
Refining the impact of genetic evidence on clinical success 
 
Eric Vallabh Minikel1, Jeffery L Painter2,*, Coco Chengliang Dong3, Matthew R. Nelson3,4† 
 

1. Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142 
2. JiveCast, Raleigh, NC, 27601 
3. Deerfield Management Company, L.P., New York, NY 10010 
4. Genscience LLC, New York, NY 10010 

*Present address: GlaxoSmithKline, Research Triangle Park, NC 27709  
†Corresponding author: mnelson@genscience.com 

 

Abstract 

The cost of drug discovery and development is driven primarily by failure, with just ~10% of 
clinical programs eventually receiving approval. We previously estimated that human genetic 
evidence doubles the success rate from clinical development to approval. In this study we 
leverage the growth in genetic evidence over the past decade to better understand the 
characteristics that distinguish clinical success and failure. We estimate the probability of 
success for drug mechanisms with genetic support is 2.6 times greater than those without. This 
relative success varies among therapy areas and development phases, and improves with 
increasing confidence in the causal gene, but is largely unaffected by genetic effect size, minor 
allele frequency, or year of discovery. These results suggest we are far from reaching peak 
genetic insights to aid the discovery of targets for more effective drugs.  

 

 

The cost of drug discovery and development is driven primarily by failure1, with just ~10% of 
clinical programs eventually receiving approval2–4. We previously estimated that human genetic 
evidence doubles the success rate from clinical development to approval5. In this study we 
leverage the growth in genetic evidence over the past decade to better understand the 
characteristics that distinguish clinical success and failure. We estimate the probability of 
success for drug mechanisms with genetic support is 2.6 times greater than those without. This 
relative success varies among therapy areas and development phases, and improves with 
increasing confidence in the causal gene, but is largely unaffected by genetic effect size, minor 
allele frequency, or year of discovery. These results suggest we are far from reaching peak 
genetic insights to aid the discovery of targets for more effective drugs.  

Human genetics is one of the only forms of scientific evidence that can demonstrate the causal 
role of genes in human disease. It provides a crucial tool for identifying and prioritizing potential 
drug targets, providing insights into the expected effect (or lack thereof6) of pharmacological 
engagement, dose-response relationships7–10, and safety risks6,11–13. Nonetheless, many 
questions remain about the application of human genetics in drug discovery. Genome-wide 
association studies (GWAS) of common, complex traits, including many diseases, generally 
identify variants of small effect. This contributed to early skepticism of the value of GWAS14. 
Anecdotally, such variants can point to highly successful drug targets7–9, and yet, genetic 
support from GWAS is somewhat less predictive of drug target advancement than support from 
Mendelian disease5,15.  

In this paper we investigate several open questions regarding the use of genetic evidence for 
prioritizing drug discovery. We explore the characteristics of genetic associations that are more 
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likely to differentiate successful from unsuccessful drug mechanisms, exploring how they differ 
across therapy areas and among discovery and development phases. We also investigate how 
close we may be to saturating the insights we can gain from genetic studies for drug discovery 
and how much of the genetically-supported drug discovery space remains clinically unexplored.  

To characterize the drug development pipeline, we filtered Citeline Pharmaprojects for 
monotherapy programs added since 2000 annotated with a highest phase reached and 
assigned both a human gene target (usually the gene encoding the drug target protein) and an 
indication defined in Medical Subject Headings (MeSH) ontology. This resulted in 29,476 target-
indication (T-I) pairs for analysis (Extended Data Fig. 1A). Multiple sources of human genetic 
associations totaled 81,939 unique gene-trait (G-T) pairs, with traits also mapped to MeSH 
terms. Intersection these datasets yielded  an overlap of 2,166 T-I and G-T pairs (7.3%) where 
the indication and the trait MeSH terms had a similarity ≥0.8; we defined these T-I pairs as 
possessing genetic support (Extended Data Fig. 1B, 2A, see Methods). The probability of 
having genetic support, or P(G), was higher for launched T-I pairs than those in historical or 
active clinical development (Figure 1A). In each phase, P(G) was higher than previously 
reported5,15, owing, as expected15,16, more to new G-T discoveries than to changes in drug 
pipeline composition (Extended Data Fig. 3A-F). For ensuing analyses, we considered both 
historical and active programs. We defined success at each phase as a T-I pair transitioning to 
the next development phase (e.g. from phase I to II), and we also considered overall success — 
advancing from phase I to a launched drug. We defined relative success (RS) as the ratio of the 
probability of success, P(S), with genetic support to the probability of success without genetic 
support (see Methods). We tested the sensitivity of RS to various characteristics of genetic 
evidence. RS was sensitive to the indication-trait similarity threshold (Extended Data Fig. 2A), 
which we set to 0.8 for all analyses herein. RS was >2 for all sources of human genetic 
evidence examined (Figure 1B). RS was highest for OMIM (RS = 3.7), in agreement with prior 
reports5,15; this was not the result of a higher success rate for orphan drug programs (Extended 
Data Fig. 2B), a designation commonly acquired for rare diseases. Rather, it may owe partly to 
the difference in confidence in causal gene assignment between Mendelian conditions and 
GWAS, supported by the observation that the RS for Open Targets Genetics (OTG) 
associations was sensitive to the confidence in variant-to-gene mapping as reflected in the 
minimum share of locus-to-gene (L2G) score (Fig. 1C). The differences common and rare 
disease programs face in regulatory and reimbursement environments4 and differing proportions 
of drug modalities9 likely contribute as well. OMIM and GWAS support were synergistic with one 
another (Fig. S2B). Somatic evidence from IntOGen had an RS of 2.3 in oncology (Extended 
Data Fig. 2C), similar to GWAS, but analyses below are limited to germline genetic evidence 
unless otherwise noted. 

As sample sizes grow ever larger with a corresponding increase in the number of unique G-T 
associations, some expect17 the value of GWAS genetic findings to become less useful for the 
purpose of drug target selection. We explored this in several ways. We investigated the year 
that genetic support for a T-I pair was first discovered, under the expectation that more common 
and larger effects are discovered earlier. Although there was a slightly higher RS for discoveries 
from 2007-2010 that was largely driven by early lipid and cardiovascular-related associations, 
the effect of year was overall non-significant (P = 0.46, Fig. 1D). Results were similar when 
replicate associations or OMIM discoveries were included (Extended Data Fig. 2D-F). We next 
divided up GWAS-supported drug programs by the number of unique traits associated to each 
gene. RS nominally increased with the number of associated genes, by 0.048 per gene (P = 
0.024, Fig. 1D). This is unlikely due to successful genetically-supported programs inspiring other 
programs, as most genetic support was discovered retrospectively (Extended Data Fig. 2G); the 
few examples of drug programs prospectively motivated by genetic evidence were primarily for 
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Mendelian diseases9. There were no statistically significant associations with estimated effect 
sizes (P = 0.90 and 0.57, for quantitative and binary traits, respectively; Fig. 1D, Extended Data 
Fig. 2H) nor minor allele frequency (P = 0.026, Fig. 1D). That ever larger GWAS can continue to 
uncover support for successful targets is also illustrated by two recent large GWAS in type 2 
diabetes (T2D)18,19 (Extended Data Fig. 4). When these GWAS quadrupled the number of T2D 
associated genes from 217 to 862, new genetic support was identified for 7 of 95 mechanisms 
in clinical development while the number supported increased from 5 to 7 out of 12 launched 
drug mechanisms.  

 
Figure 1. Impact of genetic evidence characteristics on relative success. A) Proportion of 
target-indication (T-I) pairs with genetic support, P(G), as a function of highest phase reached. 
Bars are Wilson 95% confidence intervals. B) Sensitivity of relative success (RS) from phase I–
launch of T-I pairs with genetic evidence to source of human genetic association. GWAS 
Catalog, Neale UKBB, and FinnGen are subsets of Open Targets Genetics (OTG). Bars are 
Katz 95% confidence intervals. C) Sensitivity of RS to locus-to-gene (L2G) share threshold 
among OTG genome-wide association study (GWAS) significant associations. The minimum 
L2G share required for inclusion in the dataset is varied from 0.1 to 1.0 in increments of 0.05 
(labels) while RS (y axis) is plotted against the number of clinical (phase I+) programs 
considered to have genetic support from OTG (x axis). Shaded areas are Katz 95% confidence 
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intervals. D) Sensitivity of RS for OTG GWAS-supported T-I pairs to binned variables: i) year in 
which a T-I pair first acquired human genetic support from GWAS, excluding replications and 
excluding T-I pairs otherwise supported by OMIM, ii) number of genes exhibiting genetic 
association to the same trait, iii) quartile of effect size (beta) for quantitative traits, iv) quartile of 
effect size (odds ratio, OR) for case/control traits standardized to be >1 (i.e., 1/OR if <1), and v) 
order of magnitude of minor allele frequency bins. Bars are Katz 95% confidence intervals. E) 
Count of indications ever in development in Pharmaprojects (y axis) by the number of genes 
associated with traits similar to those indications (x axis). See Figure S1 for the same analyses 
restricted to drugs with a single known target. 
 

Previously5, we observed significant heterogeneity amongst therapy areas in the fraction of 
approved drug mechanisms with genetic support, but did not investigate the impact on 
probability of success5. Here, our estimates of RS from phase I to launch showed significant 
heterogeneity (P < 1.0e-15), with nearly all therapy areas having estimates greater than one, 11 
of 17 were >2, and hematology, metabolic, respiratory, and endocrine >3 (Fig. 2A-E). In most 
therapy areas, the impact of genetic evidence was most pronounced in phases II and III and 
least impactful in phase I, corresponding to capacity to demonstrate clinical efficacy in later 
development phases. Accordingly, therapy areas differed in P(G) and in whether P(G) increased 
throughout clinical development or only at launch (Extended Data Fig. 5); data source and other 
properties of genetic evidence including year of discovery and effect size also differed 
(Extended Data Fig. 6). We also found that genetic evidence differentiated likelihood to progress 
from preclinical to clinical development for metabolic diseases (RS = 1.38, 95% CI = 1.25 – 
1.54), that may reflect preclinical models that are more predictive of clinical outcomes. 
Probability of genetic support by therapy area was correlated with probability of success, or P(S) 
(ρ = 0.59, P = 0.013) and with RS (ρ = 0.72, P = 0.0011; Extended Data Fig. 7), which led us to 
explore how the sheer quantity of genetic evidence available within therapy areas (Fig. 2F, 
Extended Data Fig. 8A) may influence this. We found that therapy areas with more possible 
gene-indication (G-I) pairs supported by genetic evidence had significantly higher RS (ρ = 0.71, 
P = 0.0010, Fig. 2G), although respiratory and endocrine were notable outliers with high RS 
despite fewer associations. 

We hypothesized that genetic support might be most pronounced for drug mechanisms with 
disease-modifying effects, as opposed to those that manage symptoms, and that the proportion 
of such drugs differ by therapy area20,21. We were unable to find data with these descriptions 
available for a sufficient number of drug mechanisms to analyze, but we reasoned that targets 
of disease-modifying drugs are more likely to be specific to a disease, whereas targets of 
symptom-managing drugs are more likely to be applied across many indications. We therefore 
examined the number and diversity of all-time launched indications per target. Launched T-I 
pairs are heavily skewed towards a few targets (Fig. 2H). Of 450 launched targets, the 42 with 
≥10 launched indications comprise 713 (39%) of 1,806 launched T-I pairs (Fig. 2H). Many of 
these are used across diverse indications for management of symptoms such as inflammatory 
and immune responses (NR3C1, IFNAR2), pain (PTGS2, OPRM1), mood (SLC6A4), or 
parasympathetic response (CHRM3). The count of launched indications was inversely 
correlated with the mean similarity of those indications (ρ = -0.72, P = 4.4e-84; Fig. 2H). Among 
T-I pairs, the probability of having genetic support increased as the number of approved 
indications decreased (P = 6.3e-7) and as the similarity of a target’s approved indications 
increased (P =1.8e-5, Fig. 2I). We observed a corresponding impact on RS, increasing in 
therapy areas where the similarity among approved indications increased, and decreasing with 
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increasing indications per target (ρ = 0.74, P = 0.0010, and ρ = -0.62, P = 0.0080, respectively, 
Fig. 2J-K). 
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Figure 2. Differences in relative success between therapy areas and the number and 
diversity of indications per target. A-E) RS by therapy area and phase transition. Bars are 
95% confidence intervals. F) Cumulative number of possible genetically supported gene-
indication (G-I) pairs in each therapy (y axis) as genetic discoveries have accrued over time (x 
axis). G) RS (y axis) by number of possible supported G-I pairs (x axis) across therapy areas, 
dots colored as in panels A-E and sized according to number of genetically supported T-I pairs 
in at least phase I. H) Number of approved indications vs. similarity of those indications, by 
approved drug target. I) Proportion of approved target-indication pairs with genetic support, 
P(G), binned by quintile of the number of approved indications per target (top panel) or by mean 
similarity among approved indications (bottom panel). Targets with exactly 1 approved 
indication (6.2% of launched T-I pairs) are considered to have mean similarity of 1.0. Bars are 
Wilson 95% confidence intervals. J) RS (y axis) vs. mean similarity among approved indications 
per target (x axis) by therapy area. K) RS (y axis) vs. mean count of approved indications per 
target (x axis). See Figure S2 for the same analyses restricted to drugs with a single known 
target. 

 

Only 4.8% (284/5,968) of T-I pairs active in phase I-III possess human germline genetic support 
(Figure 1A), similar to T-I pairs no longer in development (4.2%, 560/13,355), a difference that 
was not statistically significant (P = 0.080). We estimated (see Methods) that only 1.1% of all 
genetically supported G-I relationships have been explored clinically (Fig. 3A), or 2.1% when 
restricting to the most similar indication. Given that the vast majority of proteins are classically 
“undruggable”, we explored the proportion of genetically supported G-I pairs that had been 
developed to at least phase I, as a function of therapy area across several classes of tractability 
and relevant protein families22 (Fig. 3A). Within therapy areas, oncology kinases with germline 
evidence were the most saturated: 109 of 250 (44%) of all genetically supported G-I pairs had 
reached at least phase I; GPCRs for psychiatric indications were also notable (14/53, 26%). 
Grouping by target rather than G-I pair, 3.6% of genetically supported targets have been 
pursued for any genetically supported indication (Extended Data Figure 8). Of possible 
genetically supported G-I pairs, most (68%) arose from OTG associations, mostly within the 
past 5 years (Fig. 2F). Such low utilization is partly due to recent emergence of most genetic 
evidence (Extended Data Fig. 2F-G, 7A), since drug programs prospectively supported by 
human genetics have had a mean lag time from genetic association of 13 years to first trial21 
and 21 years to approval9. Because some types of targets may be more readily tractable by 
antagonists than agonists, we also grouped by target and examined human genetic evidence by 
direction of effect for tumor suppressors versus oncogenes (Fig. 3B), identifying a few substrata 
for which a majority of genetically supported targets had been pursued to at least phase I for at 
least one genetically supported indication. Oncogene kinases received the most attention, with 
19/25 (76%) reaching phase I.  

To focus on demonstrably druggable proteins, we further restricted the analysis to targets with 
both i) any program reaching phase I, and ii) ≥1 genetically supported indication. Out of 1,147 
qualifying targets, only 373 (33%) had been pursued for one or more supported indications (Fig. 
3C), and most (307, 27%) of these targets were pursued both for indications with and without 
genetic support. Overall, an overwhelming majority of development effort has been for 
unsupported indications, at a 17:1 ratio. Within this subset of targets, we asked whether genetic 
support was predictive of which indications would advance the furthest. Grouping active and 
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historical programs by D-I pair, we found that the odds of advancing to a later stage in the 
pipeline is 82% higher for indications with genetic support (P = 8.6e-73, Fig. 3D).  
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Figure 3. Clinical investigation of drug mechanisms with genetic evidence. A) Heatmap of 
proportion of genetically supported T-I pairs that have been developed to at least phase I, by 
therapy area (y axis) and gene list (x axis). B) As panel A, but for genetic support from IntOGen 
rather than germline sources and grouped by the direction of effect of the gene according to 
IntOGen (y axis), and also grouped by target rather than T-I pair. Thus, the denominator for 
each cell is the number of targets with at least one genetically supported indication, and each 
target counts towards the numerator if at least one genetically supported indication has reached 
phase I. C) Of targets that have both reached phase I for any indication, and have at least one 
genetically supported indication, the mean count (x axis) of genetically supported (left) and 
unsupported (right) indications pursued, binned by the number of possible genetically supported 
indications (y axis). Bars are Wilson 95% confidence intervals. D) Proportion of D-I pairs with 
genetic support, P(G) (x axis), as a function of each D-I pair’s phase reached (inner y axis 
grouping) and the drug’s highest phase reached for any indication (outer y axis grouping). Bars 
are Wilson 95% confidence intervals. See Figure S3 for the same analyses restricted to drugs 
with a single known target. 
 

While there have been anecdotes such as HMGCR to argue that genetic effect size may not 
matter in prioritizing drug targets, here we provide systematic evidence that small effect size, 
recent year of discovery, increasing number of genes identified, or higher associated allele 
frequency do not diminish the value of GWAS evidence to differentiate clinical success rates. 
One reason for this is likely because genetic effect size on a phenotype rarely accounts for the 
magnitude of genetic effect on gene expression, protein function, or some other molecular 
intermediate. In some circumstances, genetic effect sizes can yield insights into anticipated drug 
effects. This is best Illustrated for cardiovascular disease therapies, where genetic effects on 
cholesterol and disease risk and treatment outcomes are correlated23. A limitation is that, other 
than Genebass, we did not include whole exome or whole genome sequencing association 
studies, which may be more likely to pinpoint causal variants. Moreover, all of our analyses are 
naïve to direction of genetic effect (gain versus loss of gene function) as this is unknown or 
unannotated in most datasets utilized here. 

Our results argue for continuing investment to expand GWAS-like evidence, particularly for 
many complex diseases with treatment options that fail to modify disease. Although genetic 
evidence has value across most therapy areas, its benefit is more pronounced in some areas 
than others. Furthermore, it is possible that the therapy areas where genetic evidence had a 
lower impact have seen more focus on symptom management. If so, we would predict that for 
drugs aimed at disease modification, human genetics should ultimately prove highly valuable 
across therapy areas. 

The focus of this work has been on the relative success of drug programs with and without 
genetic evidence, limited to drug mechanisms that have entered clinical development. This 
metric does not address the probability that a gene associated with a disease, if targeted, will 
yield a successful drug. At the early stage of target selection, is evidence of a large loss of 
function effect in one gene usually a better choice than a small non-coding SNP effect on the 
same phenotype in another? We explored this question for T2D studies referenced above. Of 
the 7 targets of launched drugs with genetic evidence, 4 had Mendelian evidence (in addition to 
pre-2020 GWAS evidence), out of a total of 19 Mendelian genes related to T2D (21%). 1 
launched T2D target had only GWAS (and no Mendelian) evidence among 217 GWAS 
associated genes prior to 2020 (0.46%), while 2 launched targets were among 645 new GWAS 
associations since 2020 (0.31%). At least in this example, the “yield” of genetic evidence for 
successful drug mechanisms was greatest for genes with Mendelian effects, but similar 
between earlier and later GWAS.  Clearly, just because genetic associations differentiate clinical 
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stage drug targets from launched ones does not mean that a large fraction of associations will 
be fruitful. Moreover, genetically supported targets may be more likely to require upregulation, to 
be druggable only by more challenging modalities4,9, or to enjoy narrower use across 
indications. More work is required to better understand the challenges of target identification 
and prioritization given the genetic evidence precondition. 

The utility of human genetic evidence in drug discovery has had firm theoretical and empirical 
footing for several years5,7,15. If the benefit of this evidence were canceled out by competitive 
crowding24, then currently active clinical phases should have higher rates of genetic support 
than their corresponding historical phases, and might look similar to, or even higher than, 
approved pairs. Instead, we find that active programs possess genetic support only slightly 
more often than historical programs and remain less enriched for genetic support than approved 
drugs. Meanwhile, only a tiny fraction of classically druggable genetically supported G-I pairs 
have been pursued even among targets with clinical development reported. Human genetics 
thus represents a growing opportunity for novel target selection and improving indication 
selection for existing drugs and drug candidates. Increasing emphasis on drug mechanisms with 
supporting genetic evidence is expected to increase success rates and lower the cost of drug 
discovery and development. 
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Methods 
Definition of metrics. Except where otherwise noted, we define genetic support of a drug 
mechanism (i.e. a target-indication or T-I pair) as a genetic association mapped to the 
corresponding target gene for a trait that is ≥0.8 similar to the indication (see MeSH term 
similarity below). We defined the probability of genetic support, or P(G), as the proportion of 
drug mechanisms satisfying the above definition of genetic support. Probability of success, or 
P(S), is the proportion of programs in one phase that advance to a subsequent phase (for 
instance, phase I to phase II). Overall P(S) from phase I to launched is the product of P(S) at 
each individual phase. Relative success, or RS, is the ratio of P(S) for programs with genetic 
support to P(S) for programs lacking genetic support, which is equivalent to a relative risk or risk 
ratio. Thus, if N denotes the total number of programs that have reached the reference phase, 
and X denotes the number of those that advance to a later phase of interest, and the subscripts 
G and !G indicate the presence or absence of genetic support, then P(G) = NG / (NG + N!G); P(S) 
= (XG + X!G) / (NG + N!G); RS = (XG/NG)/(X!G/N!G). RS from phase I to launched is the product of 
RS at each individual phase. The count of “programs” for X and N is target-indication (T-I) pairs 
throughout, except for Figure 3D, which uses drug-indication pairs (D-I) in order to specifically 
interrogate P(G) where the same drug has been developed for different indications. For clarity, 
we note that where other recent studies22,25 have examined the fold enrichment and overlap 
between genes with a human genetic support and genes encoding a drug target, without 
regards to similarity, herein all of our analyses are conditioned on the similarity between the 
drug’s indication and the genetically associated trait. 

Drug development pipeline. Citeline Pharmaprojects26 is a curated database of drug 
development programs including preclinical, all clinical phases, and launched drugs. It was 
queried via API (Dec 22, 2022) to obtain information on drugs, targets, indications, phases 
reached, and current development status. T-I pair was the unit of analysis throughout, except 
where otherwise indicated in the text (D-I pairs were examined in Figure 3D). Current 
development status was defined as “active” if the T-I pair had at least one drug still in active 
development, and “historical” if development of all drugs for the T-I pair had ceased. Targets 
were defined as genes; as most drugs do not directly target DNA, this usually refers to the gene 
encoding the protein target that is bound or modulated by the drug. We removed combination 
therapies, diagnostic indication, and programs with no human target or no indication assigned. 
For most analyses, only programs added to the database since 2000 were included, while for 
the count and similarity of launched indications per target, we used all launches for all time. 
Indications were considered to possess “genetic insight” — meaning the human genetics of this 
trait or similar traits have been successfully studied — if they had ≥0.8 similarity to i) an OMIM 
or IntOGen disease, or ii) a GWAS trait with at least 3 independently associated loci, based on 
lead SNP positions rounded to the nearest 1 Mb. For calculating relative success, we used the 
number of T-I pairs with genetic insight as the denominator. The rationale for this choice is to 
focus on indications where there exists the opportunity for human genetic evidence, consistent 
with the filter applied previously5. However, we observe that our findings are not especially 
sensitive to the presence of this filter, with RS decreasing by just 0.17 when the filter is removed 
(Extended Data Fig. 3G-H). Note that the criteria for determining “genetic insight” are distinct 
from, and much looser than, the criteria for mapping GWAS hits to genes (see locus-to-gene or 
L2G scores under Open Targets Genetics below). Many drugs had more than one target 
assigned, in which case all targets were retained for target-indication pair analyses. As a 
sensitivity test, running all analyses restricted to only drugs with exactly one target assigned 
yielded very similar results (Figures S1-S11). 

OMIM. Online Mendelian Inheritance in Man (OMIM) is a curated database of Mendelian gene-
disease associations. The OMIM Gene Map (downloaded Sep 21, 2023) contained 8,671 
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unique gene-phenotype links. We restricted to entries with phenotype mapping code 3 (“the 
molecular basis for the disorder is known; a mutation has been found in the gene”), removed 
phenotypes with no MIM number or no gene symbol assigned, and removed duplicate 
combinations of gene MIM and phenotype MIM. We used regular expression matching to further 
filter out phenotypes containing the terms “somatic”, “susceptibility”, or “response” (drug 
response associations) and those flagged as questionable (“?”), or representing non-disease 
phenotypes (“[”). A set of OMIM phenotypes are flagged as denoting susceptibility rather than 
causation (“{”); this category includes low-penetrance or high allele frequency association 
assertions that we wished to exclude, but also germline heterozygous loss-of-function mutations 
in tumor suppressor genes, where the underlying mechanism of disease initiation is loss of 
heterozygosity, which we wished to include. We therefore also filtered out phenotypes 
containing “{” except for those that did contain the terms “cancer”, “neoplasm”, “tumor”, or 
“malignant” and did not contain the term “somatic”. Remaining entries present in OMIM as of 
2021 were further evaluated for validity by two curators, and gene-disease combinations for 
which a disease association was deemed not to have been established were excluded from all 
analyses. All of the above filters left 5,670 unique gene-trait links. MeSH terms for OMIM 
phenotypes were then mapped using the EFO OWL database using an approach previously 
described27, with additional mappings from Orphanet, full text matches to the full MeSH 
vocabulary, and finally, manual curation, for a cumulative mapping rate of 93% (5,297/5,670). 
Because sometimes distinct phenotype MIM numbers mapped to the same MeSH term, this 
yielded 4,510 unique gene-MeSH links. 

Open Targets Genetics. Open Targets Genetics (OTG) is a database of GWAS hits from 
published studies and biobanks. OTG version 8 (October 12, 2022) variant-to-disease (V2D), 
locus-to-gene (L2G), variant index, and study index data were downloaded from EBI. Traits with 
multiple EFO IDs were excluded as these generally represent conditional, epistasis, or other 
complex phenotypes that would lack mappings in the MeSH vocabulary. Of the top 100 traits 
with the greatest number of genes mapped, we excluded 76 as having no clear disease 
relevance (example: “red cell distribution width”) or no obvious marginal value (example: 
excluded “trunk predicted mass” because “body mass index” was already included). Remaining 
traits were mapped to MeSH using the EFO OWL database, full text queries to the MeSH API, 
mappings already manually curated in PICCOLO (see below) or new manual curation. In total, 
25,124/49,599 unique traits (51%) were successfully mapped to a MeSH ID. We included 
associations with P < 5e-8. OTG L2G scores used for gene mapping are based on a machine 
learning model trained on gold standard causal genes28; inputs to that model include distance, 
functional annotations, eQTLs, and chromatin interactions. Note that we do not utilize Mendelian 
randomization29 to map causal genes, and even gene mappings with high L2G scores are 
necessarily imperfect. OTG provides an L2G score for the triplet of each study or trait with each 
hit and each possible causal gene. We defined L2G share as the proportion of the total L2G 
score assigned each gene among all potentially causal genes for that trait-hit combination. In 
sensitivity analyses we considered L2G share thresholds from 10% to 100% (Figure 1B and 
Extended Data Fig. 3A), but main analyses used only genes with ≥50% L2G share (which are 
also the top-ranked genes for their respective associations). OTG links were parsed to 
determine the source of each OTG data point: the EBI GWAS catalog30 (N=136,503 hits with 
L2G share ≥0.5), Neale UK BioBank (http://www.nealelab.is/uk-biobank; N=19,139), FinnGen 
R631 (N=2,338), or SAIGE (N=1,229). 

PICCOLO. PICCOLO32 is a database of GWAS hits with gene mapping based on tests for 
colocalization without full summary statistics by using Probabilistic Identification of Causal SNPs 
(PICS) and a reference dataset of SNP linkage disequilibrium values. As described32, gene 
mapping utilizes QTL data from GTEx (N=7,162) and a variety of other published sources 
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(N=6,552). We included hits with GWAS P < 5e-8, and with eQTL P < 1e-5, and H4 ≥ 0.9, as 
these thresholds were determined empirically32 to strongly predict colocalization results.  

Genebass. Genebass33 is a database of genetic associations based on exome sequencing. 
Genebass data from 394,841 UK Biobank participants (the “500K” release) were queried using 
Hail (October 19, 2023). We used hits from four models: pLoF (predicted loss-of-function) or 
missense|LC (missense and low confidence LoF), each with SKAT or burden tests, filtering for 
P < 1e-5. Because the traits in Genebass are from UK Biobank, which is included in OTG, we 
used the OTG MeSH mappings established above.  

IntOGen. IntOGen is a database of enrichments of somatic genetic mutations within cancer 
types. We used the driver genes and cohort information tables (May 31, 2023). IntOGen assigns 
each gene a mechanism in each tumor type; occasionally a gene will be classified as a tumor 
suppressor in one type and an oncogene in another. We grouped by gene and assigned each 
gene its modal classification across cancers. MeSH mappings were curated manually. 

MeSH term similarity. MeSH terms in either Pharmaprojects or the genetic associations 
datasets that were Supplementary Concept Records (IDs beginning in “C”) were mapped to 
their respective preferred main headings (IDs beginning in “D”). A matrix of all possible 
combinations of drug indication MeSH IDs and genetic association MeSH IDs was constructed. 
MeSH term Lin and Resnik similarities were computed for each pair as described34,35. 
Similarities of -1, indicating infinite distance between two concepts, were assigned as 0. The two 
scores were regressed against each other across all term pairs, and the Resnik scores were 
adjusted by a multiplier such that both scores had a range from 0 to 1 and their regression had 
a slope of 1. The two scores were then averaged to obtain a combined similarity score. 
Similarity scores were successfully calculated for 1,006/1,013 (99.3%) of unique MeSH terms 
for Pharmaprojects indications, corresponding to 99.67% of Pharmaprojects T-I pairs, and for 
2,260/2,262 (99.9%) unique MeSH terms for genetic associations, corresponding to >99.9% of 
associations. 

Therapeutic areas. MeSH terms for Pharmaprojects indications were mapped onto 16 top-level 
headings under the Diseases [C] and Psychiatry and Psychology [F] branches of the MeSH tree 
(https://meshb.nlm.nih.gov/treeView), plus an “other”. The signs/symptoms area corresponds to 
C23 Pathological Conditions, Signs, and Symptoms and contains entries such as inflammation 
and pain. Many MeSH terms map to >1 tree position; these multiples were retained and counted 
towards each therapy area, except for the following conditions: for terms mapped to oncology, 
we deleted their mappings to all other areas; and “other” was used only for terms that mapped 
to no other areas. 

Analysis type 2 diabetes GWAS. We included 19 genes from OMIM linked to Mendelian forms 
of diabetes or syndromes with diabetic features. For Vujkovic et al, 202018, we considered as 
novel any genes with a novel nearest gene, novel coding variant, or a novel lead SNP 
colocalized with an eQTL with H4 ≥0.9. Non-novel nearest genes, coding variants, and 
colocalized lead SNPs were considered established variants. For Suzuki et al, 202319, we used 
the available L2G scores that OTG had assigned for the same lead SNPs in previously reported 
GWAS for other phenotypes, yielding mapped genes with L2G share > 0.5 for 27% of loci. 
Genes were considered novel if absent from the Vujkovic analysis. Together, these approaches 
identified 217 established GWAS genes and 645 novel ones (469 from Vujkovic and 176 from 
Suzuki). We identified 347 unique drug targets in Pharmaprojects reported with a type 2 
diabetes or diabetes mellitus indication, including 25 approved. We reviewed the list of 
approved drugs and eliminated those where there were questions around the relevance of the 
drug or target to T2D (AKR1B1, AR, DRD1, HMGCR, IGF1R, LPL, SLC5A1). Because 
Pharmaprojects ordinarily specifies the receptor as target for protein or peptide replacement 
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therapies, we also remapped the minority of programs where the ligand, rather than receptor, 
had been listed as target (changing INS to INSR, GCG to GCGR) To assess the proportion of 
programs with genetic support, we first grouped by drug and selected just one target, preferring 
the target with the earliest genetic support (OMIM, then established GWAS, then novel GWAS, 
then none). Next we grouped by target and selected its highest phase reached. Finally, we 
grouped by highest phase reached and counted the number of unique targets. 

Universe of possible genetically supported gene-indication pairs. In all of our analyses, 
targets are defined as human gene symbols, but we use the term gene-indication pair (G-I) to 
refer to possible genes that one might attempt to target with a drug, and target-indication pair 
(T-I) to refer to genes that are the targets of actual drug candidates in development. To 
enumerate the space of possible G-I pairs, we multiplied the N=769 Pharmaprojects indications 
considered here by the “universe” of N=19,338 protein-coding genes, yielding a space of N= 
14,870,922 possible G-I pairs. Of these, N=101,954 (0.69%) qualify as having genetic support 
per our criteria. A total of 16,808 T-I pairs have reached at least Phase I in an active or historical 
program, of which 1,155 (6.9%) are genetically supported. This represents an enrichment 
compared to random chance (OR = 11.0, P < 1.0e-15, Fisher exact test), but in absolute terms, 
only 1.1% of genetically supported G-I pairs have been pursued. A genetically supported G-I 
pair may be less likely to attract drug development interest if the indication already has many 
other potential targets, and/or if the indication is but the second-most similar to the gene’s 
associated trait. Removing associations with many GWAS hits and restricting to the single most 
similar indication left a space of 34,190 possible genetically supported G-I pairs, 719 (2.1%) of 
which had been pursued. This small percentage might yet be perceived to reflect competitive 
saturation, if the vast majority of indications are undevelopable and/or the vast majority of 
targets are undruggable. We therefore asked what proportion of genetically supported G-I pairs 
had been developed to at least Phase I, as a function of therapy area cross-tabulated against 
Open Targets predicted tractability status or membership in canonically “druggable” protein 
families, using families from ref. 22 as well as UniProt pkinfam for kinases36. We also grouped at 
the level of gene, rather than G-I pair (Extended Data Fig. 8). 

Druggability and protein families. Antibody and small molecule druggability status was taken 
from Open Targets37. For antibody tractability, Clinical Precedence, Predicted Tractable – High 
Confidence, and Predicted Tractable – Medium to Low Confidence were included. For small 
molecules, Clinical Precedence, Discovery Precedence, and Predicted Tractable were included. 
Protein families were from sources described previously22, plus the pkinfam kinase list from 
UniProt36. To make these lists non-overlapping, genes that were both kinases and also either 
enzymes, ion channels, or nuclear receptors were considered to be kinases only. 

Statistics. Analyses were conducted in R 4.2.0. For binomial proportions P(G) and P(S), error 
bars are Wilson 95% confidence intervals, except for P(S) for phase I-launch where the Wald 
method is used to compute the confidence intervals on the product of the individual probabilities 
of success at each phase. RS at each individual phase uses Wilson 95% confidence intervals, 
while RS for phase I–launch is defined as a product of the three phase-wise risk ratios, with 
Katz 95% confidence intervals. Effect of continuous variables on probability of launch were 
assessed using logistic regression. Differences in RS between therapy areas were tested using 
the Cochran-Mantel-Haenszel chi-square test (cmh.test from the R lawstat package). Pipeline 
progression of drug-indication pairs conditioned on the highest phase reached by a drug was 
modeled using an ordinal logit model (polr with Hess=TRUE from the R MASS package). 
Correlations across therapy areas were tested by weighted Pearson’s correlation (wtd.cor from 
the R weights package); to control for the amount of data available in each therapy area, the 
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number of genetically supported T-I pairs having reached at least phase I used as the weight. 
Enrichments of T-I pairs in the utilization analysis were tested using Fisher’s exact test. All 
statistical tests were two-sided. 

Source code availability and data availability. An analytical dataset and source code are 
available at https://github.com/ericminikel/genetic_support/ and are sufficient to reproduce all 
figures and statistics herein. 
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SUPPLEMENTARY FIGURES 

 

 
Extended Data Figure 1. Data processing schematic. A) Dataset size, filters, and join 
process for Pharmaprojects and human genetic evidence. Note that a drug can be assigned 
multiple targets, and can be approved for multiple indications. The entire analysis described 
herein has also been run restricted to only those drugs with exactly one target annotated 
(Figures S1-S11). B) Illustration of the definition of genetic support. A table of drug development 
programs with one row per target-indication pair (left) is joined to a table of human genetic 
associations based on the identity of the gene encoding the drug target and the similarity 
between the drug indication MeSH term and the genetically associated trait MeSH term being 
≥0.8. Drug program rows with a joined row in the genetic associations table are considered to 
have genetic support. 
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Extended Data Figure 2. Further analysis of influence of characteristics of genetic 
associations on relative success. A) Sensitivity of RS to the similarity threshold between the 
MeSH ID for the genetically associated trait and the MeSH ID for the clinically developed 
indication. The threshold is varied by units of 0.05 (labels) and the results are plotted as RS (y 
axis) versus number of genetically supported T-I pairs (x axis). B) Breakdown of OTG and 
OMIM RS values by whether any drug for each T-I pair has had orphan status assigned. C) RS 
for somatic genetic evidence from IntOGen versus germline genetic evidence, for oncology and 
non-oncology indications. Note that the approved/supported proportions displayed for the top 
two rows are identical because all IntOGen genetic support is for oncology indications, yet the 
RS is different because the number of non-supported approved and non-supported clinical 
stage programs is different. In other words, in the “All indications” row, there is a Simpson’s 
paradox that diminishes the apparent RS of IntOGen — IntOGen support improves success rate 
(see 2nd row) but also selects for oncology, an area with low baseline success rate (as shown in 
Extended Data Fig. 6A). D) As for top panel of Figure 1D, but without removing replications or 
OMIM-supported T-I pairs. E) As for top panel of Figure 1D, removing replications but not 
removing OMIM-supported T-I pairs. F) Proportion of T-I pairs supported by a GWAS Catalog 
association that are launched (versus phase I-III) as a function of the year of first genetic 
association. G) Launched T-I pairs genetically supported by OTG GWAS, shown by year of 
launch (y axis) and year of first genetic association (x axis). Gene symbols are labeled for first 
approvals of targets with at least 5 years between association and launch. Of 104 OTG-
supported launched T-I pairs (Fig. 1D), year of drug launch was available for N=38 shown here, 
of which 18 (47%) acquired genetic support only in or after the year of launch. The true 
proportion of launched T-I whose GWAS support is retrospective may be larger if the T-I with a 
missing launch year are more often older drug approvals less well annotated in Pharmaprojects. 
H) Lack of impact of GWAS Catalog lead SNP odds ratio (OR) on RS when using the same OR 
breaks as used by King et al15. 
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Extended Data Figure 3. Sensitivity to changes in genetic data and drug pipeline over the 
past decade and to the ‘genetic insight’ filter. “2013” here indicates the data freezes from 
Nelson et al 20155 (that study’s supplementary dataset 2 for genetics and supplementary 
dataset 3 for drug pipeline); “2023” indicates the data freezes in the present study. All datasets 
were processed using the current MeSH similarity matrix, and because “genetic insight” 
changes over time (more traits have been studied genetically now than in 2013), all panels are 
unfiltered for genetic insight (hence numbers in panel D differ from those in Fig. 1A). Every 
panel shows the proportion of combined (both historical and active) target-indication pairs with 
genetic support, or P(G), by development phase. A) 2013 drug pipeline and 2013 genetics. B) 
2013 drug pipeline and 2023 genetics. C) 2023 drug pipeline and 2013 genetics. D) 2023 drug 
pipeline and 2023 genetics. E) 2023 drug pipeline with only OTG GWAS hits through 2013 and 
no other sources of genetic evidence. F) 2023 drug pipeline with only OTG GWAS hits for all 
years, no other sources of genetic evidence. We note that the increase in P(G) over the past 
decade5 is almost entirely attributable to new genetic evidence (e.g. contrast B vs. A, D vs. C, F 
vs. E) rather than changes in the drug pipeline (e.g. compare A vs. C, B vs. D). In contrast, the 
increase in RS is due mostly to changes in the drug pipeline (compare C, D, E, F vs. A, B), in 
line with theoretical expectations outlined by Hingorani et al16 and consistent with the findings of 
King et al15. We note that both the contrasts in this figure, and the fact that genetic support is so 
often retrospective (Extended Data Fig. 2G) suggest that P(G) will continue to rise in coming 
years. Because all panels here are unfiltered for genetic insight, we also show the difference in 
RS across G) sources of genetic evidence and H) therapy areas when this filter is removed. In 
general, removing this filter decreases RS by 0.17; this varies only slightly between sources and 
areas. The largest impact is seen in Infection, where removing the filter drops the RS from 2.73 
to 2.03. The relatively minor impact of removing the genetic insight filter is consistent with the 
findings of King et al15, who varied the minimum number of genetic associations required for an 
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indication to be included, and found that risk ratio for progression (i.e. RS) was slightly 
diminished when the threshold was reduced. 
 

 
Extended Data Figure 4. Proportion of type 2 diabetes drug targets with human genetic 
support by highest phase reached. A) OMIM, B) established (2019 and earlier) GWAS genes, 
C) novel (new in Vujkovic 2020 or Suzuki 2023) GWAS genes, or D) any of the above. See 
Methods for details on GWAS dataset processing. 
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Extended Data Figure 5. P(G) by phase versus therapy area. Each panel represents one 
therapy area, and shows the proportion of target-indication pairs in that area with genetic 
support, or P(G), by development phase. 
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Extended Data Figure 6. Confounding between therapy areas and properties of 
supporting genetic evidence. In panels A-E, each point represents one GWAS Catalog-
supported T-I pair in phase I through launched, and boxes represent medians and interquartile 
ranges. Each panel A-E represents the cross-tabulation of therapy areas versus the properties 
examined in Fig. 1D. Kruskal-Wallis tests treat each variable as continuous, while chi-squared 
tests are applied to the discrete bins used in Figure 1D. A) Year of discovery, Kruskal-Wallis P = 
1.1e-11, chi-squared P = 2.9e-16; B) gene count, Kruskal-Wallis P = 6.2e-35, chi-squared P = 
7.1e-47; C) beta, Kruskal-Wallis P = 1.2e-5, chi-squared P = 1.7e-7; D) absolute odds ratio, 
Kruskal-Wallis P = 2.5e-5, chi-squared P = 4.3e-6 E) minor allele frequency, Kruskal-Wallis P = 
5.7e-4, chi-squared P = 4.3e-3 F) Barplot of therapy areas of genetically supported T-I by 
source of GWAS data within OTG, chi-squared P = 2.4e-7.  
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Extended Data Figure 7. Further analyses of differences in relative success among 
therapy areas. A) Probability of success, P(S), by therapy area, with Wilson 95% confidence 
intervals. Fractions at right show the number of launched T-I pairs (numerator) and number of T-
I pairs reaching at least phase I (denominator). B) Probability of genetic support, P(G), by 
therapy area, with Wilson 95% confidence intervals. Fractions at right show the number of 
genetically supported T-I pairs reaching at least phase I (numerator) and total number of T-I 
pairs reaching at least phase I (denominator). C) P(S) vs. P(G), D) RS s. P(S), and E) RS vs. 
P(G) across therapy areas, with crosshairs representing 95% confidence intervals on both 
dimensions. F) Re-analysis of RS (x axis) broken down by therapy area using data from 
supplementary table 6 of Nelson et al. 20155. G) Confusion matrix showing the categorization of 
unique drug indications into therapy areas in Nelson et al 2015 versus current. Note that the 
current categorization is based on each indication’s position in the MeSH ontological tree and 
one indication can appear in >1 area, see Methods for details. Marginals along the top and right 
sides indicate the number of indication MeSH IDs in each drug pipeline dataset that are not 
present in the other drug pipeline dataset. 
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Extended Data Figure 8. Level of utilization of genetic support among targets. As for 
Figure 3, but grouped by target instead of T-I pair. Thus, the denominator for each cell is the 
number of targets with at least one genetically supported indication, and each target counts 
towards the numerator if at least one genetically supported indication has reached phase I. 
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Figures S1-S11. The three main and eight extended data figures restricted to drugs with 
one target only . 
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