-µg omicron-BA.1 and ancestral Wuhan-Hu-1 spike mRNA 1:1 co-formulation) primary series on Days 1 and 29, with a 12-month follow-up period after dose 2. Part 2 enrolled participants who previously completed mRNA-1273 (25-µg) primary series in KidCOVE. Participants received a mRNA-1273.214 (10-µg) booster \geq 4 months after mRNA-1273 primary series and were followed for 6 months after booster. Participants who completed mRNA-1273
83 84 85 86 87 88 89 90 91 92	US study sites and was conducted in 2 parts (NCT05436834; Figure S1). Part 1 enrolled participants who were not previously vaccinated against SARS-CoV-2, including participants who received placebo in KidCOVE (NCT04796896). Participants received 2 doses of mRNA- 1273.214 (25-µg omicron-BA.1 and ancestral Wuhan-Hu-1 spike mRNA 1:1 co-formulation) primary series on Days 1 and 29, with a 12-month follow-up period after dose 2. Part 2 enrolled participants who previously completed mRNA-1273 (25-µg) primary series in KidCOVE. Participants received a mRNA-1273.214 (10-µg) booster ≥4 months after mRNA-1273 primary series and were followed for 6 months after booster. Participants who completed mRNA-1273 primary series in KidCOVE served as a historical comparator for inference of mRNA-1273.214

94	Eligible participants were generally healthy or had stable chronic conditions, without a
95	known SARS-CoV-2 infection in the preceding 90 days. Inclusion/exclusion criteria and study
96	ethical statements are described the Supplement.
97	The protocol and study documents were approved before conduct of study procedures
98	(Advarra Institutional Review Board). Written informed consent from parent(s)/legally
99	authorized representative(s) of children was obtained before performing study procedures.
100	
101	Vaccines
102	mRNA-1273 contains mRNA encoding for the prefusion stabilized spike glycoprotein of
103	the Wuhan-Hu-1 isolate of SARS-CoV-2. mRNA-1273.214 contains mRNAs (1:1 ratio)
104	encoding for the prefusion stabilized spike glycoprotein of the Wuhan-Hu-1 isolate and for the
105	omicron variant (B.1.1.529) subvariant BA.1 protein and was administered intramuscularly as a
106	25-µg primary series (Part 1; Days 1 and 29) or 10-µg booster (Part 2; booster Day 1).
107	
108	Objectives
109	The primary safety objective was to evaluate the safety and reactogenicity of mRNA-
110	1273.214 administered as a 2-dose primary series (25-µg dose, Part 1) or as a single booster (10-
111	μ g dose after mRNA-1273 25- μ g 2-dose primary series, Part 2) in participants aged 6 months to
112	5 years. Primary immunogenicity objectives were to infer effectiveness of mRNA-1273.214
113	based on immune responses against SARS-CoV-2 strains BA.1 and Wuhan-Hu-1 (D614G)
114	measured 28 days after vaccination among participants (1) regardless of baseline SARS-CoV-2
115	status (Part 1) or (2) who completed mRNA-1273 primary series and were SARS-CoV-2
116	negative prior to booster (Part 2). Inference of mRNA-1273.214 effectiveness was based on

117	assessment of immune responses in participants in the same age group after mRNA-1273
118	primary series in KidCOVE. Secondary objectives are described in the Supplement.
119	
120	Safety Assessments
121	Safety assessments included local and systemic solicited adverse reactions (SARs)
122	through 7 days after vaccination; unsolicited adverse events (AEs) through 28 days after
123	vaccination; and AEs leading to study withdrawal, medically attended AEs (MAAEs), AEs of
124	special interest (AESIs; Table S1), and serious AEs (SAEs) from Day 1 through the interim
125	analysis data cutoff.
126	
127	Immunogenicity Assessments
128	Blood samples for immunogenicity assessments were collected on Days 1 and 57 (Part 1)
129	and booster Days 1 and 29 (Part 2). Samples on Days 1 and 57 after mRNA-1273 primary series
130	from KidCOVE participants were evaluated as a historical comparator. nAb geometric mean
131	concentrations (GMCs) against BA.1 and Wuhan-Hu-1 (D614G variant to optimize signal
132	detection) were measured using pseudovirus neutralization assays. ¹⁶ Seroresponse rates (SRRs)
133	against BA.1 and D614G were evaluated.
134	
135	Statistical Analyses
136	Sample size calculations are presented in the Supplement. Safety analyses were based on
137	the safety set, except for SARs which were based on the solicited safety set (Table S2). Part 1
138	primary immunogenicity analyses were assessed using the per-protocol immunogenicity set
139	(PPIS); this analysis set was chosen as it was representative of the high prevalence of

140	seropositivity among previously unvaccinated individuals. Part 2 primary immunogenicity
141	analyses were conducted among participants in the PPIS with no serologic or virologic evidence
142	of prior SARS-CoV-2 infection (PPIS-Neg).
143	nAb values with corresponding 95% CIs were calculated at each sampling timepoint.
144	Number and percentage of participants with seroresponse after vaccination were provided with
145	2-sided 95% CIs (Clopper-Pearson method). For the primary immunogenicity analysis of nAb
146	GMCs, a covariance model was utilized with the nAb value as the dependent variable and group
147	(mRNA-1273.214 vs mRNA-1273) as the fixed variable, adjusted for age subgroup (6-23
148	months and 2-5 years). The Part 1 model also adjusted for baseline SARS-CoV-2 infection status
149	(ie, evidence of prior SARS-CoV-2 infection). The nAb GMC value was estimated using the
150	model geometric least square mean (GLSM). The geometric mean ratio (GMR; mRNA-1273.214
151	vs mRNA-1273) was estimated using the ratio of GLSM, with 2-sided 95% CI from the model
152	employed to assess differences in immune response between the 2 groups. Superiority and non-
153	inferiority were declared if the lower bound (LB) of the GMR 95% CI was >1 and >0.667,
154	respectively. SRR analyses are described in the Supplement.
155	
156	Results
157	Part 1
158	Participants

159 From enrollment to the interim analysis (June 21, 2022, to December 5, 2022), 179

160 participants received \geq 1 dose of mRNA-1273.214 and 142 (79.3%) reached day 28 and received

161 dose 2 (Figure 1). Median (interquartile range [IQR]) age of participants was 3 (1-3) years and

162 most participants were White (65.4%; **Table 1**). Median (IQR) follow-up time was 85 (43-113)

163 days after dose 1 and 68 (34-90) days after dose 2. Baseline SARS-CoV-2 positivity rate was164 63.1%.

165 Safety

166 At least 1 SAR within 7 days after dose 1 and 2 was reported by 102 (57.0%) and 89 167 participants (63.1%), respectively (Figure S2). Most SARs were grade 1 or 2; no grade 4 events 168 were reported. The most commonly reported local SAR after either injection was pain (51.4%). 169 Irritability/crying (55.2%), sleepiness (43.7%), and fatigue (41.8%) were the most commonly 170 reported systemic SARs. Fever (≥38°C/100.4°F) was reported by 16 participants (8.9%) after 171 dose 1 and 19 (13.5%) after dose 2. Grade 3 fever was reported by 2 participants (1.1%) after 172 dose 1 and 2 (1.4%) after dose 2. Median (range) time of SAR onset was 1.0 (1-5) and 1.0 (1-6)173 day after doses 1 and 2, respectively, and duration was 2.0 (1-7) days after doses 1 and 2. 174 Unsolicited AEs were reported by 30.7% of participants within 28 days after either 175 injection; 1.1% were considered vaccine-related (1 report each of diarrhea and croup; Table S3). 176 The most common unsolicited AEs were upper respiratory tract infection (8.9%), rhinorrhea 177 (2.8%), and ear infection (2.2%). One participant (0.6%) experienced an SAE (asthma 178 exacerbation 14 days after dose 1) considered unrelated to vaccination. There were no AESIs or 179 AEs leading to discontinuation of study vaccine or study participation up to the data cutoff. 180 Immunogenicity 181 The primary series induced nAb levels against BA.1 that were superior to those elicited 182 by mRNA-1273 in KidCOVE (Figure 2A). Among the PPIS, observed nAb GMCs (95% CI) 183 against BA.1 were 1889.7 (1430.0-2497.2) after mRNA-1273.214 primary series and 74.3 (67.7-184 81.7) after mRNA-1273. The Day 57 estimated GMR (95% CI) was 25.4 (20.1-32.1), meeting

185 the pre-specified superiority criterion. Among the PPIS-Neg, mRNA-1273.214 primary series

186	induced higher observed nAb GMCs (95% CI) against BA.1 than mRNA-1273 primary series at
187	Day 57 (mRNA-1273.214: 1037.9 [786.5-1369.7]; mRNA-1273: 65.7 [60.6-71.3]), with an
188	estimated GMR (95% CI) of 15.8 (11.4-22.0). Day 57 SRRs (95% CI) for BA.1 were 89.3%
189	(78.1-96.0) and 86.8% (82.0-90.7) after mRNA-1273.214 and mRNA-1273 primary series,
190	respectively (Table S4).
191	At Day 57, the primary series elicited nAb responses against D614G that were non-
192	inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 2B). Among the
193	PPIS, the observed nAb GMCs (95% CI) against D614G were 1432.9 (1054.5-1947.0) after
194	mRNA-1273.214 and 1732.5 (1611.5-1862.5) after mRNA-1273. The estimated GMR was 0.8
195	(95% CI, 0.7-1.0), meeting the pre-specified criterion of non-inferiority. Among the PPIS-Neg,
196	the observed nAb GMCs (95% CI) against D614G were 612.5 (448.2-836.9) after mRNA-
197	1273.214 and 1559.4 (1459.2-1666.6) after mRNA-1273, with an estimated GMR of 0.4 (95%
198	CI, 0.3-0.5). Day 57 SRRs (95% CI) were 97.0% (89.5-99.6) and 99.5% (98.5-99.9) after
199	mRNA-1273.214 and mRNA-1273 primary series, respectively (Table S4).
200	
201	Part 2
202	Participants
203	From enrollment to the interim analysis (June 22, 2022, to December 5, 2022), 539
204	participants received a mRNA-1273.214 booster (Figure 1). Median (IQR) age was 3 (2-4; the
205	older age range reflecting the time lapse between primary series receipt in KidCOVE and
206	become eligible for booster dosing) years and most participants were White (81.1%; Table 2).

207 Median (IQR) follow-up after the mRNA-1273.214 booster was 117 (109-130) days and the

208 median time between dose 2 of mRNA-1273 primary series and mRNA-1273.214 booster was
209 7.9 (7.0-8.3) months.

210

211 Safety

212	Overall, 382 participants (70.9%) reported ≥ 1 SAR within 7 days after booster
213	vaccination (Figure S3). Most SARs were grade 1 or 2 with no grade 4 events reported. Pain
214	(47.3%) was the most commonly reported local SAR; irritability/crying (53.2%), fatigue
215	(33.3%), and loss of appetite (22.3%) were the most commonly reported systemic SARs. Fever
216	(≥38°C/100.4°F) was reported by 41 participants (7.6%); grade 3 fever was reported by 5
217	participants (0.9%), all in the 2-to-5-year age group. Median (range) time of SAR onset was 1.0
218	(1.0-7.0) day and duration was 2.0 (1.0-14.0) days after booster.
219	Unsolicited AEs were reported by 22.3% of participants within 28 days after booster
220	(Table S5); 14 (2.6%) were considered vaccine-related. The most reported unsolicited AE was
221	upper respiratory tract infection (5.8%) and the most common unsolicited AEs considered
222	vaccine-related were diarrhea, vomiting, dermatitis, and urticaria (0.4% each). One participant
223	(0.2%) experienced an AESI considered vaccine-related 1 day after booster (erythema
224	multiforme, mild); of note, topical silver sulfadiazine was used for the treatment of bacterial
225	folliculitis previously by this participant. No SAEs, fatal events, or study discontinuations due to
226	AEs occurred within 28 days following booster. Five SAEs and an additional AESI occurred up
227	to the data cutoff, none of which were considered vaccine-related.

229 Immunogenicity

230	In the primary analysis (PPIS-Neg), booster vaccination induced nAb responses against
231	BA.1 that were superior to those following mRNA-1273 primary series in KidCOVE (Figure
232	3A). The observed nAb GMCs (95% CI) against BA.1 were 822.0 (737.4-916.5) after mRNA-
233	1273.214 booster and 65.7 (60.6-71.3) after dose 2 of mRNA-1273, respectively; the estimated
234	GMR was 12.5 (95% CI, 11.0-14.3), meeting the pre-specified superiority criterion.
235	Seroresponse rate against BA.1 relative to pre-dose 1 was 99.7% (95% CI, 98.1-100.0) after
236	mRNA-1273.214 booster and 86.1% (95% CI, 81.1-90.2) after mRNA-1273 primary series
237	(Figure 3B). The SRR difference was 13.6% (95% CI, 9.7-18.5), meeting the pre-specified non-
238	inferiority criterion.
239	Neutralizing antibody responses against D614G after booster vaccination were non-
239 240	Neutralizing antibody responses against D614G after booster vaccination were non- inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 3A). Among the
239 240 241	Neutralizing antibody responses against D614G after booster vaccination were non- inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 3A). Among the PPIS-Neg, observed nAb GMCs (95% CI) against D614G were 4873.3 (4453.6-5332.5) and
239240241242	Neutralizing antibody responses against D614G after booster vaccination were non- inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 3A). Among the PPIS-Neg, observed nAb GMCs (95% CI) against D614G were 4873.3 (4453.6-5332.5) and 1559.4 (1459.2-1666.6) after mRNA-1273.214 booster and mRNA-1273 primary series,
 239 240 241 242 243 	Neutralizing antibody responses against D614G after booster vaccination were non- inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 3A). Among the PPIS-Neg, observed nAb GMCs (95% CI) against D614G were 4873.3 (4453.6-5332.5) and 1559.4 (1459.2-1666.6) after mRNA-1273.214 booster and mRNA-1273 primary series, respectively. The estimated GMR of 3.1 (95% CI, 2.8-3.5) met the pre-specified non-inferiority
 239 240 241 242 243 244 	Neutralizing antibody responses against D614G after booster vaccination were non- inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 3A). Among the PPIS-Neg, observed nAb GMCs (95% CI) against D614G were 4873.3 (4453.6-5332.5) and 1559.4 (1459.2-1666.6) after mRNA-1273.214 booster and mRNA-1273 primary series, respectively. The estimated GMR of 3.1 (95% CI, 2.8-3.5) met the pre-specified non-inferiority criterion. SRRs relative to pre-dose 1 were 100.0% (95% CI, 98.7-100.0) and 99.5% (95% CI,
 239 240 241 242 243 244 245 	Neutralizing antibody responses against D614G after booster vaccination were non- inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 3A). Among the PPIS-Neg, observed nAb GMCs (95% CI) against D614G were 4873.3 (4453.6-5332.5) and 1559.4 (1459.2-1666.6) after mRNA-1273.214 booster and mRNA-1273 primary series, respectively. The estimated GMR of 3.1 (95% CI, 2.8-3.5) met the pre-specified non-inferiority criterion. SRRs relative to pre-dose 1 were 100.0% (95% CI, 98.7-100.0) and 99.5% (95% CI, 98.4-99.9) for mRNA-1273.214 boosted participants and mRNA-1273 primary series recipients,
 239 240 241 242 243 244 245 246 	Neutralizing antibody responses against D614G after booster vaccination were non- inferior to those induced by mRNA-1273 primary series in KidCOVE (Figure 3A). Among the PPIS-Neg, observed nAb GMCs (95% CI) against D614G were 4873.3 (4453.6-5332.5) and 1559.4 (1459.2-1666.6) after mRNA-1273.214 booster and mRNA-1273 primary series, respectively. The estimated GMR of 3.1 (95% CI, 2.8-3.5) met the pre-specified non-inferiority criterion. SRRs relative to pre-dose 1 were 100.0% (95% CI, 98.7-100.0) and 99.5% (95% CI, 98.4-99.9) for mRNA-1273.214 boosted participants and mRNA-1273 primary series recipients, respectively (Figure 3B). The SRR difference of 0.5% (95% CI, -0.8 to -1.6) met the pre-

249 **Discussion**

250	The omicron-BA.1 variant-containing vaccine (mRNA-1273.214), administered as a 2-
251	dose primary series (25 μ g) or a booster (10 μ g), had an acceptable safety profile with no new
252	safety concerns in children aged 6 months to 5 years. Compared to mRNA-1273 primary series,
253	elicited nAb responses were superior against BA.1 and non-inferior against D614G. Overall,
254	these interim findings are consistent with current data on variant-containing vaccination in
255	adults. This study is among the first to demonstrate the safety and immunogenicity of a variant-
256	containing COVID-19 vaccine for use as a primary series and booster in pediatric populations,
257	serving as a model of this approach in children.
258	The safety profile of mRNA-1273.214 as a primary series and booster dose was
259	consistent with the mRNA-1273 primary series in this age group. ⁷ Unsolicited AEs were
260	generally reflective of common pediatric illnesses, and there were no vaccine-related SAEs or
261	severe AEs. Reactogenicity profiles of the primary series and booster were characterized by
262	mild-to-moderate, transient reactogenicity across age cohorts, with few grade 3, and no grade 4
263	reactions observed. Overall, no new safety concerns were identified, and both the primary series
264	and booster had an acceptable reactogenicity profile in children aged 6 months to 5 years.
265	An omicron-BA.4/BA.5 variant-containing vaccine (mRNA-1273.222) is currently
266	authorized in the United States as a 2-dose primary series in children aged 6 months to 5 years, ¹¹
267	¹⁷ as this population, and younger children in particular, have lower SARS-CoV-2 seropositivity
268	than older age groups. ¹⁸ Development of variant-containing formulations suitable for primary
269	vaccination in children is a necessary response to an anticipated reduction in seropositivity
270	among children, with aging-in of new birth cohorts paired with continued SARS-CoV-2
271	evolution. In this study, the effectiveness of a mRNA-1273.214 primary series in children was

inferred from meeting pre-specified success criteria for immunobridging to age-matched
historical controls who received mRNA-1273 primary series in KidCOVE.⁷ Overall, these data
suggest that variant-containing primary vaccination will potentially better protect young children
as SARS-CoV-2 variants evolve and establishes a proof of principle for this approach among
children.

277 The omicron-BA.4/BA.5 variant-containing vaccine is also authorized in the United States as a booster dose in children aged 6 months to 5 years.^{11, 17} In this study, evaluation of an 278 279 omicron-BA.1 variant-containing vaccine (mRNA-1273.214) booster after completing the 280 original primary series provided insights into variant responses in children. Effectiveness of the 281 booster was inferred based on meeting pre-specified success criteria for immunobridging to 282 mRNA-1273 primary series recipients in KidCOVE.⁷ Our findings in young children are 283 consistent with those in adults, with omicron-containing booster vaccination eliciting superior immune responses against vaccine-matched BA.1 or BA.4/BA.5.^{12, 13} Moreover, a BA.4/BA.5-284 285 containing booster (mRNA-1273.222) in adults induced nAbs against BQ.1.1 and XBB.1 subvariants, highlighting the breadth afforded by variant-containing formulations.^{14, 19} Other 286 287 studies of mRNA-based COVID-19 vaccines have shown persistence of germinal center B cell responses, enabling robust humoral immunity against SARS-CoV-2.20, 21 Additionally, COVID-288 289 19 incidence rates trended lower among mRNA-1273.214 booster recipients than mRNA-1273 booster recipients in a clinical trial of individuals aged ≥ 16 years.¹³ Notably, real-world studies 290 291 showed variant-containing boosters provide additional protection against symptomatic infection²² or COVID-19–associated hospitalization²³ among adults who received ≥ 2 doses of a 292 293 vaccine targeting the ancestral strain. Overall, the observed benefits of booster vaccination in 294 adults are expected to extend to young children. Further, given that efficacy of the original

vaccine declined with the emergence of a new immune-evading variant,⁶ ongoing booster
 vaccinations would only be anticipated when vaccine formulation is updated to better match
 emergent SARS-CoV-2 variants.

298 Trial limitations include the open-label study design and use of a non-contemporaneous 299 comparative cohort. The inclusion of a placebo-controlled or an active-controlled arm was 300 precluded due to established COVID-19 vaccination recommendations in this age group. 301 Additionally, this interim analysis presents data from a small population of Part 1 participants 302 who had a higher percentage of baseline SARS-CoV-2-positive status than previously observed 303 among KidCOVE participants, which could potentially impact immunogenicity comparisons. All 304 participants were included for the primary analysis since the cohort is reflective of the serologic 305 status of the unvaccinated population. When analyses were limited to baseline SARS-CoV-2-306 negative participants, substantially higher nAb concentrations were still observed against BA.1 307 after mRNA-1273.214 versus mRNA-1273 vaccination. However, nAb concentrations against 308 ancestral SARS-CoV-2 among baseline SARS-CoV-2 negative participants were lower after 309 mRNA-1273.214 versus mRNA-1273. But as SARS-CoV-2 has evolved, data demonstrate that a 310 variant-containing vaccine more closely matched to circulating strains is more beneficial than the original vaccine.¹³ Further studies of variant-containing vaccines in children are ongoing. A 311 312 phase 2 trial evaluating the safety, tolerability, and effectiveness of mRNA-1273.214 among 313 infants aged 12 weeks to 5 months is recruiting (NCT05584202).

314

315 Conclusion

In children aged 6 months to 5 years, a 2-dose 25-μg primary series and 10-μg booster
dose of mRNA-1273.214 were immunogenic against BA.1 and D614G, with a comparable safety

- 318 profile to mRNA-1273 primary vaccination. These findings are among the first to demonstrate
- 319 the safety and inferred effectiveness of a variant-containing COVID-19 vaccine in pediatric
- 320 populations and support a 2-dose schedule for previously unvaccinated children with an
- 321 additional dose when the formulation is successively updated. Further studies are needed to
- 322 assess the effectiveness and durability of variant-containing COVID-19 vaccines in children.

323

324 Funding/Support

- 325 This work was supported by Moderna, Inc.
- 326

327 Acknowledgments

- 328 We thank the participants and their families for their involvement in the trial, as well as the staff
- 329 at the trial sites for implementing the protocol. Medical writing and editorial assistance were
- 330 provided by Jared Mackenzie, PhD, Kate Russin, PhD, and Lindsey Kirkland, PhD, of
- 331 MEDiSTRAVA in accordance with Good Publication Practice guidelines, funded by Moderna,
- 332 Inc., and under the direction of the authors.
- 333

334 Conflicts of Interest Disclosures (includes financial disclosures)

- AD, RP, KH, BG, WZ, WD, HZ, SSG, JMM, and RD are employees of Moderna, Inc., and hold stock/stock options in the company. AY, KS and BJK are consultants for Moderna, Inc.
- 337

338 Data Sharing Statement

- 339 As the trial is ongoing, access to patient-level data presented in the article (immunogenicity,
- 340 safety, and reactogenicity) and supporting clinical documents by qualified external researchers
- 341 who provide methodologically sound scientific proposals may be available upon reasonable
- 342 request and subject to review once the trial is complete. Such requests can be made to Moderna,
- 343 Inc., 200 Technology Square, Cambridge, MA 02139. A materials transfer and/or data access
- 344 agreement with the sponsor will be required for accessing shared data. All other relevant data are
- 345 presented in the paper.
- 346

347 Author Contributions

- 348 A.D., R.B., K.A., M.T., K.H., K.S., W.D., H.Z., S.S.G., J.M.M., F.P., and R.D. conceived and
- designed the current study. A.D., R.B., K.A., C.G., R.A.C., M.T., R.P., B.K., K.S., A.Y., B.G.,
- 350 W.Z., W.D., H.Z., S.S.G., J.M.M., F.P., and R.D. carried out analysis and interpretation of data
- and take responsibility for the integrity of the data and accuracy of the data analysis. All authors
- 352 critically reviewed the paper for important intellectual content and approved the final draft of the
- 353 manuscript.
- 354

355 References 356 Watanabe A, Kani R, Iwagami M, Takagi H, Yasuhara J, Kuno T. Assessment of 1. 357 Efficacy and Safety of mRNA COVID-19 Vaccines in Children Aged 5 to 11 Years: A 358 Systematic Review and Meta-analysis. JAMA Pediatr. 2023. 359 World Health Organization. Tracking SARS-CoV-2 variants. 2. 360 https://www.who.int/activities/tracking-SARS-CoV-2-variants. Published 2022. 361 Accessed 3 November, 2022. 362 3. Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman LS, Ash N, et al. 363 Protection and waning of natural and hybrid immunity to SARS-CoV-2. N Engl J Med. 364 2022;386(23):2201-2212. 365 4. The World Health Organization. Weekly Epidemiological Update on COVID-19 18-8 March 2023. https://www.who.int/publications/m/item/weekly-epidemiological-update-366 367 on-covid-19---8-march-2023. Published 2023. Accessed 15 March 2023. 368 5. Collie S, Nayager J, Bamford L, Bekker LG, Zylstra M, Gray G. Effectiveness and durability of the BNT162b2 vaccine against omicron sublineages in South Africa. N Engl 369 370 J Med. 2022;387(14):1332-1333. 371 6. Tseng HF, Ackerson BK, Luo Y, Sy LS, Talarico CA, Tian Y, et al. Effectiveness of 372 mRNA-1273 against SARS-CoV-2 omicron and delta variants. Nat Med. 373 2022;38(5):1063-1071. 374 7. Anderson EJ, Creech CB, Berthaud V, Piramzadian A, Johnson KA, Zervos M, et al. 375 Evaluation of mRNA-1273 vaccine in children 6 months to 5 years of age. N Engl J Med. 376 2022;387(18):1673-1687. 377 8. Creech CB, Anderson E, Berthaud V, Yildirim I, Atz AM, Melendez Baez I, et al. 378 Evaluation of mRNA-1273 Covid-19 vaccine in children 6 to 11 Years of age. N Engl J 379 Med. 2022;386(21):2011-2023. 380 9. Fleming-Dutra KE, Ciesla AA, Roper LE, Smith ZR, Miller JD, Accorsi EK, et al. 381 Preliminary estimates of effectiveness of monovalent mRNA vaccines in preventing 382 symptomatic SARS-CoV-2 infection among children aged 3-5 years - increasing 383 community access to testing program, United States, July 2022-February 2023. MMWR 384 Morb Mortal Wkly Rep. 2023;72(7):177-182. 385 10. Flaxman S, Whittaker C, Semenova E, Rashid T, Parks RM, Blenkinsop A, et al. 386 Assessment of COVID-19 as the underlying cause of death among children and young 387 people aged 0 to 19 years in the US. JAMA Netw Open. 2023;6(1):e2253590. 388 U.S. Food and Drug Administration. Fact Sheet for Healthcare Providers Administering 11. 389 Vaccine: Emergency Use Authorization of Moderna COVID-19 Vaccine, Bivalent (Original and Omicron BA.4/BA.5). 390 391 https://assets.modernatx.com/m/17d17b09d117ca22/original/EUA-COVID-19-Vaccine-392 Bivalent-Fact-Sheet-for-Vaccine-Providers-6m.pdf. Updated April 2023. 393 12. Chalkias S, Harper C, Vrbicky K, Walsh SR, Essink B, Brosz A, et al. A bivalent 394 omicron-containing booster vaccine against Covid-19. N Engl J Med. 395 2022;387(14):1279-1291. 396 13. Lee IT, Cosgrove CA, Moore P, Bethune C, Nally R, Bula M, et al. A randomized trial 397 comparing omicron-containing boosters with the original Covid-19 vaccine mRNA-1273. 398 medRxiv. 2023:2023.2001.2024.23284869.

399	14.	Chalkias S, Whatley J, Eder F, Essink B, Khetan S, Bradley P, et al. Safety and
400		Immunogenicity of Omicron BA.4/BA.5 Bivalent Vaccine Against Covid-19. <i>medRxiv</i> .
401		2022:2022.2012.2011.22283166.
402	15.	Alı K, Berman G, Zhou H, Deng W, Faughnan V, Coronado-Voges M, et al. Evaluation
403		of mRNA-1273 SARS-CoV-2 vaccine in adolescents. <i>NEJM</i> . 2021;385(24):2241-2251.
404	16.	Bonhomme ME, Bonhomme CJ, Strelow L, Chaudhari A, Howlett A, Breidenbach C, et
405		al. Robust validation and performance comparison of immunogenicity assays assessing
406		IgG and neutralizing antibodies to SARS-CoV-2. <i>PLoS One</i> . 2022;17(2):e0262922.
407	17.	U.S. Food and Drug Administration. Emergency Use Authorization for Moderna
408		COVID-19 Vaccine Review Memo 04182023.
409		https://www.fda.gov/media/167306/download. Updated April 2023.
410	18.	Naeimi R, Sepidarkish M, Mollalo A, Parsa H, Mahjour S, Safarpour F, et al. SARS-
411		CoV-2 seroprevalence in children worldwide: a systematic review and meta-analysis.
412		EClinicalMedicine. 2023;56:101786.
413	19.	Moderna. Moderna COVID-19 Bivalent Vaccines Primary Series and Booster, Vaccines
414		and Related Biological Products Advisory Committee.
415		https://www.fda.gov/media/164810/download. Updated January 26 2023.
416	20.	Turner JS, O'Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, et al. SARS-CoV-
417		2 mRNA vaccines induce persistent human germinal centre responses. Nature.
418		2021;596(7870):109-113.
419	21.	Alsoussi WB, Malladi SK, Zhou JQ, Liu Z, Ying B, Kim W, et al. SARS-CoV-2
420		Omicron boosting induces de novo B cell response in humans. Nature. 2023.
421	22.	Link-Gelles R, Ciesla AA, Fleming-Dutra K-E, Smith ZR, Britton A, Wiegand RE, et al.
422		Effectiveness of Bivalent mRNA Vaccines in Preventing Symptomatic SARS-CoV-2
423		Infection — Increasing Community Access to Testing Program, United States,
424		September-November 2022. MMWR Morb Mortal Wkly Rep. 2022;71(5152):1526-1530.
425	23.	Tenforde MW, Weber ZA, Natarajan K, Klein NP, Kharbanda AB, Stenehjem E, et al.
426		Early estimates of bivalent mRNA vaccine effectiveness in preventing COVID-19-
427		associated emergency department or urgent care encounters and hospitalizations among
428		immunocompetent adults - VISION Network, nine states, September-November 2022.
429		MMWR Morb Mortal Wkly Rep. 2022;71(5152):1616-1624.
120		
430		

	Part 1 Participants (N=179)
Mean age, years (SD)	2.6 (1.4)
Median age, vears (IOR: min-max)	3.0 (1.0-3.0; 0.5-5.0)
Male, n (%)	98 (54.7)
Race, n (%)	()
White	117 (65.4)
Black	46 (25.7)
Asian	5 (2.8)
American Indian or Alaska Native	1 (0.6)
Native Hawaiian or Other Pacific Islander	0
Multiracial	8 (4.5)
Other	2 (1.1)
Unknown or not reported	0
Ethnicity, n (%)	
Hispanic or Latino	21 (11.7)
Not Hispanic or Latino	158 (88.3)
Unknown or not reported	0
Baseline SARS-CoV-2 infection, n (%) ^a	
Positive	113 (63.1)
Negative	42 (23.5)
Missing	24 (13.4)

432 Table 1. Participant Demographics in Part 1 (mRNA-1273.214 Primary Series; Safety Set)

433 IQR, interquartile range; RT-PCR, reverse transcription-polymerase chain reaction.

434 ^aBaseline SARS-CoV-2 status was categorized as positive if there was immunologic or virologic

435 evidence of prior COVID-19, defined as positive RT-PCR test or positive Elecsys result on or

436 before Day 1. Negative was defined as negative RT-PCR test and negative Elecsys result on or

437 before Day 1.

	Part 2 Participants (N=539)
Mean age, years (SD)	2.7 (1.3)
Median age, years (IQR; min-max)	3.0 (2.0-4.0; 0.9-5.0)
Male (%)	276 (51.2)
Race, n (%)	
White	437 (81.1)
Black	17 (3.2)
Asian	26 (4.8)
American Indian or Alaska Native	0
Native Hawaiian or Other Pacific Islander	2 (0.4)
Multiracial	52 (9.6)
Other	0
Unknown	1 (0.2)
Not reported	4 (0.7)
Ethnicity, n (%)	
Hispanic or Latino	59 (10.9)
Not Hispanic or Latino	476 (88.3)
Unknown	2 (0.4)
Not reported	2 (0.4)
Pre-booster SARS-CoV-2 infection, n (%) ^a	
Positive	153 (28.4)
Negative	331 (61.4)
Missing	55 (10.2)

439 Table 2. Participant Demographics in Part 2 (mRNA-1273.214 Booster; Safety Set)

440 IQR, interquartile range; RT-PCR, reverse transcription-polymerase chain reaction.

441 ^aPre-booster SARS-CoV-2 status was categorized as positive if there was immunologic or

442 virologic evidence of prior COVID-19, defined as positive RT-PCR test or positive Elecsys

443 result on or before booster dose Day 1. Negative was defined as negative RT-PCR

test and negative Elecsys result on or before booster dose Day 1.

445 Figure Legends

- 446 **Figure 1.** Participant disposition in Part 1 (A) and Part 2 (B).
- 447 PPIS, per-protocol immunogenicity set; PPIS-Neg, per-protocol immunogenicity set-negative.

448

- 449 Figure 2. Serum neutralizing antibodies against BA.1 (A) and D614G (B) after mRNA-1273.214
- 450 primary series or mRNA-1273 primary series in Part 1.
- 451 Pseudovirus nAbs at BL and at 28 days after dose 2 (day 57) are shown for participants in the
- 452 PPIS and by baseline SARS-CoV-2 status. No prior SARS-CoV-2 infection was defined as
- 453 negative RT-PCR test and negative Elecsys result on or before Day 1. Prior SARS-CoV-2
- 454 infection was indicated by a positive RT-PCR test or positive Elecsys result on or before Day 1.
- 455 Overall: mRNA-1273.214, n=71; mRNA-1273, n=632; no prior infection: mRNA-1273.214,
- 456 n=26; mRNA-1273, n=590; prior infection: mRNA-1273.214, n=45; mRNA-1273, n=42.
- 457 Antibody values below the LLOQ were replaced by 0.5 x LLOQ. Values greater than the ULOQ
- 458 were replaced by the ULOQ if actual values were not available. LLOQs were 8 (BA.1) or 10
- 459 (D614G); ULOQs were 41984 (BA.1) or 4505600 (D614G).
- 460 BL, baseline; CI, confidence interval; GMC, geometric mean concentration; GMR, geometric
- 461 mean ratio; LLOQ, lower limit of quantification; nAb, neutralizing antibody; PPIS, per-protocol
- 462 immunogenicity set; RT-PCR, reverse transcription-polymerase chain reaction; ULOQ, upper
- 463 limit of quantification.

465	Figure 3. Serum neutralizing antibodies against BA.1 and D614G (A) and seroresponse rates (B)
466	after mRNA-1273.214 booster or mRNA-1273 primary series vaccination in Part 2
467	Pseudovirus nAbs against BA.1 or D614G were measured before the mRNA-1273.214 booster
468	dose (pre-booster) and at 28 days after the booster dose (Day 29) among participants in the PPIS,
469	as well as before the mRNA-1273 primary series (pre-dose 1) and 28 days after the mRNA-1273
470	primary series dose 2 (Day 57). No prior SARS-CoV-2 infection was defined as negative RT-
471	PCR test and negative Elecsys result on or before Day 1. Prior SARS-CoV-2 infection was
472	indicated by a positive RT-PCR test or positive Elecsys result on or before Day 1. No prior
473	infection: mRNA-1273.214 booster, n=299; mRNA-1273, n=590; prior infection: mRNA-
474	1273.214 booster, n=136; mRNA-1273, n=42. Serologic response was defined as an increase in
475	antibody levels from below the LLOQ at baseline to \geq 4 times the LLOQ, or a \geq 4-fold rise if
476	baseline was equal or above the LLOQ. Antibody values below the LLOQ were replaced by 0.5
477	x LLOQ. Values greater than the ULOQ were replaced by the ULOQ if actual values were not
478	available. LLOQs were 8 (BA.1) or 10 (D614G); ULOQs were 41984 (BA.1) or 4505600
479	(D614G).

- 480 CI, confidence interval; GMC, geometric mean concentration; GMR, geometric mean ratio;
- 481 LLOQ, lower limit of quantification; nAb, neutralizing antibody; PPIS, per-protocol
- 482 immunogenicity set; RT-PCR, reverse transcription-polymerase chain reaction; ULOQ, upper

483 limit of quantification.

484 Figures

485 **Figure 1.**

488 Figure 2.

Β SARS-CoV-2 D614G Overall No Prior Infection Prior Infection GMR (95% CI) = 0.8 (0.7-1.0) GMR (95% CI) = 0.4 (0.3-0.5) GMR (95% CI) = 0.3 (0.2-0.5) 100000 F 8445.1 Geometric M ean Concentration 10000 2405.9 1432.9 1732.5 1559.4 612.5 1000 185.8 65.4 100 35.6 12.5 9.6 7.7 10. 1 BL Day 57 BL Day 57

mRNA-1273 Primary Series

mRNA-1273.214 Primary Series

490 **Figure 3**.

SARS-CoV-2 D614G No Prior Infection Prior Infection 100000 GMR (95% CI) = 0.8 (0.7-1.1) GMR (95% CI) = 3.1 (2.8-3.5) F 4873.3 8445.1 7148.7 Geometric Mean Concentration 10000 1723.8 1559.4 1000 352.1 185.8 100 10 1 Day 29 Day51 Preboosler Day 29 Day51 Pre-dose Pre-dose Pre-booster mRNA-1273 Primary Series mRNA-1273.214 Booster

