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ABSTRACT 

BACKGROUND AND PURPOSE: Simpson Rule based planimetry remains the gold standard 

for left ventricular (LV) ejection fraction (EF) but due to sub-optimal endocardial delineation, 

planimetry is not feasible in many cases. The purpose of this study was to derive and to 

analytically evaluate the theoretical accuracy of several simple novel formulas for estimating EF 

in ventricles with uniform wall motion using only the radial diameter and axial length LV 

fractional shortening (F
D

 and  F
L
 respectively), which are less subject to image quality 

limitations than planimetry.  

METHODS: A truncated ellipsoidal model of the LV at end-diastole and end-systole was 

assumed leading to a novel compact formula for directly calculating an exact EF that is identical 

to the Simpson Rule EF when the ventricle has ellipsoidal end-diastolic (ED) and end-systolic 

(ES) shapes. 

EFexact = 1  (1 FD)
2
(1 FL) 

Three linear formulas were then developed to directly calculate an approximation to the exact 

EF without intermediate calculation of volumes. To avoid population selection bias in this initial 

investigation the linear coefficients were determined by an analytic graphical optimization 

procedure that minimized the EF errors compared to the exact EF over the full range of exact 

EFs from 0 to 80% (F
D

 and F
L
 in percent).  

#1)  EF  2 F
D

,  

#2)  EF  1.8 F
D

 + 4  

#3)  EF  1.5 F
D

 + 0.6 F
L + 5 

RESULTS: In single factor linear approximations #1 and #2, the EF difference from the exact EF 

was dependent  on  the ratio F
L
/ F

D
, which is normally between 40 and 50%. Subject to the 

assumption of ellipsoidal LV shape at ED and ES, for ratios of F
L
/ F

D
 between 20% and 80%, 
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and over EFs ranging from 0 to 55%, the calculated differences from the exact EF were less 

than 6 EF points. At extremes of the ratio, less than 20% or over 80%, or for EFs over 55%, the 

difference could reach or exceed 10 points. Formula #2 produced slightly smaller differences 

than formula #1.  Formula #3 reduced the difference error substantially to less than 4 EF 

percentage points regardless of the F
L
/ F

D
 ratio except at EFs over 75%.  

CONCLUSIONS In uniformly contracting ventricles, simple linear formulas could provide rapid 

estimation of EF and may be helpful when image quality degrades planimetric EF accuracy, as 

well as in point-of-care echocardiography where planimetry is not feasible. Validation of these 

formulas through empirical testing is warranted.  
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INTRODUCTION 

 Simpson Rule based planimetry remains the gold standard for optimal echocardiographic 

measurement of left ventricular (LV) ejection fraction (EF) because it can be applied in 

ventricles of any shape at end-diastole (ED) and end-systole (ES) [1]. However, due to sub-

optimal image quality, planimetry is often not feasible or is of reduced accuracy. Even when wall 

motion is visualized adequately in moving image loops, when frozen at ED and especially ES, it 

is often difficult to confidently identify endocardium for planimetry. This has led to readers 

utilizing overall “eye ball” visual estimates of LV EF from the video loops without any quantitative 

measurement [2]. The use of sonographic contrast has mitigated the problem substantially, but 

its use is limited primarily to inpatient laboratories and it is rarely used in the outpatient setting.  

Accordingly, a variety of alternative methods for assessing LV function have evolved.  Visual 

based segmental scoring schemes have been used as a semi-quantitative surrogate for EF 

when planimetry is not feasible and segmental wall motion abnormalities (SWMA) are present 

[3,4].  However, these alternatives are difficult to apply in cases of uniform LV dysfunction in the 

absence of a normally contracting segment to use as a visual benchmark.  Uniformly or nearly 

uniformly contracting ventricles represent a large group of clinical cases comprising most forms 

of non-ischemic cardiomyopathy including hypertensive heart disease, toxic myopathy and 

myocarditis.  A variety of other indices of LV performance have been suggested for use in 

technically difficult cases [5], but none of these indices is easy to use and none report an EF 

directly.  

The potential for accurate measurement of EF in cases of uniform LV contraction using 

the radial diameter (F
D

) and axial length (F
L
) fractional shortening of the LV has not been 

systematically analyzed. Radial fractional shortening was originally used alone to estimate EF 

by the Cube and Teicholz methods [6,7], but these were tedious to use, involving intermediate 

calculation of ED and ES volumes, and required a computer.  
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 The purpose of this investigation was: (1) to develop simple formulas that do not require a 

computer system and can be applied in cases without significant SWMA to obtain the 

approximate EF without intermediate calculation of LV volumes; and (2) to examine their 

accuracy in a geometric numerical simulation of LV contraction.  

 These formulas could be useful to clinicians for estimating EF both in the echocardiography 

laboratory, especially in the community where contrast is rarely employed, as well as in point of 

care (POC) echocardiography, the use of which is increasing. 

METHODS 

Exact EF in Ellipsoidally Shaped LV: A novel compact formula for converting radial and axial 

LV fractional shortening, FD and FL respectively, defined as (ED dimension – ES dimension)/(ED 

dimension), directly into LV EF was derived from basic geometric considerations that provides an 

exact EF in chambers that have ellipsoidal ED and ES shape where FD and FL are expressed as 

fractions (see appendix 1): 

Eqn (1)   EFexact = 1  (1 FD)
2
(1 FL) 

 Relation between FD and FL: Normal mean values for radial and axial fraction shortening 

vary in the literature but typical values are FD between 30% and 35% and FL between 15% and 

20%, respectively [8,9]. Thus, in ventricles contracting normally, axial shortening fraction is 

approximately 40% - 60% of the radial fractional shortening. When LV function deviates from 

normal this ratio may change but except for rare circumstances, axial shortening typically 

remains less than radial shortening fraction. Expressing the formula for exact EF in terms of this 

ratio provides simplification and geometric insight in the analysis. We defined this ratio as: 

K = FL  
FD 

Substituting FL   
= KFD into Eqn 1 leads to an alternative form of Equation 1 for the exact EF in 

an elliptically shaped model: 
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Eqn (2)   EFexact model = 1  (1 FD)
2
(1 KFD) 

 As a first step to obtaining linear formulas, we expanded the squared term, (1 FD)
2
  to 

obtain this algebraically equivalent form of the exact equation (appendix 3):  

Eqn (3)   EF = 2 F
D

 – F
D

2
 + KF

D
 (1– F

D
)
2
 

Note that the 2nd and 3rd terms are squares of fractions and are therefore both smaller than the 

1st term, 2F
D

. Importantly, since they are also of opposite sign, they tend to cancel each other 

and can be ignored leaving only the 1st term, 2 F
D

 as an approximation to the EF, or EF  2 F
D

 

As an illustration, typical normal LV radial fractional shortening is 33% or F
D

 = 0.33 and 

axial fractional shortening is 20% or F
L = 0.2. The second term of the expansion is 0.109, the 

third term is +0.089. Their sum is 0.019, which is much smaller than the main term 2 F
D

= 0.66. 

Thus, the approximate EF, 2 F
D

, is 2 x .33 or 0.66 and is very close to the EF = 0.64 given by 

the complete Exact formula including all  terms. We designate this approximation as Model 1: 

Eqn (4)    Model 1:     EF  2 F
D

 

In Model 1, the LV EF is estimated by simply doubling the LV radial fractional shortening, F
D

. 

 In the following analysis, the accuracy of this approximation and other linear formulas 

that include both the axial and radial fractional shortening will be examined  over the entire 

spectrum of physiologic  EFs and fractional shortening values by comparison to the exact 

formula,  Eqns 1 and 2. 

General Linear Models: We generalized Model 1 to include the axial LV fractional 

shortening as follows: 

EF  C1 FD + C2 FL + C0 
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In Model 1, C1 = 2 and C2 and C0.are both zero. The exact formula (equations 1 and 2) were 

used in a geometric numerical simulation of LV contraction. The linear formula coefficients were 

adjusted or “optimized” to minimize the difference between the linear formula EF and the gold 

standard EF provided by the exact formula for clinically plausible values of FD and FL. 

  Model 2: To better reflect variations in the 2nd and 3rd terms of equation 3 and maintain 

model accuracy over a wider range of fractional shortening values, two terms are included in 

this one-factor model: EF  C1F
D

 + C0. The value of C1 was chosen so that, if C0 = 0, the 

model is a straight line passing through an EF of 0% when F
D 

= 0 and a normal EF of 64% 

when FD  = 35% (i.e. Estimated EF/Normal EF = Measured FD/Normal FD). Thus, if C0 = 0,  

EF = (F
D 35) 64 = 1.83 F

D
 so the EF is estimated by a line of slope 1.83 passing through EF 

=0 and EF = 64%.   To simplify, C1 is approximated as 1.8. Thus Model 2 is: 

Model 2:     EF  1.8 F
D

 + C0 

where the value of C0 will be determined to achieve the closest agreement with the exact EF, 

equation 1, over the full range of clinical EFs by an optimization procedure described below. 

Model 3: To more accurately accommodate disparities between the magnitude of radial and 

axial fractional shortening, a two-factor model including both shortening components was 

investigated: 

Model 3:     EF  C1 FD + C2 FL + C0 

As in models 1 and 2, the value of the constants will be determined to achieve the closest 

agreement with the exact EF, equation 1, by an optimization procedure as described below. 

 Computational optimization of linear formula coefficients by numerical simulation of 

contraction (figure 1): The exact formula provides the “gold standard” EF based upon a 

geometric model of the LV shaped as a prolate ellipsoid at end diastole and end systole. To 
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derive a specific set of coefficients for each of our three linear formulas, we calculated the 

percentage point difference between the linear model’s EFs and the exact EF given by equation 

2 for EFs from 0 to 75%. These differences were graphed on the Y-axis as “EF ERROR” (or 

EF) as a function of the exact EF on the X-axis for EFs from 0% to 75% for a particular value 

of K (figure 1).  To take into consideration independent variations in FD and FL, a family of 

seven curves was created for each model for seven values of K: 0%, 20%, 40%, 60%, 80%, 

100% or 120%.  Wherever an error curve crosses the X-axis the EF error of the model is zero. 

The distance from each curve for a particular value of K to the X-axis at a given EF on the X-

axis gives the formula’s error EF that is shown on the Y-axis. Thus, for each value of K and for 

exact EFs from 0% to 75%, we calculated:  

EF Error = EF = EFlinear model  EFexact model 

= EFlinear model 
  [1  (1 FD)

2
(1 KFD) ] 

 The procedure for construction of each curve in Figure 1 is illustrated in Table 1 for the 

case of EF  1.8 FD + 4 with K = 60%. To generate the exact EF values for a particular value of 

K, we varied FD from 5% to 50% for that value of K in exact EF equation 2. These assumed 

values of radial fractional shortening, FD, are listed in column 1 of Table 1. The corresponding 

axial fractional shortening value, FL, for each FD value is found from the definition of K 

(assumed to be 60% in this example) by solving for FL (FL   
= KFD = 0.6 FD). The corresponding 

values of FL are listed in column 2 in percent. Then the exact EF, as calculated from Eqn #1 for 

each FL and FD pair listed in columns 1 and 2, is shown in column 3 (with per cents expressed 

as fractions for calculation). The EF by the linear formula for the given values of FD and FL is 

shown in column 4 (in this single factor formula example, FL does not appear in that 
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calculation).  The difference, or EF error in the linear formula, defined as EFlinear model  

EFexact model is displayed in column 5. The curve in Figure 1 (middle graph) for this value of K 

and this linear formula is generated by plotting the values in column 5 on the Y axis versus the 

values in column 3 on the X axis. This procedure is repeated for each value of K (0%, 20%, 

40%, 60%, 80%, 100% or 120%) to create the family of curves in Figure 1 for this linear formula. 

 Using these graphical displays of EF error, we adjusted the value of the coefficients, C0, 

C1, and C2 in models 2 and 3 to visually minimize the deviation of the curve for K = 40% over 

the range of EFs from 0% to 65% from the X-axis, which represents zero model error,.  

In Model 1, C1 and C0 have already been set to values 2 and 0, respectively, thus:  

EF = 2 F
D

  [1  (1 F
D

)
2
(1 KF

D
)] 

EF versus the EFexact model was graphed for each of the seven values of K to obtain the 

family of six curves (Figure 1 top panel).  

 For Model 2, C1 has been set to 1.8, thus EF = 1.8 FD + C0. By graphing EF versus  

EFexact model and varying C0, we found the visually optimum value of C0 to be 4, resulting in the 

equation EF = 1.8 FD + 4 (Figure 1, middle panel). Thus, graphically optimized model 2 is: 

Model 2:     EF  1.8 F
D 

+ 4 

For Model 3, EF = [C1FD + C2K FD + C3]  [1  (1 FD)
2
(1 KFD)] 

By visual inspection, we determined the optimal coefficient values for model 3 by choosing 

values that minimized the visual deviation of the curve for K = 40% from the zero error 

horizontal baseline  (x-axis) in Figure 1 (bottom panel) for which the error, EF = 0). These 

coefficients were found to be C1= 1.5, C2= 0.6, C3 = 5 (figure 1, bottom panel). 
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Model 3:     EF  1.5 F
D

 + 0.6 F
L + 5 

 This study was approved by the Human Research Protection Office of the Institutional 

Review Board at Washington University in Saint Louis, Missouri.  

RESULTS 

Agreement Between Optimized Linear Models and Exact Geometric Formula EF:  

Figure 1 shows families of curves of the EF error expressed as the percentage point difference 

(on the Y-axis) from the actual exact EF (on the X-axis) for each of the three linear models: 

EF Error = EF =  EFlinear model  EFexact model 

The ratio of axial to radial shortening, K = FL 
FD

, is a parameter in each graph ranging from 0% 

to 120%. As noted above, the exact model EF (eqns 1 and 2) is identical to a planimetric (“true”) 

EF for a chamber that maintains an ideal ellipsoidal shape at end-diastole and end-systole 

regardless of the proportions of axial to radial length. Graphs of the EF error (Y-axis) versus true 

or exact LV EF  (X-axis) for constant values of K permit the relationship of the EF error to both 

the exact EF and to the fractional shortening ratio (K) to be easily recognized (Figure 1).  In 

Figure 1, the curves for each value of K in each graph are, from top curve to bottom curve: K = 

0%, 20%, 40%, 60%, 80%, 100%, 120%.  

Single Factor Models, #1 and #2 (top and middle graph, Figure 1):  The EF error depends on 

the value of K as well as on the exact EF. When K remains near the normal values of 40 - 50% 

(heavy solid lines in graphs), error values are less than 6 percentage points over the entire 

range of EFs up to 65%, and the spread of error values tends to be symmetric around zero 

error. The EF errors increase as K deviates above or below the normal range of 40 – 50%. 

Thus, for K values of 20% or 100%, the error is higher, but is still less than 8 EF percentage 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.22.23291770doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291770
http://creativecommons.org/licenses/by/4.0/


Page 11 

points over the range of EFs from 0 to 55%. At more extremes of the ratio K, less than 20% or 

over 100%, and for EFs over 60%, error could reach or exceed 10 EF points.  

 It can be seen from the middle graph that errors could be reduced with the equation EF 

 1.8 F
D + 4 compared with the equation EF  2 F

D
. The spread of the curves is slightly 

less. The reduction in errors is evident in the values of error shown along the curves for 

the lowest and highest value of K for the top and middle graph. 

Two Factor Model, #3 (bottom graph, Figure 1): In model #3, which included the axial fractional 

shortening, error was dramatically reduced for all EFs.  Only at EFs above 65% did error exceed 

2 EF points.  Accordingly, when the axial shortening is included by using this formula, the 

variations in error due to K are virtually eliminated.  Moreover, the spread of error values is 

markedly reduced over all EFs as evidenced by the virtually identical EF error curves that are 

close to the X-axis over the full range of EFs up to 65 – 70% for all values of K. 

 

DISCUSSION 

This analysis demonstrates that the assumption of an ellipsoidal LV geometry at ED and 

ES leads to a simple structural formula for calculating the exact LVEF value that will be identical 

to the EF value by Simpson Rule planimetry, but requires only the radial and axial shortening 

fractions for input. No intermediate calculation of LV volume is necessary as in prior EF 

formulas such as Cube or Teicholz [6, 7]. These formulas rerquire converting the radial 

dimensions into the respective ED and ES volumes before calculating the EF. 

 Fractional shortening can be obtained from 2D or M-mode images.  M-mode can be 

measured in parasternal and even in subcostal long and short axis views and often has superior 

temporal and spatial resolution than the simultaneous 2D image. It is not affected by frequently 

sub-optimal lateral and anterior wall endocardial resolution of apical views, and can be 

measured more precisely, and in multiple beats. Axial fractional shortening is measured in the 
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apical view from the MV annular plane to the apical endocardium at ED and ES and also will not 

be affected by the variable resolution of the lateral and anterior walls in apical views that 

degrade planimetry. 

Three linear approximations to the exact structural formula were investigated to further 

facilitate rapid and convenient clinical estimation of LVEF.  Two of these formulas were single-

factor, employing only the radial fractional shortening, while the third was a simple two-factor 

formula using both the radial and axial shortening to predict the exact EF. Optimal coefficient 

values for these formulas were obtained by comparing their EF results to the exact structural 

formula as the gold standard EF that is equivalent to planimetry in ventricles with ellipsoidal 

shape at ED and ES (appendix 1).  

The simplicity of these formulas obviate computer assisted calculation and permit a “hand-

held” quantitative measurement-based estimation of EF by the clinical reader. The analysis 

revealed that the errors in EF estimation will be less than  8 to 10 EF points in almost all cases 

with any of the linear formulas and the average error would be smaller, depending on the 

distribution of K in the population. These error levels, if sustained in an empirical trial of these 

methods, compare favorably to that found by Pellikka et al [10], who reported a correlation of 

biplane echo EF with CMR EF of 0.66, echo  EF results within 5% of CMR in only 43% of cases, 

and a mean absolute difference between biplane echo and CMR of 7.3% (N = 204). In Bland-

Altman analysis of their data, 1.96 SDs in the difference between biplane echo EF and CMR 

were 15.2 to +20.1 EF percentage points. However, Pellikka included subjects with SWMA 

where errors may be higher than in uniformly contracting LVs and the time interval between the 

echo and CMR was not reported, both of which could have amplified their errors. In a meta-

analysis of EF methods that included 174 studies  (7047 subjects, Pickett et al [11] also 

reported a correlation of 0.66 between 2D echo and MRI but found narrower 1.96 SD limits than 

Pellikka, from 13.5 to  +12.1 EF points in pooled Bland-Altman analysis. 
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The primary source of error in biplane echo EF is measurement error related to poor 

endocardial definition, particularly along the lateral and anterior walls in apical views where the 

echo beam is tangential to the surface. Fractional shortening methods are not as affected by 

this source of error so measurement error should be less significant. However, errors due to 

violation of the assumption of ellipsoidal shape at ED and ES may be significant and add to the 

error values shown in our purely geometric numerical simulation. 

It is surprising and non-intuitive that simply doubling the radial fractional shortening could 

be used to estimate the LV EF. However, this analysis shows that the simplest formula EF  

2FD, despite having the largest errors of the three linear approximations to exact LV EF, still 

appears to give reasonable estimates across a broad spectrum of clinically important EFs.  

Nonetheless there is a tendency for the one factor linear approximations to significantly 

overestimate EF at the highest EFs and for a more minimal overestimation at the very lowest 

EFs, the latter being clinically insignificant.  

When the axial shortening was also included in the linear formula, a striking improvement in 

accuracy was evident (Figure 1, bottom panel). The numerical analysis also revealed that most 

of the remaining large errors consist of overestimation of EF at high values of radial fractional 

shortening (F
D

 > 35%) and associated high EFs above 65%. Awareness of this tendency to 

overestimation should help the clinical reader avoid systematic bias to overestimation in such 

cases. At lower EFs and radial fractional shortening values, which are of highest clinical 

importance, the EF errors are more symmetric and smaller in size.  

Studies of global longitudinal strain (1) show that in LV dysfunction, reductions in 

longitudinal strain (F
L
) may be seen before EF changes and this is believed to be due to a 

compensatory increase in radial fractional shortening (F
D

)  that preserves EF. Thus values of K 

(F
L
/ F

D
)  will tend to be less than 40% in the majority of cases of LV dysfunction. These are 
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represented by the upper curves in figure 1 (top and middle panels).  A ratio above 100% 

represented by the lower curves would be seen in only a small minority of cases.  Accordingly, 

curves for values of K of 80% or higher that result in a significant overestimation of EF by the 

linear approximations will be less likely to be seen in clinical cases than lower values. 

The approximations developed here are not meant to replace the use of rigorous 

planimetry when it can be performed accurately, but to supplement it in cases in which it is 

technically difficult and there is concern as to its accuracy. This is not uncommon in non-

contrast studies which are the routine method in outpatient and community hospital settings. It 

may also provide an objective adjunct to a visual assessment of LV function when planimetry is 

not possible at all.  The planimetric EF should be within 8 -  10 points of the fractional shortening 

based one-factor linear approximation and within 5 - 6 points of the two-factor approximation. 

Other circumstances in which these linear estimations may be uniquely helpful are beat to beat 

variation in LV function such as in atrial fibrillation  to obtain an average EF over several 

successive beats, and cases in which apical view end systolic foreshortening due to cardiac 

movement renders planimetry inaccurate, although model 3 would also not be accurate in the 

latter case. These simple linear formulas could be useful with the recent proliferation of POC 

echo performed with a variety of highly portable miniaturized echo devices in the ER or at the 

bedside by ER physicians, anesthesiologists, cardiologists and other clinicians.  Finally, these 

linear models could  be helpful for estimating EF in transesophageal echo (TEE) in the short 

axis sub-gastric view, either using the radial shortening alone or in conjunction with the deep 

gastric view. 

Two other formulas have been proposed for non-planimetric calculation of EF from the 

radial LV dimension alone [6, 7]. The Cube formula uses a rigid assumption that the axial 

dimension is always twice the radial dimension. The Teicholz formula incorporates a correction 

factor based upon the radial dimension measurement that compensates for the average 

corresponding changes in the axial dimension that Teicholz et al measured on LV angiograms 
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in patients undergoing cardiac catheterization. These formulas are more complex to calculate 

than either the linear or exact formula presented here and have not achieved wide use. 

LIMITATIONS 

 The formulas derived apply only to uniformly or nearly uniformly contracting ventricles, 

which comprise a substantial fraction of clinical cases, and should not be applied to cases with 

significant segmental wall motion abnormalities.  Deviations from the exact EF that occur in the 

single factor linear models are due to variations in the axial to radial shortening ratio, K, that are 

not accounted for in   models 1 and 2. Additional sources of error include deviation from 

ellipsoidal ED or ES shape despite apparent uniform contraction,  and measurement errors of 

the radial and axial dimensions, but the latter source tends to be small. 

 We calculated and graphed the error as the difference of the approximate EF from the 

exact EF model in percentage points versus the exact EF. We did not use Bland Altman 

analysis [12], which would involve plotting the EF difference against the average of the two EFs 

because in our analysis the EF was not an empirical value subject to measurement error but 

rather an absolute and exactly correct value based on the assumed model. 

 Coefficients for Model 3 were derived by visual inspection, which introduced an element of 

subjectivity. However, this method allowed minimization of error in the clinically relevant range 

of EFs. Moreover, analytic methods cannot specify a unique set of coefficients when there are 

three unknown coefficients, as in the two-factor model, without applying constraints to the 

coefficient values, which would also introduce subjectivity. 

 Our study is a computational model-based simulation designed to explore the potential 

validity and performance of our novel approach to EF estimation. One advantage of using a 

simulation is that it is free from population sampling bias and the impact of technical 

measurement error and image quality. Simulation also allows potential pitfalls of the method to 

be identified.  However, our findings, although promising, will require empirical data-based 

confirmation before clinical application. 
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CONCLUSIONS 

Geometric analysis shows that simple linear formulas based on LV fractional shortening 

have the potential to be used to estimate LV EF with reasonable accuracy in selected cases 

where planimetric assessment of LV EF is technically challenging or not feasible.  The exact 

formula and the its two-factor linear approximation showed significantly smaller errors across 

the complete range of EFs and fractional shortening ratio variations, but were somewhat more 

difficult to apply than one factor formulas. Nonetheless, axial fractional shortening, though 

currently ignored, can be easily measured, and when combined with the radial fractional 

shortening in the formulas developed here, enables reliable assessment of LV EF that may be 

useful to clinical echocardiographers.  Additional studies are needed to empirically validate 

these formulas.   
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CAPTIONS FOR FIGURES 

Figure 1: Theoretical curves of EF error in percentage points for three geometrically optimized 

linear approximations to the exact EF given by the structural model:   

EFexact = 1  (1 FD)
2
(1 FL).  Separate curves are shown for 7  values of the ratio of axial to 

radial shortening, K = FL / FD. The coefficients in models 2 and 3 (middle and bottom panels) 

have been adjusted to minimize the EF error for the normal values of K  between 40 and 50% 

over the clinically most important range of EF values from 0 to 65%, as reflected by aligning the 

heavy black line as close to the X-axis as possible over this range. 
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TABLE 1 

 

Linear EF  1.8 FD + 4 with K = 60% (0.6) 

Values are shown in % but formulas require decimal fractions. EF Error is in 

percentage points of EF difference 
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APPENDIX 

 

Appendix 1: Volume of An Arbitrarily Truncated Ellipsoid 
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Thus, for any arbitrarily truncated ellipse, the volume remains a constant term multiplied by 

ab2, and changes in radius and length alone do not alter the constant factor.  

The following are familiar special cases of  this result. 

 Case 1: For or   =0,  V = (2/3)ab2, the familiar formula for a hemiellipse.  

 Case 2: For   = -1, V = (4/3)ab2, the familiar formula for a complete ellipse.  
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Note that for   = 1, V = 0 as expected.   

Appendix 2: Exact Formula for EF 

Using case #1 in appendix 1 above, the volume of a hemiellipse = (4/3)(D/2)2 L where D = 

ellipse diameter or LV diameter at the base and L = axial length. The ejection fraction is then 

given by:  

EF = 
2

dd

2
ss

2
dd

DL

DL  DL 
 

where d and s denote diastole and systole and the constants have cancelled out. Dividing 

numerator and denominator by Dd
2
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
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L
. By definition: 

Diameter fractional shortening: FD = (DdDs) / Dd =  1Ds / Dd 

Axial fractional shortening:  FL = (LdLs) / Ld  = 1Ls / Ld 

Substituting (1- F
D

)
2
 = (Ds/Dd)

2
 and (1 F

L
) = Ls/Ld  in the preceding expression for EF yields: 

 

EFexact = 1  (1 FD)
2
(1 FL) 

 
Appendix 3: 

EFexact model  =  1  (1  FD)
2
(1  KFD) 

= 1 – [(1  FD)
2
 – KFD(1  FD)

2
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