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Abstract

The state-of-the-field in complex disorder genetics is marked by large-scale, biobank-ascertained data

sets that integrate broad demographic, health, survey, and genetic data. Leveraging the richness of this

data can advance our understanding of complex disorders by improving predictions, describing etiology,

and augmenting gene-mapping. These themes are especially, but not exclusively, relevant to Major

Depressive Disorder (MDD), a leading cause of disability for which genetic predictors underperform,

clinical heterogeneity is etiologically enigmatic, and missing heritability persists. The iPSYCH 2015

case-cohort presents a unique opportunity to integrate genotypes, register-based clinical outcomes, and

extended genealogies of 30,949 MDD cases and 39,655 random population controls. To make full use of

our data, we introduce the Pearson-Aitken framework for Family Genetic Risk Scores (PA-FGRS) to

estimate individuals’ liabilities for major depressive disorder from extended genealogies of partially

observed relatives. PA-FGRS extends previous methods by accounting for censoring, leveraging distant

relatives, and utilizing a flexible, model-based approach amenable to analysis and extension - advantages

we highlight in simulations. Combining PA-FGRS with genotype data improves classification, replicates

and extends known genetic contributions to clinical heterogeneity, and increases power for

genome-wide association studies. This study combines novel analyses of unique data and can serve as a

model for studies of other outcomes.
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Introduction

The state-of-the-field for complex disorder genetics is defined by the emergence and

incorporation of large-scale, biobank-ascertained data sets (e.g., BioBank Japan1, deCODE genetics2 ,

iPSYCH3,4, UKBiobank5, etc.). These resources combine broad demographic, health, survey, and various

genetic data on hundreds of thousands of individuals. Studies in population-level biobank data can take

advantage of rich variable spaces at large scale to, e.g., emphasize genetic heterogeneity of psychiatric

outcomes6,7, combine family history data and genotype data to power genome-wide association studies

(GWAS)8,9, and integrate polygenic risk scores (PGS) with other predictors10,11. In contrast, large

meta-analytic genetic studies, despite their unquestionable impact, have a necessarily narrower scope.

To achieve requisite inferential power, they often focus on few variables, ascertained inconsistently

across cohorts, and with limited opportunities for contextual perspectives. As such, there is both an

opportunity and need for studies and methods that integrate rich, complementary data to improve the

power, interpretation, and context of genetic studies in complex disorders.

Major Depressive Disorder (MDD) can be viewed in many ways as a paradigmatic complex

disorder. Twin and family studies establish genetic contributions to disorder liability, but estimates of

heritability are more modest than for many other psychiatric disorders, ranging from ~0.3 to 0.512. This

is consistent with the notion that MDD may be both especially multifactorial and especially

heterogeneous in its etiology and clinical presentation13. Despite a plethora of clinical descriptions, there

remains a need to better understand the underlying etiology of clinical heterogeneity14. In addition,

MDD is the most common mental disorder, with lifetime prevalence reported at ~0.212. Together, these

characteristics imply that GWAS of MDD are expected to be the least powered among psychiatric

disorders15,16. Recent meta-analytic GWAS of MDD challenge this limitation with extreme sample sizes

obtained by incorporating “light” definitions of MDD cases, i.e., a single item on a self-reported

questionnaire17,18. This approach has uncovered hundreds of associated loci and increased the variance

explained by results-derived polygenic scores (PGS)17. Nevertheless, it has been suggested that loci

associated with “light” MDD may not elucidate core MDD biology6 and, even with million-person MDD

GWAS6,18, PGS performance in MDD lags behind, e.g., Schizophrenia19. Current genetic studies would be

complemented by deeper studies of single cohorts with cross-domain phenotyping that add context to

the genetic architecture of MDD.

The iPSYCH 2015 case-cohort study4 includes 30,949 cases of clinically defined MDD and 39,655

random population controls with imputed whole-genome genotyping. This sample is nested within the

Danish national register system20 and can be cross-linked with, e.g., registered measures of clinical
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outcomes including severity, recurrence, age at first treatment, or comorbidity. Further, civil registers

allow linkage of relatives through parent-offspring records that enable reconstructions of extended

genealogies for all probands21. Broad register phenotyping is available for all probands and relatives

during periods of legal residence in Denmark since 1969. Combining family history data with genotypes

and clinical measures could complement current genetics studies of MDD by considering integrated

predictions11, genetic contributions to clinical heterogeneity7,22,23, and powerful single cohort GWAS8,9.

Currently, methods that transform patterns of binary diagnoses in a genealogy to continuous

liability24,25 scores in each family member can not accommodate the full extent of iPSYCH data. LT-FH9

and LT-FH++26 are related methods that use resampling to estimate posterior mean liabilities of relatives.

They consider first degree relative records thereby excluding many iPSYCH relatives and potentially

confounding estimates strongly with familial environment. These methods were developed and applied

with the aim to improve GWAS. So et al27 developed a method based on the Pearson-Aitken (PA)

selection formula28, a simple analytical procedure for calculating an expected liability score for a proband

conditional on relative phenotypes in arbitrarily structured genealogies, assuming all relatives are fully

observed. A more flexible, resampling-based extension of this model was proposed but is

computationally prohibitive at scale29. These approaches were developed and applied with a focus on

trait predictions. Kendler et al.22 introduced family genetic risk scores (FGRS), kinship weighted sums of

the disease status of relatives with corrections for familial environment, censoring, and other covariates.

FGRS accommodates extended genealogies and censored records, but it is not based on a fully described

model and FGRS does not fully account for kinship among relatives of probands. FGRS was developed

and has been applied to describe genetic heterogeneity within and across disorders. Current methods

estimating individual liability from genealogies would not take full advantage of iPSYCH data which

includes extended genealogies of only partially observed relatives.

We introduce a new method, Pearson-Aitken Family Genetic Risk Scores (PA-FGRS), validate it

under simulations, and apply it to the iPSYCH2015 case-cohort data to study major depressive disorder

(MDD). We demonstrate that PA-FGRS improves inference along three lines of inquiry: 1) improving

classification of MDD in the context of PGS, 2) highlighting robust genetic contributions to clinical

heterogeneity in MDD, and 3) improving power in a large single cohort GWAS of MDD. Our applications

confirm, add context to, and extend important recent methodological advances and their applications in

similar data. The PA-FGRS framework is extensible, robust, easy to implement, and can be applied across

biobank data resources or to pursue similar aims with other complex disorders.

Results
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The iPSYCH 2015 MDD case-cohort genealogies are complex and contain a wealth of information

The iPSYCH 2015 case-cohort sample ascertained 141,265 probands from the population of

individuals born in Denmark between May 1st 1981 and Dec 31st 2008 (N=1,657,449) by cross-linking

the Danish civil register30 (CPR) and neonatal biobank31. The CPR includes all individuals who have legally

resided in Denmark since its establishment in 1968 and each proband is associated with parental

identifiers, where known. We follow Athanasiadis et al.21 in using mother-father-proband connections to

reconstruct extended genealogies (Online Methods) of 141,265 iPSYCH2015 probands, identifying

2,066,657 unique relatives that span up to nine generations (birth years range: 1870s to 2016; Figure 1a,

Supplementary Figure S1). Of the 20,071,410 relative pairs identified, 24,773 pairs were of iPSYCH

probands genotyped on the same array. The pedigree inferred kinship was highly correlated with

observed SNP-based kinship (r=0.969, Figure 1B), siblings sharing recorded one parent with the other

missing tended to be half-siblings (Supplementary Figure S2), and we infer that approximately 45% of

same-sex twins are monozygotic (Supplementary Figure S3). For the 141,265 probands, genealogies

included 99.5% of parents, 82.0% of grandparents, and 7% of great-grandparents. As only relatives

sharing a common ancestor alive and legally residing in Denmark after the establishment of the civil

register can be connected, our ability to capture distant relatives is limited. The number of relatives

identified per proband varied considerably (Figure 1C). Clinical diagnoses can be aggregated for all

relatives during periods of legal residence within Denmark from 1968 with in-patient psychiatric contacts

recorded from 1969 to 1994 using ICD-8 and ICD-10 from 1994 onwards, and since 1995 both in- and

out-patient contacts recorded (Figure 1D,E). There is a wealth of high-quality psychiatric family history

for each genotyped proband (Figure 1), but relatives are neither completely nor consistently observed.

PA-FGRS is a flexible, powerful framework for estimating individual liability scores

PA-FGRS estimates the expectation of a proband’s genetic liability from an arbitrarily structured

genealogy, assuming the outcome results from a thresholded latent Gaussian liability (Figure 2). As input

PA-FGRS takes a kinship matrix, the diagnostic status and age (at censoring, diagnosis, or end of

follow-up) for each pedigree member, a phenotype heritability, and lifetime sex by birth year-specific

cumulative incidence. In a first step, each pedigree member is assigned an initial liability of 0 with

variance 1. Then we consecutively condition on observations of other relatives, r1 , …, rn, updating all

expected liabilities for each. This is done by first updating the expected liability of a selected relative, r(i),
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estimating their expected liability given their prior liability distribution, disease status, age and the

lifetime incidence estimate. Then we update the liabilities of all remaining relatives, ri+1 , …, rn, according

to the PA-selection formula28 and a modified kinship matrix (Supplementary Figure S4). An optional final

step updates the proband liability on their own diagnostic status and age. This results in a continuous

liability score that summarizes the genetic family history in the proband’s pedigree.

Other methods have approached this problem, but with certain limitations critical to our use

case. Notably, prior implementations27,32 of the Pearson-Aitken (PA) selection formula28 assumed fully

observed individuals (i.e., no censoring). We addressed this by modeling individuals as mixture of

truncated Gaussians, with mixture proportions derived from individual morbid risks, in the computation

of initial liability (Online Methods). FGRS22 followed this concept, but PA-FGRS takes a more formal

approach that improves the efficiency by incorporating kinship relationships among relatives as well as

between relatives and proband. This results in a better calibrated score and an estimate of the

conditional liability variance (Online Methods).

Simulations demonstrate the advantages of PA-FGRS

We simulated 6,750,000 four-generational pedigrees with an average of nine relatives per

proband (range 0-18), generating phenotypes from a liability threshold model (Online Methods). We

compared the performance of PA-FGRS to that of FGRS22, PA27, and LT-PA9 and found that PA-FGRS

consistently produced the highest correlations with true liability across a range of heritabilities and trait

prevalences (Figure 3C,D) and the relative gains were largest when heritability, prevalence, and censoring

were high. Crucially, PA-FGRS was the only method that was well-calibrated in the presence of censored

data (Figure 3E, Supplementary Figure 5). We found that all methods produced individual liability scores

that were highly correlated (Figure 3A,B, r > 0.8), suggesting that they target similar latent constructs.

Methods incorporating more similar information were more highly concordant, e.g., extended relatives

(Figure 3a,b, r > 0.89) or extended relatives and censoring (Figure 3A, r > 0.95). A fully specified Gibbs

sampling-based approach29 produced nearly identical estimates to PA-FGRS (r=0.999, Figure 3a,b),

suggesting PA-FGRS behaves near optimally. Our implementation of this Gibbs sampling approach,

however, is computationally intractable at scale. (Supplementary Figure 6)

One limitation of methods that consider only first degree relatives9,26 is that estimated genetic

liabilities may capture effects of familial environment. This may be desirable if the goal is to optimize

prediction11,27, only, but less so if the goal is to make etiological inferences22. We repeated our

simulations including a common environment component of variance shared among first degree

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.23.23291611doi: medRxiv preprint 

https://paperpile.com/c/7ZF0z3/4Lsi3
https://paperpile.com/c/7ZF0z3/y9gs+uY4NT
https://paperpile.com/c/7ZF0z3/4Lsi3
https://paperpile.com/c/7ZF0z3/aWVJW
https://paperpile.com/c/7ZF0z3/aWVJW
https://paperpile.com/c/7ZF0z3/y9gs
https://paperpile.com/c/7ZF0z3/ycglW
https://paperpile.com/c/7ZF0z3/H00o8
https://paperpile.com/c/7ZF0z3/pMHKv+ycglW
https://paperpile.com/c/7ZF0z3/y9gs+WJ4XP
https://paperpile.com/c/7ZF0z3/aWVJW
https://doi.org/10.1101/2023.06.23.23291611
http://creativecommons.org/licenses/by-nc-nd/4.0/


relatives (Figure 3F, Supplementary Figure 7) - a typical quantitative genetics model33. In these scenarios

PA-FGRS (and other approaches) produce estimates of genetic liability that are correlated with the

environmental liability (Figure 3F). An advantage of leveraging extended genealogies is that we can omit

close relatives as a sensitivity test for undue influence. In these scenarios, liabilities estimated after

excluding first degree relatives remained good estimators of genetic liability and were uncorrelated with

environmental liability (Figure 3F). The flexibility of PA-FGRS can add important context to estimated

liabilities that may be especially important when interpreting, e.g., profiles of liability scores22,23 or when

large familial environment effects are a concern.

PA-FGRS requires external estimates of specific population parameters, namely, lifetime

prevalence and heritability. Providing inaccurate estimates results in miscalibrated estimated liabilities,

but had modest impact on the correlation between estimate and the true liability in our simulations

(Supplementary Figure 8). Regardless, estimating these parameters with reasonable precision is

straightforward.

PA-FGRS contribute to classification of MDD over and above PGS

Both family history and PGS are known to explain liability for MDD. We constructed PA-FGRS

from diagnoses of relatives, masking the disorder status of probands, in the iPSYCH2012 MDD

case-cohort and iPSYCH2015i MDD case-cohort (Supplementary Figure 9) and predicted outcomes

together with PGS (Online Methods, Figure 4A,B). Both genetic instruments significantly classified MDD

in both cohorts: iPSYCH2012 (AUCPGS=0.588 (0.583-0.594), p= ; AUCPA-FGRS= 0.598 3. 7 × 10−229

(0.592-0.603), p= ) and iPSYCH2015i (AUCPGS=0.573 (0.565-0.580), p= ;4. 9 × 10−328 7. 8 × 10−94

AUCPA-FGRS=0.576 (0.569-0.583), p= ). Each genetic instrument contributed independent4. 1 × 10−136

information, as demonstrated by their combined effects in a joint model being larger than marginal

effects (iPSYCH2012: AUCPGS+FGRS=0.630 (0.625-0.638) and iPSYCH2015i: AUCPGS+FGRS=0.608 (0.601-0.615)).

Including PGSs for four other psychiatric disorders, schizophrenia (SCZ), bipolar disorder (BPD),

autism spectrum disorder (ASD), and attention deficit/hyperactivity disorder (ADHD), improved the

classification of MDD relative to models with MDD PGS only (iPSYCH2012: AUC5-PGS=0.599 (0.594-0.604);

iPSYCH2015i: AUC5-PGS= 0.589 (0.582-0.596); Figure 4C,D). Similarly, incorporating PA-FGRS for the four

other psychiatric disorders improved the classification of MDD relative to models with MDD PA-FGRS

only (iPSYCH2012: AUC5-PA-FGRS= 0.620 (0.614-0.625); iPSYCH2015i: AUC5-PA-FGRS= 0.596 (0.589-0.603), Figure

4E,F). Combining all 10 predictors resulted in the best classification accuracy (iPSYCH2012:
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AUC5-PGS+5-PA-FGRS=0.648 (0.643-0.653); iPSYCH2015i: AUC5-PGS+5-PA-FGRS= 0.626 (0.619-0.632), Figure 4G,H).

These results demonstrate that combining genetic instruments that leverage different sources of genetic

information improves classification of MDD.

Composite genetic profiles identify signatures of genetic heterogeneity in MDD

Individuals diagnosed with MDD demonstrate extensive clinical heterogeneity that may reflect

etiologic heterogeneity. We used multinomial logistic regression to associate differences in clinical

presentations of individuals diagnosed with MDD to their psychiatric genetic risk profiles (Online

Methods, Figure 5). To leverage the complementarity of PGS and PA-FGRS, we defined composite

genetic risk estimates for each disorder (e.g. BPD-score= βPGS*PGSBPD+ βPA-FGRS*PA-FGRSBPD, where βPGS and

βPA-FGRS are the estimated effect of the PGS and PA-FGRS on their natural outcome in a binomial logistic

regression). Each composite psychiatric risk score was significantly larger in individuals diagnosed with

MDD than in controls, across all subgroups (Figure 5; p<0.05). The estimated liabilities for bipolar

disorder (BPD), schizophrenia (SCZ), autism spectrum disorders (ASD) and attention deficit/hyperactivity

disorder (ADHD) tended to have smaller effects on MDD subgroups than on their natural outcome (i.e.,

βMLR/βLR < 1; the colored bars below dashed line in Figure 5; Online Methods), with the exception of BPD

liability on conversion to a BPD diagnosis (βMLR/βLR =0.97 (0.90-1.04), Figure 5A).

Among 30,949 individuals diagnosed with MDD, those also diagnosed with BPD (N=1,477) had

significantly (p < 1.4x10-3, adjusting for 35 tests) higher genetic liability for MDD ( ),𝑝 = 1. 1 × 10−12

BPD ( ), and SCZ ( ; Figure 5A). Among the 29,472 individuals𝑝 = 4. 7 × 10−66 𝑝 = 2. 5 × 10−6

diagnosed with MDD, but not BPD, the 7,205 also diagnosed with an anxiety disorder had higher genetic

liability to MDD ( ) and SCZ ( ; Figure 5B). Individuals with recurrent𝑝 = 4. 9 × 10−6 𝑝 = 3. 5 × 10−12

depression (N=9,903) had higher liability to MDD ( ; Figure 5C) than those with single𝑝 = 3. 2 × 10−12

episode depression (N=19,569). Individuals treated for MDD in-patient (NHospitalized=5,815) had higher

liability to MDD ( ) and BPD ( ) than those treated out-patient𝑝 = 6. 2 × 10−5 𝑝 = 8. 1 × 10−4

(NOut-patient=12,432, Figure 5D). We did not observe any significant differences ( ) in the𝑝 > 1. 4 × 10−3

genetic liability score profiles of males vs females (NFemale=19,906, NMale=9566; Figure 5E), based on

age-at-first-diagnosis (Figure 5F), or based on diagnostic codes for severity (mild NMild=3,004, NModerate

=8,742, NSevere= 2,391, NPsychotic=856; Figure 5G).

Analyses were repeated for each genetic instrument, separately, (i.e., PGS or PA-FGRS only;

Supplementary Figures S10-S11). The PGS-only and PA-FGRS-only results were highly similar to each
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other (Pearson correlation: 0.95 (0.93-0.97); Figure 5H). Individual scores were less powerful than

composite scores, however, (PA-FGRS-only mean log10(p)= 2.90; PGS-only mean log10(p)= 2.47; composite

mean log10(p)= 4.24). Together this suggests that PGS and PA-FGRS may capture similar constructs and by

combining the two we can increase power to detect genetic heterogeneity. Finally, to test for potential

impacts of the familial environment on these inferences, we constructed PA-FGRS excluding nuclear

family members (i.e., parents, siblings, half-siblings, and children). The overall trends were highly

consistent with the full analysis (Figure 5I), albeit with reduced significance (Supplementary Figure 12).

Genetic liability score profiles are associated with differences in clinical presentation of individuals

diagnosed with MDD, often receive contributions from non-MDD liability scores, show parallel trends

when considering PGS or PA-FGRS alone, and do not seem strongly influenced by familial environment.

GWAS on PA-FGRS liability values adds power to single cohort MDD GWAS

The multifactorial etiology and protracted age at onset of MDD imply that neither every case,

nor every partially observed control will carry the same genetic risk and so studying genetic liability

directly would boost power in GWAS (Supplementary Figure 13). We performed meta-analytic GWAS

across the two iPSYCH MDD case-cohorts, 2012 (Ncases=17,518, Nctrl=23,341) and 2015i (Ncases=8,323,

Nctrl=15,204, Supplementary Figure 9). We compare logistic regression on binary diagnoses to linear

regression on PA-FGRS (Online Methods, Figure 6). GWAS for MDD PA-FGRS identified 3 independent

loci (Figure 6A; index SNPs: rs16827974, =0.014, p= ; rs1040574, =-0.011. p= ;β 2. 9 ×  10−8 β 3. 3 ×  10−8

rs112585366, =0.026, p= ). These three variants and 24 of the 29 suggestive loci (falseβ 4. 4 ×  10−8

discovery rate <0.05) showed consistent sign in an independent MDD GWAS by Howard el al.17 (excluding

iPSYCH, Supplementary Table S2-S3). GWAS for MDD case-control status identified only first two of these

loci as significant (Figure 6B; index SNPs: rs6780942, 8.5Kb from rs16827974 Beta=0.085, p=7. 1 ×  10−9

; rs3777421 36.3Kb from rs1040574, =-0.073, p= ). These two variants and 24 of the 35β 4. 6 ×  10−8

suggestive loci (false discovery rate <0.05) showed consistent sign in Howard el al.17 (excluding iPSYCH,

Supplementary Table S2-S3). The 28 independent, genome-wide significant index SNPs reported in

Howard el al.17 (excluding iPSYCH) have slightly, but significantly, larger test statistics in the GWAS on

PA-FGRS (PA-FGRS mean χ2= 4.55; case-control mean χ2= 3.80; paired t-test p=0.018; Figure 6C).

To test for improved power to detect polygenes, we trained polygenic scores in each subcohort

(iPSYCH2012 or iPSYCH2015i) using GWAS performed in the other cohort (iPSYCH2015i or iPSYCH2012).

In both evaluation cohorts, PGS trained with PA-FGRS GWAS were modestly, but significantly better at
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classifying MDD diagnosed individuals versus controls (2012: AUCcase-control PGS = 0.537 (0.531-0.542),

AUCPA-FGRS PGS =0.544 (0.538-0.550), test of differences: p= ; 2015i: AUCcase-control PGS = 0.5563. 9 ×  10−5

(0.548-0.563), AUCPA-FGRS PGS=0.548 (0.540-0.556), test of differences: p= ; Figure 6D).2. 1 ×  10−7

Observed scale SNP-h2 was slightly, but not significantly larger in the PA-FGRS GWAS

(h2
obs,PA-FGRS-h

2
obs,PA-case/ctrl=0.015 (-0.013-0.043); Figure 6E). GWAS on PA-FGRS and case-control had similar

genetic correlations with external studies of MDD and other psychiatric disorders (Figure 6F). GWAS of

PA-FGRS modestly improves power relative to GWAS of case-control status for detecting disease

associated loci and polygenes.

Discussion

The emergence of large, biobank cohorts enables studies of complex disorders that can combine

multiple data sources to provide extended context for the genetic architecture of complex disorders,

such as MDD. In this study, we have developed a new method for estimating genetic liability scores from

extended pedigree data where individuals may be only partially observed. Our PA-FGRS outperforms

existing methods, especially in scenarios most relevant for the iPSYCH2015 case-cohort study. The

liabilities we estimate complement genotype-based inferences into MDD in three parallel and important

lines of inquiry: 1) classification, we show that PA-FGRS liabilities improve the classification of MDD when

combined with state-of-the-field PGS, 2) descriptions of etiology, we show that genetic score profiles

integrating PGS and PA-FGRS liabilities can identify genetic contributions to clinical heterogeneity in MDD

associated with comorbidity, recurrence, and severity, 3) gene mapping, we show that GWAS performed

on PA-FGRS scores have more power than GWAS on case-control status. Our method is highly flexible,

easy to use, and could be applied across multiple other datasets and to ask similar questions of other

complex traits and diseases. Here, we took a data-resource-first approach of describing the unique

characteristics of a powerful resource and tailoring a novel method to fully accommodate its

peculiarities, rather than discarding or censoring to accommodate existing approaches. This could reflect

a complementary approach to lowest common denominator cross-cohort meta-analysis, especially as

newer, larger, deeper, and necessarily more peculiar, data sets emerge.

The iPSYCH case-cohort study is special in the depth of phenotyping and pedigree data available

for genotyped probands. PA-FGRS can take full advantage of the extended genealogies with a robust,

flexible, easy to implement approach for computing individual liability scores from patterns of binary

diagnoses in a genealogy. PA-FGRS incorporates relatives of greater distance than recent methods9,26 and
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handles censoring by treating partially observed controls as a morbid risk weighted mixture of a case and

control. By formalizing the FGRS of Kendler et al22 within PA-selection theory, we are able to gain

efficiency and improve the calibration and interpretability of estimated liabilities. The straightforward

mathematical formulations of PA-FGRS are amenable to analysis and extension, representing a major

advantage and future potential. For example, we show how we can include and exclude the proband or

close relatives to change the meaning and use cases of the liability score. The framework itself, however,

could be extended to include covariance among relatives beyond additive kinship, covariance among

multiple traits, or different thresholds for different phenotypes believed to result from different levels of

the same underlying liability.

Genetic instruments, such as polygenic risk scores, have garnered enthusiasm as potentially

useful clinical instruments, but currently, for most complex disorders, they do not predict well enough to

be impactful. Just as when GWAS came to appreciate that a few variants in isolation were insufficient to

describe the etiology of a complex disorder34, one genetic risk score in isolation is unlikely to be

sufficiently powerful to find impact in the clinic35. Here we show combining our family based liabilities

and genotype-based PGS, from multiple disorders, can improve classification accuracy substantially. In

cancer36 or coronary artery disease37, risk models incorporate multiple measures - health states, health

traits, family history, and PGS. In psychiatry, this has been pursued in more limited contexts, (e.g.,38).

Previous studies have found that combining parental history information and PGS improves the

prediction accuracy38, however, these studies only considered risk associated with parental MDD and did

not leverage diagnoses in other relatives. Integrative models that combine multiple sources of genetic

information, such as family history, estimated liability, and PGS along with exposure data have the

potential to advance the clinical utility of risk assessment in psychiatry but will require large population

data and integrative models.

It is common clinical knowledge that individual patients present with unique trajectories of

symptoms and outcomes. Some previous studies have used PGS in iPSYCH data to look at associations

with age of onset, severity, hospitalization39 and recurrence,40 but conclude that polygenic liability

contributes minimally to heterogeneity in MDD. We observe several significant effects of polygenic

liability on clinical heterogeneity, but with different genetic instruments. Our models calibrate estimated

effect sizes differently, to better accommodate that the scale of noisy instruments, such as PGS, can

misrepresent the effect of an underlying liability construct. From our results, we propose that genetic

liability for MDD and BPD are both important and substantial contributors to the course of illness and

treatment setting, and the prior pessimism could be a function of limits of the implemented genetic

instruments. Similarly, we believe our effect calibration is the reason that we observe BPD genetic
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liability to be significantly more important than SCZ liability for conversion from MDD to BPD, whereas a

previous study41 found similar magnitudes of effect for SCZ and BPD PGS. Our study, with more powerful

genetic instruments and a unique effect size calibration, extends and clarifies the results of previous

studies in similar data.

Our results also support and are supported by extensive work in the Swedish registers. Kendler

et al.22,23,42 used family genetic risk scores (FGRS) to show differences in genetic liability adjusted for

family environment of siblings and parents is associated with progression to BPD22, comorbid anxiety23,

recurrence22, treatment setting42, and age-at-onset22 of MDD. Here, in independent yet comparable data,

we replicate many of their findings. We confirm higher genetic liability to MDD among cases with

recurrent depression using composite, PGSs-only, and PA-FGRS-only liability scores. We also replicate a

higher liability to MDD and SCZ among MDD cases with comorbid anxiety using our composite and

PGS-only scores. We also saw the same trend of higher liability to both MDD and BPD among

hospitalized cases, here, using our composite and PGS-only scores. Kendler et al42 showed higher BPD

liability in male MDD cases, which was nominally significant in our study. We did not replicate results for

age at onset, as we find no significant differences in our data, however, iPSYCH has a much reduced

range for age of onset (iPSYCH: 15 to 35, Kendler et al: <22 to >69) and only includes secondary care

treated (i.e., more severe) MDD. Our study supports and is supported by studies of independent,

comparable Swedish register data, replicating evidence for genetic heterogeneity in MDD using an

alternative model-based approach for family liability and by incorporating molecular PGS the genetic

instruments.

The focus of many previous methods for estimating family based liability has been to improve

the power of GWAS9,26, but reported gains have typically been both significant and very modest.

Consistent with simulations, the relative increase in power in observed in highly ascertained case-control

data is smaller than what has been reported for population-based studies. This is likely because in

population studies, especially for rarer disorders, most of the variance in liability is hidden within

controls, whereas for highly ascertained data, most of the variance in liability remains between cases and

controls. As such, little is gained by moving from binary to continuous measures. Despite this, we do see

an increase in GWAS power that previous attempts to leverage family history in MDD GWAS using iPSYCH

did not26. We also extend this previous study by showing a small but significant gain in PGS performance

trained on GWAS of PA-FGRS relative to case-control status. Although we observe small gains in power

for GWAS, which is consistent with other studies, the most powerful applications of family liability

estimators may lie in classification or descriptions of etiology.

Our study should be interpreted in light of a few important limitations. Certain modeling choices
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could affect the reliability of PA-FGRS. First, pedigree size varies substantially among individuals which

causes a regression towards the mean liability in individuals with fewer relatives. Second, modeling the

censoring process requires external information about age-of-onset curves for disease of interest - as do

the other methods modeling censoring - and these may change over time. While reliable age-of-onset

curves are available for the present register coverage, estimating age of onset curves for past decades,

with different diagnostic systems and different register coverage is challenging. Third, our proposed

model assumes that the true liability of cases with different age and calendar year of onset is the same.

Others have proposed a model where the liability threshold varies according to the age and calendar

year specific prevalence26. While we did not see clear associations between age-at-first-registration and

MDD liability, optimizing modeling choices to impact the predictive accuracy and GWAS power (e.g.

estimated heritability) is an interesting future direction. Fourth, our estimated liabilities included all

diagnostic information available through Dec 31 2016 and so some relatives will have received their

diagnosis later than the probands. Thus the estimated variance explained in liability to depression will

not be representative of the variance explained by a PA-FGRS constructed from the information available

at an earlier point in time, which is a point that should be kept in mind if the purpose of the predictor is

to use it at first psychiatric contact or even earlier.

Here, we have taken a data-first approach to studying the genetic architecture of MDD by

tailoring both our study aims and method development to the particular strengths and challenges of a

unique data resource. Doing so resulted in a methodological increment with broad applicability and

highlights the utility of integrating multiple sources of genetic data when considering trait predictions,

etiological descriptions, and gene mapping.
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Figure 1 | The iPSYCH-2015 MDD case-cohort genealogies contain a wealth of information. 
a) For each of the 141,265 probands in iPSYCH2015, there are a number of available relatives, here reported 
as a total across all and average per proband pedigree. P, parents; S, siblings; Ch, children; 1GP, grandparents; 
Pib(lings), aunts and uncles; Nib(lings), nieces and nephews; iCjR ith cousin, jth removed; H-, half; Other, relative 
types not in the figure (including 702 double 1C, 2722 twin Pib, 5158 twin 1C and 1561 twin 1C1R.) b) SNP-
based relatedness is highly correlated with that inferred from the genealogy. c) The number of relatives 
linked to each proband varies considerably. d) The amount of follow up, depicted as the proportion of total 
number of person-years lived in Denmark by all probands and their relatives, varies by relative type (y-axis), 
year of observation (x-axis), and register era (color). e) The cumulative proportion of individuals with a 
depression diagnosis stratified by relative type and colored by the register era. 
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Figure 2 | PA-FGRS estimates liabilities from records of family history and disease specific population 
parameters.  
PA-FGRS is a novel method for converting patterns of disease in arbitrarily structured pedigrees where 
relatives may only be partially observed into an estimate of latent disease liability for a proband.  Input data 
for a proband can be a simple, fully observed pedigree (yellow proband), an extended, fully observed 
pedigrees (green proband), or an arbitrarily structured pedigree where many relatives are only partially 
observed (blue proband).  PA-FGRS combines an assumed form for covariance in liabilities among relatives 
(1) with estimated, covariate stratified cumulative incidence curves (2) in a novel extension of the Pearson-
Aitken selection formulas that models partially observed controls as a mixture of liability thresholded cases 
and controls.  Estimated genetic liabilities are assigned to each proband and determined by the unique 
configuration of their pedigree. Proband liabilities (colored) are shown against a gray density that is the 
assumed population distribution of genetic liability where E(G|case) and E(G|ctrl) indicate the expected 
mean liability of a case and control, respectively. 
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Figure 3 | PA-FGRS outperforms other methods in simulations. 
PA-FGRS liabilities are correlated with those from other methods both (a) when all relatives are fully 
observed  or b) when younger relatives are only partially observed (i.e., censored).  In simulations, PA-FGRS 
shows the largest correlation with true genetic liability under c) varying trait prevalence and d) varying trait 
heritability. e) Linear regression of estimated liability on true liability shows PA-FGRS estimates are better 
calibrated estimates. f) Estimated liabilities from PA-FGRS are correlated with environmental components of 
variance when traits receive substantial contributions of family environment, but this can be diminished at 
the cost of reduced power (i.e. reduced correlation with genetic components) by removing confounded (i.e., 
nuclear) relationships. Panels c-e show mean and 95%-confidence interval across simulations, while f shows 
median, range and interquartile range across simulations.     
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Figure 4 | PA-FGRS and PGS are complementary predictors of MDD  
a,b Combining PA-PGRS-MDD and PGS-MDD improves prediction of MDD the iPSYCH-2012 (a; Ncases=20,632, 
Nctrl=23,870) and iPSYCH-2015i (b; Ncases=10,317, Nctrl=15,785) case-cohorts. c,d Using PGSs for five disorders 
improves prediction of MDD over only PGS-MDD in iPSYCH-2012 (c) and iPSYCH-2015i (d). e,f Using PA-FGRS 
for five disorders improves prediction of MDD over only PA-FGRS-MDD in iPSYCH-2012 (e) and iPSYCH-2015i 
(f). g,h Using PA-FGRS for five disorders and PGSs for five disorders improves prediction of MDD over only 
PA-FGRS-MDD and PGS-MDD in iPSYCH-2012 (g) and iPSYCH-2015i (h). AUC area under the receiver operating 
characteristic curve with 95%-confidence interval.  
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Figure 5 | Profiles of multivariable genetic liability are associated with clinical heterogeneity in MDD. 
The figure shows the results of a multinomial logistic regression where the dependent variable is the 
categories of no-diagnosis and (a) MDD with/without bipolar disorder diagnosis, (b) MDD with/without 
comorbid anxiety, (c) single depressive episode and recurrent MDD (d) out-patient, casualty-ward and 
inpatient diagnoses of MDD (e)  female MDD and male MDD, (f) first MDD diagnosis before/after age 23, (g), 
mild, moderate, severe, or psychotic depression. The independent variable is a composite estimate of genetic 
risk of one of five different mental disorders, constructed as a weighted sum of PA-FGRS and PGS.  The y-axis 
indicates the estimated coefficient divided by the coefficient for the target diagnosis in a binomial logistic 
regression. MDD major depressive disorder, SCZ schizophrenia, BPD bipolar disorder, ASD autism spectrum 
disorders, ADHD attention-deficit/ hyperactivity disorder, p the probability of observing this data under the 
null-hypothesis (that all outcomes have the same coefficient). P-value in black indicates p<0.05/35.  Beta-
estimates and p-values are meta-analyzed across iPSYCH-2012 ( Ncases≤20,632, Nctrl≤23,870) and iPSYCH2015i 
(Ncases≤10,317, Nctrl≤15,785) with the exception of panel g (Severity) which are from iPSYCH2012 only. Sample 
sizes for the individual analyses are provided in Table S3. Error-bars indicate 95% confidence intervals. PGS-
only and PA-FGRS-only effects are highly consistent both, when using all relatives (h) and when excluding 
first degree relatives (i).     
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Figure 6 | PA-FGRS liabilities improve power for GWAS of MDD 
a,b) Genome wide association studies (GWAS) of 25,841 cases and 38,545 controls using (a) PA-FGRS 
liability finds three independent genome-wide significant loci while (b) logistic regression (case/ctrl) finds 
two.  c) PA-FGRS GWAS test statistics are more extreme (i.e., more significant) than case-control GWAS at 
index SNPs for 28 loci reported in a previous GWAS of MDD. d,e) PGS trained using PA-FGRS GWAS achieve 
higher classification accuracy that those trained on case-control GWAS in two independent evaluation 
cohorts. f) SNP-heritability estimated by LD-score regression analyses is slightly, but not significantly, larger 
for PA-FGRS GWAS while intercepts are equivalent. g) PA-FGRS and case-control GWAS show similar genetic 
correlations with external GWAS of MDD and related traits.  
 
 
 

Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 p
−v

al
ue

)

2

4

6

8

2 4 6 8

case/ctrl (ho
2 =0.10, int=1.03)

PA−FGRS (ho
2 =0.12, int=1.03)

case/ctrl
PA−FGRS

−2 0 2 4

−2

0

2

4

Zknown(case/ctrl)

Z k
no

w
n(P

A−
FG

R
S)

T−test (paired) P: 0.0182

Sign of BETA in known
Negative
Positive
Linear fit between X & Y

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

M
DD studies

O
ther studies

0.0 0.5 1.0

UKB − Cai et al, 2020

UKB −Dahl et al, 2023

FinnGen

UKB − GPpsy

Howard et al, 2019
 excl. 23andMe+iPSYCH

Educational attainment

ADHD (PGC)

BPD (PGC)

SCZ (PGC)

rg

Ex
te

rn
al

 G
W

AS

GWAS
●●

●●

case/ctrl
PA−FGRS

g

0.556(0.548−0.563)
0.548(0.540−0.556)
p= 3.9e−05

0.544(0.538−0.550)
0.537(0.531−0.542)
p= 2.1e−07

training: iPSYCH−2012 
 test: iPSYCH2015i

training: iPSYCH−2015i 
 test: iPSYCH2012

00.51 00.51
0

0.5

1

Specificity

Se
ns

iti
vi

ty

a b

0.556(0.548−0.563)
0.548(0.540−0.556)
p= 3.9e−05

0.544(0.538−0.550)
0.537(0.531−0.542)
p= 2.1e−07

training: iPSYCH−2012 
 test: iPSYCH2015i

training: iPSYCH−2015i 
 test: iPSYCH2012

00.51 00.51
0

0.5

1

Specificity

Se
ns

iti
vi

ty

0.556(0.548−0.563)
0.548(0.540−0.556)
p= 3.9e−05

0.544(0.538−0.550)
0.537(0.531−0.542)
p= 2.1e−07

training: iPSYCH−2012 
 test: iPSYCH2015i

training: iPSYCH−2015i 
 test: iPSYCH2012

00.51 00.51
0

0.5

1

Specificity

Se
ns

iti
vi

ty

0.556(0.548−0.563)
0.548(0.540−0.556)
p= 3.9e−05

0.544(0.538−0.550)
0.537(0.531−0.542)
p= 2.1e−07

training: iPSYCH−2012 
 test: iPSYCH2015i

training: iPSYCH−2015i 
 test: iPSYCH2012

00.51 00.51
0

0.5

1

Specificity

Se
ns

iti
vi

ty

d e

f

0.556(0.548−0.563)
0.548(0.540−0.556)
p= 3.9e−05

0.544(0.538−0.550)
0.537(0.531−0.542)
p= 2.1e−07

training: iPSYCH−2012 
 test: iPSYCH2015i

training: iPSYCH−2015i 
 test: iPSYCH2012

00.51 00.51
0

0.5

1

Specificity

Se
ns

iti
vi

ty

−2 0 2 4

−2

0

2

4

Zknown(case/ctrl)

Z k
no

w
n(P

A−
FG

R
S)

T−test (paired) P: 0.0182

Sign of BETA in known
Negative
Positive
Linear fit between X & Y

c

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.23.23291611doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291611
http://creativecommons.org/licenses/by-nc-nd/4.0/

