
RESEARCH ARTICLE (preprint)

Machine learning in medicine using JavaScript: building
web apps using TensorFlow.js for interpreting biomedical
datasets

Jorge Guerra Pires1*

Abstract: Contributions to medicine may come from different areas, and most of these areas are filled with
researchers eager to contribute. In this paper, we aim to contribute through the intersection of machine learning
and web development. We employed TensorFlow.js, a JavaScript-based library, to model biomedical datasets
using neural networks obtained from Kaggle. The principal aim of this study is to present the capabilities of
TensorFlow.js and promote its utility in the development of sophisticated machine learning models customized for
web-based applications. We modeled three datasets: diabetes detection, surgery complications, and heart
failure. While Python and R currently dominate, JavaScript and its derivatives are rapidly gaining ground, offering
comparable performance and additional features associated with JavaScript. Kaggle, the public platform from
which we downloaded our datasets, provides an extensive collection of biomedical datasets. Therefore, readers
can easily test our discussed methods by using the provided codes with minor adjustments on any case of
their interest. The results demonstrate an accuracy of 92% for diabetes detection, almost 100% for surgery
complications, and 80% for heart failure. The possibilities are vast, and we believe that this is an excellent option
for researchers focusing on web applications, particularly in the field of medicine.
Keywords: bioinformatics — TensorFlow — JavaScript — diabetes — medicine — machine learning — Angular

1Founder at IdeaCoding Lab / JovemPesquisador.com, Brazil
*Corresponding author: jorgeguerrabrazil@gmail.com
DOI: http://dx.doi.org/10.22456/2175-2745.XXXX • Received: dd/mm/yyyy • Accepted: dd/mm/yyyy
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1. Introduction
Contributions to medicine may come from different areas;
and most areas are full of researchers wanting to support.
Physicists may help with theory, such as for nuclear medicine.
Engineers with machineries, such as dialysis machine. Mathe-
maticians with models, such as pharmacokinetics. And com-
puter scientists with codes such as bioinformatics. We hope
to contribute with machine learning for medical problems fo-
cused on web applications. More precisely, our intention is to
present an accessible tool for constructing machine learning
models, suitable for use by individuals without specialized
expertise in the field.

Recently, thanks to several libraries, JavaScript became
a viable option for designing machine learning. Nowadays,
the most well-accepted and showing promising results is Ten-
sorFlow.js [1, 2, 3]. Thus, add all the advantages of working
with JavaScript and machine learning in one web application.

For our case, the core advantages are: i) the data will
never leave the browser, ideal for sensitive data, most likely
the case for medical information; ii) the calculations are done

on the browser, no need to buy expensive server for scien-
tific computations, ideal for startups and similar experimental
endeavours. We believe that startups may support on decreas-
ing the ever-growing costs of medical assistance [4]. They
have already done that with text processing using artificial
intelligence (e.g., chatGPT).

We have also added another ingredient to this solution:
Angular [5]. Angular is a Single Page Application (SPA)
creator, and we have already tested it for scientific compu-
tation [6]. For our case, the core advantage, on a possible
real-scenario: since it is a SPA, the information will never
leave the browser. When you have a server (e.g., Python), the
user data will be sent to the server, and this is well-known to
open space for attacks on sensitive data. In some medical pro-
tocols, you can not even store the patient data on a permanent
driver, it is considered unethical [7, 8]. Talking to servers is
also well-known to create delays. We had an experience in
[6] with FASTA files that due to their big size, it was hard to
keep sending those data around since HTTP calls have limits;
we needed programming tricks to actually show the dataset at

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

the frontend.
Our goal here is showing the reader how easy it is to build

powerful machine learning models using TensorFlow.js. Even
though we know it is not straightforward to build models
in medicine, we can arrive to promising results, with free li-
braries, and in seconds; of course, using model in real-scenario
may require more care, such as making sure the dataset used
is not biased against your case. This is just possible due to
the current state of the art both in web app development and
machine learning. The culture of public AI APIs is revolution-
izing the realm of artificial intelligence and its applications.

Our approach for achieving this goal is presenting a set
of problems using public biomedical datasets. Those datasets
are available freely at Kaggle, a platform where people make
available datasets, and programmers can test their skills on
those datasets; competitions are also from time to time cre-
ated. We also add discussions on the topic of using models
in medicine, a topic the authors have being working on for
years.

We hope also to call attention to this platform, which
collects a sea of freely-available datasets. As one example,
our dataset for diabetes detection has 10.000 samples, even
though we use only 300 samples: go back in time, a couple of
years, and such public datasets would not exist so easily for
machine learning testing, or any similar data science driven
model.

1.1 Goal
Our primary objective is to demonstrate the capabilities of
TensorFlow.js and advocate for its widespread adoption in
the development of sophisticated machine learning models.
We also hope to bring attention to JavaScript, more specifi-
cally, Angular, as a possible alternative to machine learning
to traditional computer languages, namely, Python and R.

1.2 Contribution to the literature
We hope that our main contribution as a scientific research will
be to call attention to TensorFlow.js, that is, machine learning
in JavaScript. As we are going to discuss, there are several ad-
vantages of coding directly in JavaScript. Machine learning is
becoming more and more present at the hands of non-experts,
and TensorFlow.js may aid on that since JavaScript is one of
the biggest and most used programming language, by non-
experts in artificial intelligence. With TensorFlow.js, one can
build an advanced neural network with little to no technical
work, or actually needing to implement complex routines.

We also make available all the models we built for usage,
as pretrained models, with their respective performance met-
rics. If the reader considers the model metrics good enough
for their applications, they just need to download the model
and use it.

We are actually working on a junction of those models
to openAI APIs, for creating a chatbot that will call those
models, without the user actually needing to call them; openAI
APIs handle all the details under the hood. The results are
promising: we hope to publish them soon. The fact that those

models are in JavaScript made the difference: we did not
need to implement a server or use another languages such as
Python.

This paper can be seen as a brief tutorial on TensorFlow.js
with real-world examples/applications, focused on medicine.
Another way to see this paper is as a data science exercise,
where we apply TensorFlow.js on medical datasets, and show
what we can learn from this approach.

Therefore, we do not propose anything new, like an ap-
proach. Even though our approach to the datasets is new, using
JavaScript, how we approach the problems is also new, and
also the discussions we add are our own intellectual expres-
sion, those are just to add scientific context to the discussion.

1.3 Background
On this section, we briefly present the key concepts necessary
to understand the content of this paper. Given that this paper is
about bioinformatics, we anticipate a diverse audience, rang-
ing from computer scientists to medical doctors. Therefore, it
is imperative to explain these concepts. Tools such as TFJS en-
able individuals with minimal coding knowledge to construct
their own neural networks. However, a basic understanding
of these concepts is still necessary to interpret the results or
to construct one’s own models. This section aims to provide
an overview of these basic concepts. For further information,
we recommend consulting textbooks on the subject.

1.3.1 How does a machine learning model work?
A machine learning model works in two stages: first we train
it, then we use it. The training is done on a dataset similar to
the one it supposes to predict upon.

There are several issues that may appear. The most impor-
tant one is bad dataset, as we like to say ”garbage in garbage
out”. One type of bad dataset is biased one. It means the
dataset is not well-balanced, not well-representative; e.g., for
the small dataset of diabetes, we had the care to select an
equal number of samples from both classes, and randomly
selected, and shuffled the dataset before training. It is impor-
tant to bring to attention that biased dataset is not a machine
learning problem, it is a statistics problem. If the dataset is
well-sampled using statistical principles, it supposes to be
good.

For eventual applications on real scenarios using our in-
sights, please, make sure that the datasets used can represent
your target population accordingly. As one example, we have
no strong evidence, as far as we know, that diabetes may
change significantly according to population (e.g., genetic fac-
tors), but, one should test the final model on local data before
using it. This is warning is very important if you decide to use
our pretrained models that we made available for each case we
discuss: make sure the dataset we have used is representative
for your case.

1.3.2 TensorFlow.js
TensorFlow.js is a JavaScript-based library for deep learning,
based on the classical TensorFlow, written in Python; you can

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.kaggle.com/
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

also do simple machine learning, some simple mathematical
operations with tensors and so on. We are going to build
multilayer perceptrons (MPLs).

There are several reasons for using TensorFlow.js instead
of Python, an imperative reason is using just one language,
from the app to machine learning (i.e., JavaScript and deriva-
tives). Another reason is that you do the calculations on the
browser, no need to have high-performance servers. If your
app starts to gain users, the calculation cost will not grow
since each user is responsible for their calculation load. This
last point is especially interesting for startups, since you can
scale up without also increasing the cost. One reason for
medical applications: your data never leaves the browser, it is
ideal for sensitive data.

One advantage of using TensorFlow.js on the browser,
instead of in the sever, is that it was well-configurated to use
local NVIDIA GPUs [2]. Those computation processors are
well-known for being powerful on numerical calculations, and
they helped on the revolution done by deep learning.

A nice point is that they claim it is possible to transform
models in both directions: TensorFlow.js to TensorFlow, and
vise versa [1, 2, 3]. Even the manual transformation is possi-
ble since their notations are similar.

TensorFlow.js provides several ways to be used: pretrained
models, CDN calls, NPM, and even downloading the model;
we made our models available, you just need to download
them for testing and using them on your projects. We are
going to train our own model, and use it locally on a app in
Angular.

1.3.3 Neural networks and machine learning: supervised
learning

Artificial Neural Networks, neural networks for short, are a
subset of machine learning techniques, focused on numeric
algorithms [9]. Different from alternatives from artificial intel-
ligence, those algorithms are not focused on reasoning; even
though non-experts using those model may think they reason
[10]. Moreover, even though they are inspired by the brain,
they do not replicate the dynamics of neurons with fidelity
[11]. Their only goal is learning from samples, and it does
not matter how; in most of the time, it is close superficially
from the brain workings.

We are going to use the supervised variety: one presents a
set of inputs, and expected outputs (based on human’s feed-
back, a process called annotation), and the algorithm should
learn, without human interference, except at annotating the
dataset.

On this type of algorithms, they should learn on their own,
we do not interfere with the learning process.

The separation we generally do calling them black-box
models has to do with the fact that they learn, but we cannot
in general explain how it works, except with metaphors how it
works. See Supplementary Material for a more contextualized
discussion.

One well-known warning fact about those models: we
cannot ensure they will always behave as we expect: chatGPT

is full of examples where its behavior is erratic compared to
what we would expect from this model. What we can do,
and we will do, is using performance metrics. Those are the
standard to assess whether a model is minimally reliable for
usage.

1.3.4 Multilayer perceptron (MLP)
A Multilayer Perceptron (MLP) is an artificial neural network
that has a well-defined structure, architecture.

It has an input layer (no neuron, just inputs), a hidden
layer, and an output layer. Those models are widely used on
regression. We are going to consider what is called logistic
regression. ”Logistic regression estimates the probability of an
event occurring, such as voted or didn’t vote, based on a given
dataset of independent variables.” IBM . Thus, our model
releases a number that can be seen as a sort of probability,
even if it does not have the rigour of statistical analysis; it is
not a true statistical measure. This number varies from 0 to
1, and generally above 0.5 is considered as ’yes’, and below,
’no’; this is called threshold. This strategies is common on
machine learning: every model based on classification will
give this ”probability” measure of a set of classes, or decision
options.

We are going to consider binary classification: yes or no.
This means that our model has just one output neuron; it has
just two options to pick up from. On the models available on
Kaggle, they use more than one hidden layers: our experience
shows that just one hidden layers is generally enough, and you
just need to adjust the number of neurons on the hidden layers.
Thus, we always adopt the strategy of just using one hidden
layer, and handpicking the hidden neurons configuration.

As one example how it looks like on TensorFlow.js for the
diabetes case:

//Input layer & hidden layer
model.add(
tf.layers.dense({
//here we define the number of
// features
inputShape: [numOfFeatures],
//Number of hidden neurons
units: 50,
//Activation function
activation: ’relu’,

})
);

//Output Layer
model.add(
tf.layers.dense(
//just one neuron
{
units: 1,
activation: ’sigmoid’

}
));

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.ibm.com/topics/logistic-regression#:~:text=Resources-,What%20is%20logistic%20regression%3F,given%20dataset%20of%20independent%20variables.
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Keep in mind that the configuration (mainly number of
neuron on the hidden layer may change to the other cases). In
case of adaptions, use the number of hidden neurons to try out
better models, with higher accuracy.

1.4 Organization of the work
In Methods, section 2, we talk about what is behind our re-
sults, the tools, paradigms and methodologies; our hope is
that people outside bioinformatics and artificial intelligence
could actually read the paper, and get insights for a possible
alternative area of research. On this section, we provide also
links to GitHub repositories and Google Sheets used on the
simulations. We have also deployed the dataset at Kaggle, as
alternative to the Google Sheets, and also as a way for Python
programmers to try out their approaches if they wish so. Then
we shift to results and discussion in section 3, where we talk
about the simulations we did, and we use the opportunity to
add our own work experience with computational biology
and computational intelligence; we use graphs and tables to
present our results. We finally close the results and discussion
section with a summary, inside the section 3. One can find
at the ending of the article our main references. We have
also added a Supplementary Material at the end. There are
remaining discussions that are important, but may be skipped
by researchers focused on the computational part.

2. Methods
On this section, we present our tools, methodologies and
paradigms. We have done our best to report all the impor-
tant details, for a possible replication of the findings or even
adaptation to a specific case. If we have forgotten anything
important, please, do not hesitate to get in touch. Since we
anticipate possible readers from medicine, and related medical
areas, we may have been more detailed than normally those
section are.

2.1 Training the model
The models are trained using the default routines from Ten-
sorFlow.js, more details can be found on the provided gists on
GitHub on each respective subsection from this section.

This is how we set up the training configurations.

model.compile({
optimizer: tf.train.adam(),
loss: ’binaryCrossentropy’,
metrics: [’accuracy’],

});

On a possible adaption of our reported findings, starting
from this part could be a good strategy.

As optimizer for the error: Adam optimizer (or Adaptive
Moment Estimation), which is a stochastic gradient descent
method that is based on adaptive estimation of first-order and
second-order moments, see this blog post. It is a local search,

thus, the training may not always converge; alternatives are
global optimizations. Except for the heart failure model on
section 3.3, the two other models converged well, on all at-
tempts; on the heart failure model, we had to make some
attempts before the model would converge accordingly. This
is a well-known issue when using local optimization: they are
called traps.

For loss function, how we measure our error for guiding
the optimizer, we use binary Cross-entropy, which is a binary
cross-entropy metric function which uses binary tensors and
returns tf.Tensor object. See this blog post. When changing
the model, you may need to consider changing this function.
Generally, for the kind of problem we report, this loss function
is enough.

For accessing the final results, we are using accuracy,
which is a ratio between what the model gets right vs. all the
attempts. The ideal is 100%, and we may say that 50% is like
chance, randomness. One important observation: 100% of
accuracy does not mean the model does not make mistakes,
just mean that using the given dataset, it did well; if the dataset
is a poor representation from the case, it will fail when applied
on real-scenarios.

We have also used additional performance metrics: confu-
sion matrix, precision, F score, and recall. What is interesting:
some of the those metrics are on the official documentation
from TensorFlow.js, but they do not seem to work properly.
All those additional metrics were calculated on a separate set
of samples, that we isolated before training. We have always
used 100 samples, 50 for each categories. We want to make
sure the model learnt, did not memorized. We have created
our own NPM package for calculating these metrics and have
published it. It is available to the public.

2.2 Training and validation
It is a common practice in the machine learning community to
validate the models splitting the dataset into learning and vali-
dation: we are using 20% for validation is 80% for training;
these values are widely used.

This is how we set this configuration on TensorFlow.js:
validationSplit : 0.2. For seeing more details, just access
the gists provided. It is set on the training section, namely:
model. f it.

Below is a sample how it looks like.

await model.fit(
features_tensor_raw, target_tensor,
{
batchSize: 40,
epochs: numberEpochs,
validationSplit: 0.2,

The validation curve is used to avoid memorization, over-
fitting. A model that memorizes is useless since it will have
to predict outside their training dataset.

One important observation: this split was done after a
preprocessing split; We split the initial dataset into 90% for

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.geeksforgeeks.org/tensorflow-js-tf-train-adam-function/
https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-loss-for-binary-classification/#:~:text=binary%20cross%2Dentropy%3F-,A.,in%20misclassification%20of%20the%20labels.
https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-loss-for-binary-classification/#:~:text=binary%20cross%2Dentropy%3F-,A.,in%20misclassification%20of%20the%20labels.
https://www.geeksforgeeks.org/tensorflow-js-tf-metrics-binarycrossentropy-function/
https://www.tensorflow.org/js/guide/train_models
https://www.tensorflow.org/js/guide/train_models
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Figure 1. Confusion matrix. Source: adapted from
KDnuggets.

training, which was split further as we presented, and 10%
for performance check: we calculated the confusion matrix,
precision, recall, and the F1 score. This was done to make
sure the model did not memorize. Therefore, the dataset used
to calculate the performance metrics was never presented
to the model: we have selected 50 samples for each class
(diabetes and non-diabetes). Thus, 100 samples to calculate
performance metrics. This procedure was repeated for all the
models we have trained.

2.2.1 Confusion matrix
A very important measure on machine learning, when dealing
with classification, is the confusion matrix. We are going to
use it to validate binary classifiers. For instance, ’0’ means
non-diabetes, and ’1’ diabetes. Thus, the model can have fours
possible behaviors (see Figure 1) . The confusion matrix is
the input for calculating the remaining performance measures.

2.3 External resources
2.3.1 Pretrained models
All the models created herein are available for usage. One can
find them here on GitHub. Once they are downloaded, they
can be used as they are. Thus, the reader is welcome to see by
themselves how the models work in action.

2.3.2 Full repository
A full repository, coded in Angular using TypeScript, can be
found here on GitHub. One can use those codes for replicating
our findings. For specific models, we provide gists on GitHub,
as so the parametrizations are also preserved, and possible
specific configurations of the code. Gists are files on GitHub,
which are generally used to present code snippets.

Our codes are an adaptation from [1], chapter 2; the reader
can consult this book for a getting started reading tutorial.
One can find here on GitHub the codes for these codes that
served as starting point for our own. These details may serve
someone wanting to adapt the findings to their own medical
cases. One can find a sandbox here on StackBlitz, which can
be forked and used for experimenting on this basic model we
have used.

2.3.3 Datasets
”Garbage in, Garbage out”

All the datasets were dowloaded from Kaggle. We have
done the following editing, as so the datasets would fit our
purposes accordingly.

1. We have sampled randomly a small number of samples
from the complete dataset. In the case of diabetes detec-
tion, the sample was done manually, creating a second
spreadsheet from the original. For the other cases, we
have used an internal routine in TypeScript, provided
inside the code;

2. We have transformed non-numeric features into numeri-
cal ones. We have also done either manually or provided
a routine on TypeScript;

3. We have selected the features we wanted for each model,
accordingly;

4. We have uploaded it to Google Sheets, published it and
used their public spreadsheet link for uploading the
dataset into our models. When the routine was local for
preprocessing, we have used the full spreadsheet from
Kaggle. Those details are provided on each case, on the
discussions;

See that you can find the detailed preprocessing on the
codes, or the final spreadsheet links on the following sections.
They are all as CSV (comma-separated values) format, with
heading correspondent to the feature; rows are different sam-
ples, and columns are the respective values for the feature on
the heading.

Disclaimer. Always keep in mind: those are public
datasets, we cannot guarantee those datasets are well-curated
(e.g., unbiased, well-sampled and more). Nonetheless, the
datasets have a score called ’Usability’, and they are opened
for comments. One can use those information to search for
good datasets.

2.4 Diabetes detection
The complete dataset is here. The following datasets are
derivations from this one, adapted accordingly to fit our pur-
poses.

For getting the link when made available, either click
on it, which could trigger an automatic download, or right-
click on the link and ask to copy the link, and place it on the
code; you must replace the variable ’csvUrl’, the code was
designed to adapt accordingly. You may need to change the
visualization method, deciding which feature you want to plot;
as alternative, just comment this method call out; the method
for visualization is called ’visualizeDataset’, just comment
out the call on the ngOnInit() method, in case you want to
train without visualization. In Angular, ngOnInit() is a hook,
in this case, make sure something will happen just after the
app is started, see [5] for more.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.kdnuggets.com/2022/11/confusion-matrix-precision-recall-explained.html
https://github.com/JorgeGuerraPires/tensorflowbio/tree/pretrained-model
https://github.com/JorgeGuerraPires/tensorflowbio
https://github.com/JorgeGuerraPires/Practical-TensorFlow.js/tree/master/2
https://stackblitz.com/edit/js-v1qq3d?file=index.js
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Importat. For the upcoming sections: keep in mind that
features are the input to the model, it does not count the output
(e.g., diabetes detection).

2.4.1 6-feature model
The code used to train the model can be found here as a
gist, the TypesScript file. Since we are concentrating on the
logic of the Angular app, we are not changing the remaining
component’s files. One can find in case of interest a complete
repository here on GitHub, with interface from an Udemy
course we have lectured. For the case of diabetes, we have at
the moment a working app on Heroku, deployed for presenting
the concept.

The spreadsheet link is here. As alternative, the smaller
dataset we used is also on Kaggle here, we have deployed it
for your convenience.

2.4.2 1-feature model
The spreadsheet link is here. We have also deployed this
dataset to Kaggle as an alternative to work with this dataset.

2.4.3 3-feature model
The spreadsheet link is here. You can find here a gist, which
includes the link. You can also find the dataset at Kaggle.

2.5 Predicting In-Hospital Surgery Complication
The spreadsheet used is here; you can also download this
dataset from Kaggle. The original dataset is here on Kaggle.

This dataset is sadly not very clear on details, we have
used a dictionary provided by an user, it can be found here.
We used this dictionary to understand what each feature meant,
as so we could build our model according to what we wanted
to study: complications on surgery based on physiological
measures. A gist for the TypeScript file is here on GitHub.

2.6 Heart failure prediction model
A gist on GitHub is here. The full dataset is here on Kag-
gle; the spreadsheet used on the code is here. The coded
provided, different from the one for diabetes, allows to actu-
ally change the sample size from the full dataset. Just adjust
number o f samples in dataset to array method. It may be
useful in case you want to run the model with more samples,
or make simulations using another dataset.

2.7 NPM respository
In addition to use NPM respositories, such as TensorFlow.js,
we have also created our own. We were unable to find a
package with the basic metrics for model validation. We
created one and deployed it as a NPM package.

It is possible to install it on your own project by running
on the terminal:

npm i tfjs-metrics

Learn more on the package page on NPM we have created and
deployed. The performance metrics we used were calculated
using the routines on this package, which can be used by any-
one coding in TensorFlow.js focused on Angular (TypeScript).

3. Results and Discussion
Below, Table 1, is a table that summarizes all the results, using
basic metrics for assessing the performance of those models
after training is completed. The upcoming section will detail
these numbers.

We are going to discuss three different group of mod-
els: diabetes on section 3.1, heart failure on section 3.3, and
surgical complications on section 3.2. Those are all binary
classification tasks: ’0’ (no) or ’1’ (yes). For the reader inter-
ested, we have a list of datasets for binary classification tasks
here, as so you can adapt our discussions for the case of your
interest.

For the diabetes model, we have created three different
models to discuss how features can influence the model: the 6-
feature model has six different features, medical measurement.
The 3-features uses three features that are easy to have, that
is age, gender and BMI. The 1-feature model uses the most
important one: HbA1c level. In fact, we have showed using
this same dataset that gender has an effect that is statistically
significant on diabetes [12]: it is more likely in men. We have
also explored this dataset on our other work [12].

3.1 Diabetes detection
Diabetes is an interesting case for our discussion, it has been
widely explored from both perspectives, as machine learning
based models ([13, 14, 15]), and white box models [16].

On this section, we shall consider three possible models
for diabetes detection using the same dataset, and model. The
first model has six features, the second just one, and the last
one has three features. The features are chosen from the same
set of features.

Always keep in mind that our goal is not comparing re-
sults or competing with third-party results presented, they are
presented for enriching the discussions. Our goal here is show-
casing TensorFlow.js, and supporting on spreading the word
regarding this tools for creating advanced machine learning
models. Years ago, those models would require either a strong
expertise in programming and machine learning, or/and an
expensive-paid software (e.g., Matlab).

3.1.1 model 1: predicting with six features
We should always start with the simplest model, nonetheless,
we shall start with the almost-full feature model. We are
going to use the following features (Table 2), six out of seven
available features.

The best results on the codes available alongside the
dataset, using TensorFlow in Python, they have used all the
features: seven at total. See here a list of notebooks modeling
this same dataset on Kaggle using Python. The nice feature
of this dataset is that they have attached codes, created by
the users, and publicly available, and editable. TensorFlow
in Python and TensorFlow.js have similar notations: we have
explored those codes for starting our models when necessary.

We have removed the following feature: smoking his-
tory. We got essentially the same result, which means that

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://gist.github.com/JorgeGuerraPires/c5f0f69b1b391e21eebc847e8bdf6bb2
https://gist.github.com/JorgeGuerraPires/c5f0f69b1b391e21eebc847e8bdf6bb2
https://github.com/JorgeGuerraPires/robodoc/tree/diabetes_app_v1
https://www.udemy.com/course/machine-learning-in-angular/?referralCode=B6369BE299AFADFAFFFC
https://www.udemy.com/course/machine-learning-in-angular/?referralCode=B6369BE299AFADFAFFFC
https://robodoc.herokuapp.com/#/tools/diabetes
https://docs.google.com/spreadsheets/d/e/2PACX-1vSxKK7Fp9JJvjfdNB3KXoaN5P64ul26dZmmDiCSg31ylh-QlO4Fe-1dwNUun0Vfx79zyi8nru8Yqm1Z/pub?gid=0&single=true&output=csv
https://www.kaggle.com/datasets/jorgeguerrapires/predicting-diabetes-with-6-features/data
https://docs.google.com/spreadsheets/d/e/2PACX-1vTIscV53ecu0x-apaqh1Sk3ED3qlVdMLxh9AcPdhDPH2VNogn-kKfAP8j9MYKWk7_inouIR9dFMDaUe/pub?gid=0&single=true&output=csv
https://www.kaggle.com/datasets/jorgeguerrapires/1-feature-model-for-diabetes-detection/data
https://www.kaggle.com/datasets/jorgeguerrapires/1-feature-model-for-diabetes-detection/data
https://docs.google.com/spreadsheets/d/e/2PACX-1vSbZKM90cRA1GzO8e_EwbtjebWHRQ56bF5WTG7Nv6W0PL1GBanw8Tbszb7jS18oeuklk3oLxDWCzza2/pub?gid=0&single=true&output=csv
https://gist.github.com/JorgeGuerraPires/95d2f425cb0a8fea4d0dafd08dd209d5
https://www.kaggle.com/datasets/jorgeguerrapires/3-feature-dataset-for-diabetes-detection/data
https://docs.google.com/spreadsheets/d/e/2PACX-1vSUgRO2FRhFUA6ycWjKiol5mqfHPWcPuwOmJJxPbMT4PLOa86Bj_dobndkogPRWrTce8VeKDIVjXr6B/pub?gid=1111655281&single=true&output=csv
https://www.kaggle.com/datasets/jorgeguerrapires/dataset-surgical-binary-classification-reduced
https://www.kaggle.com/datasets/jorgeguerrapires/dataset-surgical-binary-classification-reduced
https://www.kaggle.com/datasets/omnamahshivai/surgical-dataset-binary-classification
https://www.causeweb.org/tshs/datasets/Surgery%20Timing%20Data%20Dictionary.pdf
https://gist.github.com/JorgeGuerraPires/11281048170857908d674ba71d21e594
https://gist.github.com/JorgeGuerraPires/ae82275ea0525ed3281b9a2ef5919e97
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://docs.google.com/spreadsheets/d/e/2PACX-1vRyCGmhrKkYT4v6s52NWG5tU0_Y54coitcv-tAah1SNm0Pq2jhPkSUOA6vg29cHV8aqgZH_KnbO5gGp/pub?gid=1371905326&single=true&output=csv
https://www.npmjs.com/package/tfjs-metrics
https://www.kaggle.com/search?q=binary+classification+dataset+in%3Adatasets
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset/code
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Table 1. Performance metrics for each model.

Confusion matrix Performance metrics

model TN FN FP TP recall precision F1 score

6-feature diabetes 43 7 5 45 0.89 0.86 0.87
1-feature diabetes 42 9 8 41 0.82 0.84 0.83
3-feature diabetes 30 8 20 42 0.78 0.6 0.68

Surgical Complication model 50 0 0 50 1 1 1
Heart Failure model 35 4 15 46 0.89 0.7 0.78

Figure 2. Accuracy for training with six features. final result,
about: 92% for training and 85% for validation. Training in
blue and validation in orange.

smoking history, at least for this group, does effect diabetes
significantly. In fact, machine learning is also about statis-
tical analysis. We tested the hypothesis of smoking being
connected to diabetes: we found that there is a connection.
See Supplementary Material; see also [17]. Thus, a 7-feature
model may be interesting to build. One way to explain the
success of the model without smoking history is that smoking
may cause/influence the other features, therefore, they are
correlated.

The best model on Kaggle arrived to 97% of accuracy,
see here, we have arrived to 92% of accuracy (Figure 2);
sadly, we were unable to see the validation results for making
sure they had no overfitting, for the notebooks on Kaggle
attached to the dataset. This extra accuracy presented by
the developer at Kaggle was done in addition of using an
extra feature by applying Random Forest Regressor (i.e., a
different technique), see here. Since the training process can
give out different results depending on the starting point and
this high accuracy was achieve with an alternative approach,
we cannot say for sure smoking accounts for this 5% of lost
accuracy. Those third-party results were mentioned for the
sake of information, it is not our goal here to compare different
approaches on machine learning for logistic regression, as
generally data scientists call this problem. We have also not
checked carefully the results on those notebooks on Kaggle,
for making sure they did not take shortcuts. Here on this
notebook they have also found 97% for a model similar to
ours, a Multilayer Perceptron (MLP).

Below is the training curve (Figure 3). One can see that

Figure 3. Training and validation curves for the 6-feature
diabetes detection model. Training in blue and validation in
orange.

both training (in blue) and validation (in orange) curves go
downwards, and remain at low values. This is a sign that
the model actually learned and was able to generalize. No
overfitting happened, based on those graphs. Additionally,
one can check further metrics (see Table 3 and the following
metrics calculated using this confusion matrix).

One point that we should bear in mind: we have not used
all the dataset. The complete dataset of diabetes detection
has 10.000 samples: we have used just 300 samples (equally
balanced between diabetes and no-diabetes, and randomly
samples from this pool); a total of 600 samples. It shows how
the signals on the dataset, which the model was able to learn,
is strong; it also converged without any instability, which is a
good sign. One can test a model with the full dataset. Since
we are using the browser, uploading the dataset locally for
training, it may be slow this uploading process of actually
using the complete dataset; we see no reason based on those
graphs to keep moving around 10.000 samples of data.

Another point is which features to use, since we have
decided not to use them all, it may raise this question. In real
scenarios, it may be the case that the person doing the model
does not have all the features; or even when applying the
model, the user does not have all the features. We are going
to consider two extra scenarios in the upcoming sections:
choosing the most important one (namely, HbA1c levels) on
section 3.1.2, and the three easiest ones to have access to
(namely, BMI, gender and age), on section 3.1.3.

From the user’s perspective, one can build different mod-
els with different features, and this change is made according

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.kaggle.com/code/aniketkadam702030/diabetes-prediction-97-accuracy
https://www.kaggle.com/code/aniketkadam702030/diabetes-prediction-97-accuracy
https://www.kaggle.com/code/rony1612038/insight-precision-97-43-accuracy-with-mlp
https://www.kaggle.com/code/rony1612038/insight-precision-97-43-accuracy-with-mlp
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Table 2. Features used to train the model with six features for
diabetes detection.

Feature Short Description

HbA1c level Higher levels indicate a
greater risk of developing di-
abetes.

age age ranges from 0-80 in
our dataset. Diabetes is
more commonly diagnosed
in older adults.

bmi BMI (Body Mass Index) is a
measure of body fat based on
weight and height. Higher
BMI values are linked to a
higher risk of diabetes.

blood glucose
level

Blood glucose level refers
to the amount of glucose in
the bloodstream at a given
time. High blood glucose lev-
els are a key indicator of dia-
betes. HbA1c level is a long
term measure, 2-3 months.

heart disease Heart disease is another med-
ical condition that is associ-
ated with an increased risk of
developing diabetes

hypertension Hypertension is a medical
condition in which the blood
pressure in the arteries is per-
sistently elevated.

We have kept the information to the essential. See the Diabetes prediction
dataset on Kaggle for more information, and updated.

to how much information the user has. Of course, the predic-
tion accuracy will change accordingly. As we are going to
see, the accuracy will drop to about 70% in both cases where
we have not used all the 6 features.

We have recently created and tested a chabot using openAI
APIs that can shift between models, based on chat messages.
We tested for the 6-feature model alongside models for image,
and it worked; we are planning to publish the results soon.
Thus, all those models could be automatically used by a chat-
bot (a conversational AI) according to how much information
the user provides, under the hood, the user will not have to
change any model manually.

One good question is why just one, or even three features,
can achieve 70%, leaving the remaining with 20%. You can
find an explanation on Figure 8 (correlation matrix): the fea-
tures are correlated, which means they do not convey pure
information.

From a developer’s perspective, one can build the model
based on the features available, or measure them accordingly
to their power of prediction. We are going to consider a model
with just one feature, the one that predicts the most. We

Table 3. Confusion matrix for the 6-feature model. Legend:
TP - true positive; FP - false positive; FN - false negative; TN
- true negative. The row label represents the true class,
whereas the column label is the model prediction.

non diabetes diabetes

non diabetes 43 (TN) 7 (FP)
diabetes 5 (FN) 45 (TP)

are thinking, as a hypothetical scenario, one where one must
decides which features to invest on to measure on several
patients.

The performance metrics are for the 6-feature model are:
F1-score, 0.87; precision, 0.86; recall 0.89. The execution
time was less then 5 minutes, on the browser. All the upcom-
ing models had similar execution time.

The model trained, and ready to use, can be found here on
GitHub. One example on how to upload a pretrained model
to Angular, using this JSON file, is here on GitHub.

One interesting discussion is how to use this model when
we do not have a big dataset; we showed that the model
converges even for 300 samples, which may be big if we
are using a small town as target for our model, or creating
a prototype. A quick search on the internet points out that
people are considering transfer learning in regression: it is
generally applied to images [18]. We are considering, given
we have access to those data in the future, using this model
in Brazil. Our current setback is actually having access to
this data as we have on Kaggle, publicly and easily accessible.
Our concern is that this dataset may be biased; biased dataset
is a well-known issue on machine learning, they contaminate
the learning process, and the machine learning will make
mistakes when confronted with categories misrepresented on
the dataset used to train. We have a guess that population
variations (e.g., genetics, diets) may effect how those features
predict diabetes.

Regarding the dataset, our hypothesis is: we cannot trust
on this dataset 100% since it is concentrated on USA. We may
need, or anyone considering actually using this model locally,
make some adjustments to make sure the model is not biased
towards the USA population, and their biological, cultural
peculiarities.

3.1.2 model 2: predicting with just one feature
We consider just one feature, namely, HbA1c levels, we create
three regions when this choice is applied to our dataset (Figure
4): two has diabetes diagnosis well-defined, whereas the third
one is a grey area.

Regarding this grey area, it is interesting to mention that
even though we shall almost completely shed light on it, mis-
diagnosis of diabetes due to other medical conditions is not
uncommon (e.g., [19]). As one example, liver disease can also
alter HbA1c levels, and we have no information on that on our
dataset, as a feature, whether the patient has liver disease, a
richer list created by chatGPT here. Liver dysfunction or cer-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://github.com/JorgeGuerraPires/tensorflowbio/blob/pretrained-model/6-feature-model.json
https://github.com/JorgeGuerraPires/Tic-Tac-Toe-in-Angular/blob/main/src/app/app.component.ts
https://chat.openai.com/share/66ea86f1-6f53-4829-b3c3-200dcadef97d
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Figure 4. Predicting with just one feature. We have three
areas: two are well-limited by HbA1c levels, whereas we
have a grey area. This area was created considering what is
normally accepted on the medical literature, just an
approximation.

Figure 5. Accuracy for one-feature model, training (blue)
and validation (orange). Final: training accuracy, 72%;
validation 74%

tain liver diseases, such as cirrhosis, can affect the production
and breakdown of hemoglobin. This can lead to changes in
HbA1c levels [20], potentially leading to misleading results
in diabetes diagnosis.

This regions are based on numbers we can find online
regarding how to interpret this coefficient; we also had a big
help from chatGPT.

Figure 5 illustrates that the accuracy falls to 72%, the
removed features account for about 20% of the 6-feature
model accuracy. As said before, it does not mean this is
a generalization, that this ratio between lost accuracy and
the one the model has will always hold true: if someone has
liver disease, as highlighted previously. Unknown medical
information from the patient may mislead the model, and this
feature is not present at the model as so it could actually learn
to avoid this diagnosis trap.

A scientific question worth mentioning is how we decided
to use just this feature, which has 70% alone of accuracy:
just this feature is better than random guess. See discussion
based on Daniel Kahneman and colleagues on Supplementary
Material. Would this model be better than an expert? to
which extent? good question! As they have noticed, in some
scenarios, a random model was better than human; it was
observed in clinical practices [21]. For image, it was shown

Figure 6. Glucose levels vs diabetes. Note. this graph shows
a ”simultaneous measure”, it is not a cause-effect measure,
the fact that you have (uncontrolled) diabetes entails high
glucose, but high glucose does not necessarily mean diabetes,
though most likely. As we are going to see, glucose accounts
for about 20% of the accuracy, not 100%.

Figure 7. Learning curves for training (blue) and validation
(orange) for the one-feature model.

that a transfer learning model on medical images was better
than human experts [22].

One way to look at it is by rationale. Glucose is the num-
ber one factor that appears on white-box models [16], it is
not by change; those models aim at explaining datasets by
actually understanding the inner dynamics from the biolog-
ical system, different from machine learning, which is just
focused on somehow learning and predicting. However, the
fact that your glucose is high for a couple of days does not
make you diabetic (short-term factor, see Figure 6); but still
something to pay attention to, your glucose dynamical system
should be able to respond daily. HbA1c is measured in months
(long-term factor), thus, it is a measure of high-blood glucose
level persistence. It may shed light on why this factor is so
powerful on predicting. As we are going to see in the next
model, glucose alone account for about 20% of the signal for
predicting diabetes, using correlation as indicator.

Table 4. Confusion matrix for the 1-feature model. Legend:
TP - true positive; FP - false positive; FN - false negative; TN
- true negative. The row label represents the true class,
whereas the column label is the model prediction.

non diabetes diabetes

no diabetes 42 (TN) 8 (FP)
diabetes 9 (FN) 41 (TN)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

The remaining performance measurements: F1 score,
0.83; precision, 0.84; recall, 0.82.

Another way to look at it is by correlation. Correlation
measures the connection between two variables: it can be
positive (from 0 to 1) or negative (from -1 to 0). Even though
correlation is a linear-relation indicator, if used with attention,
it can help us even on nonlinear cases; which is the case for
most problems in medicine. However, one should always pay
attention to the fact that it measures linear relationship, and
can misdirect on nonlinear cases.

As we can see from the diabetes column (Figure 8), the
two highly correlated with diabetes detection are glucose-
related. Thus, the best way to diagnosis diabetes is by glucose-
related indicators. Diabetes is well-studied, therefore it is no
surprise, nonetheless, for less studied cases, when you apply
those models, you may want to get to know the inner dynamics
before pouring numbers on the model, that is the take home
message.

The pretrained model can be found here on GitHub as a
JSON file.

3.1.3 model 3: predicting with age, gender and body mass
index

In Figure 9, we have a look at how body mass index (BMI)
and age may influence diabetes; keep in mind we have used
it on our 6-feature model, we are just narrowing it down to
easy-to-use features, namely, body mass index (BMI), gender
and age. Those are three features that anyone has access to.

It is possible to infer, in blue, that diabetes is present at
high BMI, and very rare at low BMI. Diabetes presents itself
mainly as high-blood sugar, known as ”sweet urine”; the body
tries to get rid of the extra glucose in the urine, and this can
cause a sweet smell. Obesity (high BMI) can cause difficulties
on cells’ glucose receptors, which cases what is well-known
as diabetes type II, which is generally reversible based on
change of habits [23].

Figure 8 illustrates a strong correlation between age and
BMI with diabetes, with each factor accounting for approx-
imately 20% of the variance. An intuitive way to look at
correlation is ”the correlation between two variables is their
percentage of shared determinants.” [24]

Figure 10 illustrates almost the same accuracy for the 1-
feature model (Figure 5); Table 1 illustrates that the 1-feature
model can be even better at some metrics. This observation
can be explained on a speculation level by observing that
HbA1c levels are correlated with both features we have used,
10% with age.

Table 5. Confusion matrix for the 3-feature model. Legend:
TP - true positive; FP - false positive; FN - false negative; TN
- true negative. The row label represents the true class,
whereas the column label is the model prediction.

non diabetes diabetes

non diabetes 30 (TN) 20 (FP)
diabetes 8 (FN) 42 (TP)

The remaining performance measurements: F1 score,
0.68; precision, 0.6; recall, 0.78.

You can find the final model here on GitHub as JSON.

3.2 Predicting Surgical In-Hospital Complication
The dataset for surgical complications has 25 features that
could lead to surgical complications, we are going to be even
more selective on what to consider on our model. We have
a hypothesis on what could lead to complications on surgery
(Table 6).

Table 6. Features used to train the model for surgical
complications.

Feature Short Description

baseline dia-
betes

patient has diabetes.

BMI body mass index. This a mea-
sure of body weight related
medical conditions, such as
obesity and undernutrition

Age patient age. We generally
know that age may influence
the final result

Gender patient gender

We have used an external dictionary to make sense of the features, see here.

The model arrived at about 100% of accuracy. Figure
12 shows the loss function arriving to almost 0 (measure of
the model’s mistakes, compare with Figure 13). Also, Table
1 shows that the performance metrics are at their maximum
values, that is, 1.

The first caution we would have when seeing those results
is overfitting (i.e., the model memorized the training dataset,
but did not actually generalized). The validation curve also
converged, which is an imperative measure to avoid overfit-
ting, and aiming at generalization.

Table 7. Confusion matrix for the surgical complications
model. Legend: TP - true positive; FP - false positive; FN -
false negative; TN - true negative. The row label represents
the true class, whereas the column label is the model
prediction.

non complications complications

non-complications 50 (TN) 0 (FP)
complications 0 (FN) 50 (TP)

The remaining performance measurements: F1 score, 1;
precision, 1; recall, 1.

The model was made available at ready to use as JSON
here on GitHub.

Disclaimer for using this model on real scenarios, please,
make sure the dataset is not biased against your aimed popu-
lation. We cannot guarantee the dataset used is well-curated,
and unbiased.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://github.com/JorgeGuerraPires/tensorflowbio/blob/pretrained-model/1-fearure-model.json
https://github.com/JorgeGuerraPires/tensorflowbio/blob/pretrained-model/3-feature-model.json
https://www.causeweb.org/tshs/datasets/Surgery%20Timing%20Data%20Dictionary.pdf
https://github.com/JorgeGuerraPires/tensorflowbio/blob/pretrained-model/Surgical-model.json
https://github.com/JorgeGuerraPires/tensorflowbio/blob/pretrained-model/Surgical-model.json
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Figure 8. Correlation between the diabetes detection features. Source: Notebook on Kaggle

Figure 9. Body mass index vs. age. Normal BMI ranges from
18.5 to 24.9. Diabetic in blue, and non-diabetes in orange.

Figure 10. Accuracy 3-feature model. Training (blue curve);
validation (orange curve)

Figure 11. Learning curves for training (blue curve) and
validation (orange curve).

Figure 12. Accuracy for the surgical model. Training in blue
and validation in orange. Final: training 98% and accuracy
99%

Figure 13. Loss function for the surgical model. Training in
blue and validation in orange

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.kaggle.com/code/jorgeguerrapires/diabetes-detection
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

Figure 14. Accuracy for our heart failure prediction. final.
training 80% and validation 79%

3.3 Heart Failure Prediction
Cardiovascular diseases (CVDs) are the number
1 cause of death globally, taking an estimated
17.9 million lives each year, which accounts for
31% of all deaths worldwide. Four out of 5 CVD
deaths are due to heart attacks and strokes, and
one-third of these deaths occur prematurely in
people under 70 years of age. Heart failure is a
common event caused by CVDs and this dataset
contains 11 features that can be used to predict a
possible heart disease. People with cardiovascu-
lar disease or who are at high cardiovascular risk
(due to the presence of one or more risk factors
such as hypertension, diabetes, hyperlipidaemia
or already established disease) need early detec-
tion and management wherein a machine learning
model can be of great help. dataset description

We have selected a couple of features (Table 8), and our
model achieved an accuracy of 70% (Figure 14). One user
from Kaggle claims an accuracy of 90%, see here the note-
book. Thus, adding all the features we may arrive to this result.
This is a scientific detail we may investigate in the future.

Table 8. Features used to train the heart failure prediction
model.

Feature Short Description

Exercise
Angina

It is a common symptom
of coronary artery disease
(CAD).

Sex patient’s gender
Age patient’s age
Cholesterol levels of cholesterol of the

patient

We have kept the information to the essential. See the Heart Failure
Prediction Dataset on Kaggle for more information, and updated.

The remaining performance measurement: F1 score, 0.78;
precision, 0.7; recall, 0.89.

The final model, ready to use as pretrained model, is
available at GitHub.

Figure 15. Training curves for the heart failure prediction
model

Table 9. Confusion matrix for the heart failure model.
Legend: TP - true positive; FP - false positive; FN - false
negative; TN - true negative. The row label represents the
true class, whereas the column label is the model prediction.

non heart failure heart failure

non heart failure 35 (TN) 15 (FP)
heart failure 4 (FN) 46 (TP)

Alert. it seems there is wrong title for this dataset accord-
ing to one user. It seems the dataset predicts coronary heart
disease. It does not change our results. We assume that when
you use those models on a dataset in a real-case, you know
the dataset enough.

3.4 In summary
Several examples were developed using TensorFlow.js as a
machine learning platform in this manuscript. Even though
Python and R are dominant on the moment, JavaScript and
derivatives are growing fast, offering basically the same per-
formance, and some extra features associated with JavaScript;
JavaScript now even offers desktop options for coding, it is
a full stack language (MEAN Stack) [25]: it is possible to
build back and frontend without without needing to shift lan-
guages. Moreover, Kaggle, the public platform from where
we downloaded our datasets, offers a huge amount of datasets
for biomedical cases, thus, the reader can easily test what
was discussed, using the same codes, with minor chances,
on any case they may be interested in. After using Tensor-
Flow.js for about three years, and after have used previous
options such as Matlab, we are optimistic that this library
developed in JavaScript has what it is needed to be a machine
learning option for biomedical problems. They offer unique
advantages, such as the data never leaves the browser; and the
calculation load stays locally on the browser, no need to pay
for high-performance servers. Angular, coded in TypeScript, a
derivative from JavaScript, has an active community, releasing
updates every six month. The possibilities are unlimited, and
we believe that it is a nice option for researchers aiming at
web applications, especially, focused on medicine.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://www.kaggle.com/code/jlexcellent/heart-failure-prediction-with-90-76-accuracy
https://www.kaggle.com/code/jlexcellent/heart-failure-prediction-with-90-76-accuracy
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://github.com/JorgeGuerraPires/tensorflowbio/blob/pretrained-model/Heart-Failure-model.json
https://github.com/JorgeGuerraPires/tensorflowbio/blob/pretrained-model/Heart-Failure-model.json
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction/discussion/378988
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction/discussion/378988
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

References
[1] RIVERA, J. D. D. S. Practical Tensor-
Flow.js: Deep Learning in Web App Development.
https://www.amazon.com/Practical-TensorFlow-js-Deep-
Learning-Development/dp/1484262727: Apress, 2020.
328 p.

[2] CAI, S. B. S.; NIELSEN, E. D.; CHOLLET,
F. Deep Learning with JavaScript: Neural net-
works in TensorFlow.js. [S.l.]: Manning, 2020.
560 p. Available at ⟨https://www.amazon.com/
Deep-Learning-JavaScript-networks-TensorFlow-js/dp/
1617296171⟩.

[3] LABORDE, G. Learning Tensorflow.Js:
Powerful Machine Learning in JavaScript.
https://www.amazon.com.br/Learning-Tensorflow-
Js-Powerful-Machine-JavaScript/dp/1492090794: O’Reilly
Media, 2021. 338 p.

[4] PIRES, J. G. Alguns insights em startups um novo
paradigma para a trı́plice aliança ciência, tecnologia e
inovação: a novel paradigm for understanding the triple
alliance of science, technology and innovation. Revista Gestão
amp; Saúde, v. 11, n. 1, p. 38–54, fev. 2020. Disponı́vel em:
⟨https://periodicos.unb.br/index.php/rgs/article/view/28626⟩.

[5] FAIN, Y.; MOISEEV, A. Angular Development with
TypeScript. https://www.amazon.com/Angular-Development-
Typescript-Yakov-Fain/dp/1617295345: Manning, 2018.
560 p.

[6] PIRES, J. G. et al. Galaxy and mean stack
to create a user-friendly workflow for the rational
optimization of cancer chemotherapy. 2021. Disponı́vel em:
⟨doi:10.3389/fgene.2021.624259⟩.

[7] HARMAN, L. B.; FLITE, C. A.; BOND, K. Electronic
health records: Privacy, confidentiality, and security.
AMA Journal of Ethics, v. 14, n. 9, p. 712–719, 2012.
Disponı́vel em: ⟨https://journalofethics.ama-assn.org/article/
electronic-health-records-privacy-confidentiality-and-security/
2012-09⟩.

[8] STRAUSS, B. How to Safely Collect and
Store Patient Data. 2020. Accessed: 2023-12-18.
Disponı́vel em: ⟨https://www.egnyte.com/blog/post/
how-to-safely-collect-and-store-patient-data⟩.

[9] HAYKIN, S. Neural Networks and Learning Machines.
3rd. ed. [S.l.]: Pearson, 2008.

[10] FULL interview: ”Godfather of artificial intelligence”
talks impact and potential of AI. CBS Mornings,
2023. Accessed on 19 Dec 2023. Disponı́vel em:
⟨https://www.youtube.com/watch?v=qpoRO378qRY⟩.

[11] KISTLER, W. M.; GERSTNER, W. Spiking Neuron
Models: Single Neurons, Populations, Plasticity. [S.l.]:
Cambridge University Press, 2002.

[12] PIRES, J. G. Data Science using openAI: testing their
new capabilities focused on data science. [S.l.]: Qeios, 2023.
Preprint.

[13] CHEN, W. et al. Nonlinear modeling using support
vector machine for heart rate response to exercise. In: .
Computational Intelligence and Its Applications. [s.n.]. p.
255–270. Disponı́vel em: ⟨https://www.worldscientific.com/
doi/abs/10.1142/9781848166929 0010⟩.
[14] LING, S.; SAN, P.; NGUYEN, H. Hypoglycemia
detection for insulin-dependent diabetes mellitus: Evolved
fuzzy inference system approach. In: . Computational
Intelligence and Its Applications. [s.n.]. p. 61–85. Disponı́vel
em: ⟨https://www.worldscientific.com/doi/abs/10.1142/
9781848166929 0004⟩.
[15] ALTY, S.; LAM, H.; PRADA, J. On the applications of
heart disease risk classification and hand-written character
recognition using support vector machines. In: .
Computational Intelligence and Its Applications. [s.n.]. p.
213–253. Disponı́vel em: ⟨https://www.worldscientific.com/
doi/abs/10.1142/9781848166929 0009⟩.
[16] PALUMBO, P. et al. Mathematical modeling of the
glucose–insulin system: A review. Mathematical biosciences,
v. 244, 05 2013.

[17] CAMPAGNA, D. et al. Smoking and diabetes:
dangerous liaisons and confusing relationships. Diabetology
Metabolic Syndrome, v. 11, n. 1, p. 85, 2019.

[18] PIRES, J. G. Snakeface: a transfer learning based
app for snake classification. bioRxiv, Cold Spring Harbor
Laboratory, 2023. Disponı́vel em: ⟨https://www.biorxiv.org/
content/early/2023/06/14/2023.06.13.544741⟩.
[19] LUSIGNAN, S. de et al. Miscoding, misclassification
and misdiagnosis of diabetes in primary care. Diabetic
Medicine, v. 29, n. 2, p. 181–189, 2012. Disponı́vel
em: ⟨https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1464-5491.2011.03419.x⟩.
[20] SEHRAWAT, T. et al. Utility and limitations of glycated
hemoglobin (hba1c) in patients with liver cirrhosis as
compared with oral glucose tolerance test for diagnosis of
diabetes. Mathematical biosciences, v. 9, p. 243–251, 2018.

[21] MEEHL, P. E. Clinical Versus Statistical Prediction: A
Theoretical Analysis and a Review of the Evidence. [S.l.]:
Echo Point Books Media, 2013.

[22] KERMANY, D. S. et al. Identifying medical diagnoses
and treatable diseases by image-based deep learning.
Cell, v. 172, n. 5, p. 1122–1131.e9, 2018. Disponı́vel em:
⟨https://doi.org/10.1016/j.cell.2018.02.010⟩.
[23] CERCATO, C.; FONSECA, F. Cardiovascular risk and
obesity. Diabetology & Metabolic Syndrome, Springer, v. 11,
n. 1, p. 74, 2019.

[24] SUNSTEIN, C. R.; KAHNEMAN, D.; SIBONY, O.
Noise: A Flaw in Human Judgment. [S.l.]: Little, Brown
Spark, 2021).

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.amazon.com/Deep-Learning-JavaScript-networks-TensorFlow-js/dp/1617296171
https://www.amazon.com/Deep-Learning-JavaScript-networks-TensorFlow-js/dp/1617296171
https://www.amazon.com/Deep-Learning-JavaScript-networks-TensorFlow-js/dp/1617296171
https://periodicos.unb.br/index.php/rgs/article/view/28626
doi: 10.3389/fgene.2021.624259
https://journalofethics.ama-assn.org/article/electronic-health-records-privacy-confidentiality-and-security/2012-09
https://journalofethics.ama-assn.org/article/electronic-health-records-privacy-confidentiality-and-security/2012-09
https://journalofethics.ama-assn.org/article/electronic-health-records-privacy-confidentiality-and-security/2012-09
https://www.egnyte.com/blog/post/how-to-safely-collect-and-store-patient-data
https://www.egnyte.com/blog/post/how-to-safely-collect-and-store-patient-data
https://www.youtube.com/watch?v=qpoRO378qRY
https://www.worldscientific.com/doi/abs/10.1142/9781848166929_0010
https://www.worldscientific.com/doi/abs/10.1142/9781848166929_0010
https://www.worldscientific.com/doi/abs/10.1142/9781848166929_0004
https://www.worldscientific.com/doi/abs/10.1142/9781848166929_0004
https://www.worldscientific.com/doi/abs/10.1142/9781848166929_0009
https://www.worldscientific.com/doi/abs/10.1142/9781848166929_0009
https://www.biorxiv.org/content/early/2023/06/14/2023.06.13.544741
https://www.biorxiv.org/content/early/2023/06/14/2023.06.13.544741
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1464-5491.2011.03419.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1464-5491.2011.03419.x
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

[25] HOLMES, S.; HARBER, C. Getting MEAN with Mongo,
Express, Angular, and Node. Shelter Island, NY: Manning
Publications, 2019.

[26] PIRES, J. G. Relatório Final de pós-doutorado
Programa Nacional de Pós-doutorado PNPD/CAPES.
[S.l.], 2018. Disponı́vel em: ⟨https://www.researchgate.net/
publication/329815289 Relatorio Final de pos-doutorado
Programa Nacional de Pos-doutorado PNPDCAPES⟩.
[27] GANS, J.; GOLDFARB, A. Prediction Machines: The
Simple Economics of Artificial Intelligence. [S.l.]: Harvard
Business Review Press, 2018.

[28] WOLFRAM, S. What Is ChatGPT Doing ... and Why
Does It Work? https://www.amazon.com/What-ChatGPT-
Doing-Does-Work/dp/1579550819: Wolfram Research, 2023.
112 p.

[29] PIRES, J. G. Could chatGPT play a medical doctor?
2023. Published in Computational Thinking: How computers
think, decide and learn. Disponı́vel em: ⟨https://medium.
com/computational-thinking-how-computers-think-decide/
could-chatgpt-play-a-medical-doctor-8dfcd8c95538⟩.
[30] PIRES, J. G. Innovating with biomathematics:
the challenge of building user-friendly interfaces for
computational biology. Academia Letters, 2022. Disponı́vel
em: ⟨https://doi.org/10.20935/AL5792⟩.
[31] PIRES, J. G. An informal survey presents the gap
between computer and medical doctors and biologists.
2023. Published in Theoretical and Mathematical
Biology (blog in Medium publication). Disponı́vel em:
⟨https://bit.ly/3XfhCKH⟩.
[32] PIRES, J. G. Biomechanics, Computational Intelligence,
and Systems Biology with application on Vitreous Dynamics
Using Java: an incipient discussion. 2014. Preprint in
Academia Edu. Disponı́vel em: ⟨https://www.academia.edu/
8341040/Title Biomechanics Computational Intelligence
and Systems Biology with application on Vitreous
Dynamics Using Java an incipient discussion⟩.
[33] BLANK, S.; DORF, B. The Startup Owner’s Manual:
The Step-By-Step Guide for Building a Great Company.
Illustrated edition. [S.l.]: Wiley, 2020. 608 p.

4. Supplementary Material
We have decided to keep the main paper focused on building
neural models using TensorFlow.js. Nonetheless, those mod-
els are applied to medicine, and we want to also add to this
discussion. The final user are medical doctors, either as user
or even as researcher. As one example, recently we have inte-
grated the 6-feature diabetes model to openAI APIs creating
a smart chatbot: the bot can extract the parameters from a text
entered by the user, call the model, interpret the prediction,
and reply back, all done as text, as a human-like conversation.
We are planning to also integrate the remaining models we
have discussed. This section will extend the discussion, but,

Figure 16. Even though medical doctors and
bioinformatician may disagree on how they see
evidence-based medicine, they agree on scientific papers as
source of knowledge for decision making processes

focused on the big picture: how those models are used, and
the context there are in. We hope to show the ”big picture”,
instead of just focusing on punctual results.

4.1 Evidence-based medicine by machine learning
Science is all about evidences. As so, some areas are classified
as primary, and others as secondary, being empirical evidences
as the separator. Primary areas deal with evidence at first hand
(e.g., biology and physics); whereas secondary makes use
of them (e.g., medicine and bioinformatics). Both medicine
and bioinformatics have been using the name evidence-based
medicine, they agree on the term evidence (e.g., scientific arti-
cles), but they see the term slightly different; bioinformatics
also use datasets as evidences.

One may say that medicine stays on the scientific papers
as evidences, whereas bioinformatics goes beyond, we build
models, that can in sequence be used to take decisions. Our
models are based on evidences, and can also be seen as evi-
dence.

Our invitation is that medical doctors go beyond papers,
and start to use models. We have showed and discussed a
group of models known as machine learning. They can be
used to assist on the decision-making process.

One advantage of models, compared to “bear-head model”
is that they can take into account many more features and
samples at once, and they can find hidden patterns that humans
can not, or may miss a lot. Machine learning is well-known
to be good at finding patterns that humans can not see on
datasets.

4.2 Models in medicine: mechanical vs. clinical
judgement

Mechanical judgments are when algorithms take decisions,
whereas clinical judgment is when humans take decisions,
concept introduced by Daniel Kahneman and colleagues [24].

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://www.researchgate.net/publication/329815289_Relatorio_Final_de_pos-doutorado_Programa_Nacional_de_Pos-doutorado_PNPDCAPES
https://www.researchgate.net/publication/329815289_Relatorio_Final_de_pos-doutorado_Programa_Nacional_de_Pos-doutorado_PNPDCAPES
https://www.researchgate.net/publication/329815289_Relatorio_Final_de_pos-doutorado_Programa_Nacional_de_Pos-doutorado_PNPDCAPES
https://medium.com/computational-thinking-how-computers-think-decide/could-chatgpt-play-a-medical-doctor-8dfcd8c95538
https://medium.com/computational-thinking-how-computers-think-decide/could-chatgpt-play-a-medical-doctor-8dfcd8c95538
https://medium.com/computational-thinking-how-computers-think-decide/could-chatgpt-play-a-medical-doctor-8dfcd8c95538
https://doi.org/10.20935/AL5792
https://bit.ly/3XfhCKH
https://www.academia.edu/8341040/Title_Biomechanics_Computational_Intelligence_and_Systems_Biology_with_application_on_Vitreous_Dynamics_Using_Java_an_incipient_discussion
https://www.academia.edu/8341040/Title_Biomechanics_Computational_Intelligence_and_Systems_Biology_with_application_on_Vitreous_Dynamics_Using_Java_an_incipient_discussion
https://www.academia.edu/8341040/Title_Biomechanics_Computational_Intelligence_and_Systems_Biology_with_application_on_Vitreous_Dynamics_Using_Java_an_incipient_discussion
https://www.academia.edu/8341040/Title_Biomechanics_Computational_Intelligence_and_Systems_Biology_with_application_on_Vitreous_Dynamics_Using_Java_an_incipient_discussion
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

We build models, as so they can support us on taking decisions,
based on facts, on evidences; it is what we from bioinformat-
ics call evidence-based medicine. Even if you are not aware,
humans also consider facts, data, evidences, when deciding;
medical doctors are also considering evidence-based medicine,
nonetheless, focusing just on facts rather than models. The
difference is that humans can not use massive datasets, inte-
grative approaches and more. Another difference is: we can
not write down clearly how we decided, even though we may
think we can. We are contaminated by biases and noise, as
highlighted [24]. Aware of or not, we cannot handle multiple
sources of information, in our models called features; we sim-
plify complex problems, and decide upon those reality-drafts.
We create simplified versions of the problem, as so we can
handle them.

This concept is valuable for us: we have actually consid-
ered situations where algorithms may actually compete with
humans; of course, it is becoming more and more present.
However, medicine is an area that has been resistant, even
though the models are promising; models have been used
on the industry for decades for supporting decision making,
called operations research. There are several unsolved ques-
tions, and one is about accountability when algorithms make
mistakes. Those discussions ought to happen at some point if
we want to have more models on medicine in the future.

Daniel Kahneman and colleagues [24] brings to attention
that even randomly initiated models may be better than hu-
mans, in certain scenarios.

“In one of the three samples, 77% of the ten thou-
sand randomly weighted linear models did better
than the human experts. In the other two samples,
100% of the random models outperformed the
humans.” [24]

Of course, they are considering specific scenarios, and
care is necessary before big generalizations. The important
message is: models, even simple ones, can replace humans.
The point is: when talking about complex models, big models,
integrative models, humans do not have a chance. Nonethe-
less, even for simple models, humans can be replaced by
algorithms; and we should not neglect it based on human’s
feelings of being left out.

One possible benefit of applying models to medicine is
eliminating repetitive tasks, and possibly allowing the doctor
to actually concern about the patient. Most of the routine
tasks done by medical doctors can be automated, or are on
the verge of, such as reading X-ray plates. We have organized
a couple here [26]. Another benefit could actually reducing
be costs: one benefice of AI models is that intelligence starts
to be cheaper, once the model learns, it can be easily shared
as API, as an example. Different from human intelligence,
machine intelligence can be shared easily, and costless.

Humans, as Daniel Kahneman and colleagues [24] high-
light, believe they understand how they decide, and get over-
confident. It is not unknown about medical errors in diagnosis,

and some areas of medicine may have a strong variation in
the same diagnosis, coming from different professionals. [22]
compared the diagnosis of medical doctors with machine
learning using Optical coherence tomography (OCT): they
have shown that this variation mentioned on humans com-
pared to algorithms is real.

Machine learning, when make mistakes, it is easily trace-
able, and enhanced. Even though we do not understand pre-
cisely how those models learn, we do understand the big
picture; in fact, [22] monitored where ”the model was look at”
on OCT for diagnostic, and it was correct. This is important
to know when we are talking about models being used, and
continuously enhanced based on their misdiagnosis. Once
they learn, it does not happen again. Machine intelligence
is easily repeatable, transferable and reliable once they are
properly designed.

4.3 Mathematical models applied to medicine
We have essentially two big groups of models applied to
medicine: white box and black models. The former focus on
details, whereas the latter on the dataset.

Black box models are closer to how humans think, and de-
cide. A goalkeeper can predict where the ball will most likely
be, based on several cues/inputs, but he/she cannot explain
it in details. You do not need to know all the physics from
the ball to defend your goal. Machine learning is a black box
model, and that is why they are so interesting to medicine.
When we predict diabetes from a couple of features, it does
not mean we understand the dynamics of diabetes, work done
by white box models [16]. One can build a model for detect-
ing a medical condition, from image or from physiological
measurement without actually having a medical degree, or
even, in-depth knowledge in medicine. This is something
impressive about those models.

Most of the models in medicine, the ones called white
box models, are complex, but not complex enough for reliable
applications. Machine learning models, even though may get
it right, are not explainable, they are just numbers that change
during the learning process. Transfer learning is a set of
numbers, which is used on another problem: knowledge from
a set of images become a set of values on parameters called
learning weights. They are just matrix multiplications and
tensors manipulations. Different from humans when properly
trained can explain their thinking in equations and theories,
machine learning just do it right, but does not provide the
rules explicitly.

Mathematical models have been applied to medicine for
a long time, and eventually they become algorithms, which
eventually may become software/packages. Those models can
be classified in two big groups: white box models and black
box models.

White box models are generally created for specific prob-
lems, and they concentrate on details. Their drawback is that
they are specific, too much energy is expended on a model
that can not be applied elsewhere, except for derivations from

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

the problem solved. They are ideal for simulations and con-
sidering scenarios. On the other hand, black box models
are generic, and not tied up to specific applications. The
strong point is: if one area makes progress, it is automatically
transferable to other areas. Those models do not consider
applications, they are created based on general principles.
TensorFlow,js, the technology we have used herein, was not
designed for medicine, but it uses artificial neural networks as
machine learning approach, which has been explored exten-
sively to support medicine. This makes all the achievements
elsewhere easily transferable, we have taken advantage of that
observation herein.

4.4 Artificial intelligence as a prediction machine
All artificial intelligence nowadays is a prediction machine
[27]: their goal is predicting what is next, based on a set of
information called features. chatGPT is about prediction of
what is the next word on a given text [28], we can predict
snakes based on their details from an image [18], and we
have done some predictions about medical conditions, such
as diabetes. based on given features.

According to [27], those prediction machines can be com-
pared to electricity and computer power: as they became
cheaper and more accessible, new possibilities became real.
Nowadays, those prediction machines are becoming cheaper,
most of the time free, and easily used (e.g., pretrained models,
APIs and public libraries). We have explored it herein, using
a public library called TensorFlow.js, making the point that
those prediction machines can be widely used, by a broad
audience, no cost at all; and with all their capabilities and
power to predict. We have already made the point on another
article for image classification applied to biology [18], using
another platform called Teachable Machine, which is built on
top of TensorFlow.js. [22] applied to medical images those
models, with success comparing to human experts.

4.5 On the importance of JavaScript as a computer
language in machine learning

One group of researchers that have been changing medicine
a lot in the last decades are computer scientists; and those
models are a direct example. Computers are everywhere
in medicine, and with the rise of artificial intelligence and
computer power becoming cheaper and more accessible, it
will accelerate this change (e.g., chatGPT in medicine [29]).

The point is: we need to make those apps available, as
user-friendly as possible, as easily accessible as possible [30].
An informal survey showed that model parametrization (i.e.,
getting a model to execute a specific task) is the biggest issues
amongst life scientists working with software [31]. Thus, it
is something we must consider heavily when designing our
apps: we should strongly think of the final end of the cycle,
the user! We have explored with success using those model
as a chatbot, where the artificial intelligence handles all [to be
published].

Java was the very first computer language built to serve
the browser, and it had its moment; the name JavaScript was

given to call attention from the Java users. So far, all computer
languages (e.g., C++, C, Fortran) were designed for desktop
applications, to be used locally, on the user’s computers; they
needed installation and constant maintenance; it was common
to make software available as a command prompt. They were
what is now called synchronous programming: the order of
your lines of codes will dictate how it is executed, the user
had no saying on this paradigm applied to coding. So, it came
the idea of asynchronous programming: the user will interact
with the program, and dictate how the code will evolve; to
be fair, Java also had buttons and more, called listeners. The
code will wait for user’s interaction, which triggers a set of
lines of actions, which by themselves can be asynchronous.

It gave rise to multithreading: the ability of a code to han-
dle more than one user at a time without requiring multiple
copies of the program running on the computer, without block-
ing the main thread. It allowed also multiple tasks running
simultaneously, and the app will still respond to the user nor-
mally; the actions go to background, and once it is finished,
they give back the results.

We had our own experience with Java for creating appli-
cations for biomedical cases [32]. Our experience showed
a couple of setbacks: i) graphs (e.g., result plotting) and ii)
user interfaces (e.g., UI and UX) are hard to design; not to
mentions other setbacks such as string manipulation.

We believe that similar setbacks will appear in any desk-
top computer languages, that includes Python. It is true
that we can nowadays build a whole app using different lan-
guages, and we have done that [6]. The solution found by
Python programmers, as an example, is using frontend frame-
works/libraries (e.g., Django and Angular). The main issue
with this workaround is having to use several languages and
keeping different servers; for sure, you will need a bigger
team, which increases costs, and difficulties to execute the
project. Heroku, as an example, provides a possibility to eas-
ily build a pipeline based on different apps; thus, they work
as one big program from the outside. Notwithstanding, still
having to handle several apps in several languages.

In our case when dealing with these issues of having codes
in different languages serving the same problem, we have used
Galaxy [6]. It does not matter which choice you make, one
may be better than other, they still require handling servers,
and different codes in different language. The easily seen
disadvantage of that is a bigger team; we all know that most
research groups operate under zero or no research funding
at all, not to say that actually making money from those sci-
entific apps is a challenge. In our case [6], it made sense
to choose Galaxy since the codes were already built by pre-
vious researchers, and rebuilding would be hard. The case
we present herein is interesting mainly if you are starting, or
have reasons to migrate to JavaScript. If you are starting a
new project that requires machine learning, we recommend
starting with JavaScript, and you will be able to work in a
startup paradigm [33]: test it fast, as fast as possible. Not sure
it is a good strategy to rebuild a complex app from scratch,

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://devcenter.heroku.com/articles/pipelines
https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

unless you have reasons to believe it will improve.
Recently, thanks to several libraries, JavaScript became

a viable option for designing machine learning. Nowadays,
the most well-accepted and showing promising results is Ten-
sorFlow.js [1, 2, 3]. Thus, incorporate all the advantages of
working with JavaScript and machine learning in one web
application.

For our case, the core advantages are: i) the data will
never leave the browser, ideal for sensitive data, most likely
the case for medical information; ii) the calculations are done
on the browser, no need to buy expensive server for scien-
tific computations, ideal for startups and similar experimental
endeavours. We believe that startups may support on decreas-
ing the ever-growing costs of medical assistance [4]. They
have already done that with text processing using artificial
intelligence (e.g., chatGPT).

4.6 Diabetes and Smoking history
For making this statistical analysis, we have used the openAI
Assistant [12].

The full dataset contains information about diabetic pa-
tients and includes the following columns:

1. gender: Gender of the patient (e.g., Male, Female)

2. age: Age of the patient

3. hypertension: Whether the patient has hypertension (1
for yes, 0 for no)

4. heart disease: Whether the patient has heart disease (1
for yes, 0 for no)

5. smoking history: Smoking history of the patient (e.g.,
never, current, No Info)

6. bmi: Body Mass Index (BMI) of the patient

7. HbA1c level: HbA1c level of the patient

8. blood glucose level: Blood glucose level of the patient

9. diabetes: Whether the patient has diabetes (1 for yes, 0
for no)

From the analysis and visualization, we can see that there
are different proportions of diabetic patients within each cate-
gory of smoking history. The proportions are as follows:

• No Info (Smoking History Not Available): 4.06%

• Current Smoker: 10.21%

• Ever Smoked: 11.79%

• Former Smoker: 17.00%

• Never Smoked: 9.53%

• Not Current Smoker: 10.70%

Figure 17. History for smoking history for diabetic patients

Obs. the proportion is the percentage of diabetic per
category. For example, within the ”never smoked” category,
9.53% of individuals have been diagnosed with diabetes.

Based on these proportions, we can see that former smok-
ers have the highest proportion of diabetic patients, followed
by those who ”ever” smoked. To test the hypothesis that smok-
ing may increase the chances of diabetes, we can perform a
statistical test to compare the proportions of diabetic patients
between different smoking history categories. We can use a
chi-squared test to determine if there is a significant associa-
tion between smoking history and diabetes. Let’s perform the
chi-squared test to evaluate this hypothesis.

The p-value obtained from the chi-squared test is ex-
tremely small (approximately 0), indicating that there is a
statistically significant association between smoking history
and diabetes. This result suggests that smoking may indeed
increase the chances of diabetes.

4.6.1 Details on the hypothesis test
In the hypothesis test performed, the null hypothesis tested
against is that there is no association between smoking history
and the likelihood of having diabetes. In other words, the null
hypothesis assumes that the proportions of diabetic patients
are independent of the smoking history categories.

The rejection of the null hypothesis (as indicated by the
extremely small p-value) suggests that there is a significant
association between smoking history and diabetes. Therefore,
we have evidence to suggest that smoking history may have
an impact on the likelihood of having diabetes.

The chi-squared test was chosen because it is a statistical
test commonly used to determine whether there is an asso-
ciation between categorical variables. In this case, we were
interested in understanding if there is a significant associa-
tion between smoking history (a categorical variable) and the
likelihood of having diabetes (another categorical variable).

The chi-squared test is specifically designed to assess inde-
pendence between two categorical variables by comparing the
observed frequencies in a contingency table to the frequencies

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Machine learning in medicine using JavaScript

that would be expected if the variables were independent. If
the calculated chi-squared statistic from the test is sufficiently
large and the associated p-value is small, it suggests that there
is a significant association between the two variables.

Given that we were testing the hypothesis that smoking

may increase the chances of diabetes, the chi-squared test was
deemed appropriate for this scenario to determine if there is a
statistically significant association between smoking history
and diabetes status in the dataset.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.06.21.23291717doi: medRxiv preprint

https://doi.org/10.1101/2023.06.21.23291717
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Introduction
	Goal
	Contribution to the literature
	Background
	How does a machine learning model work?
	TensorFlow.js
	Neural networks and machine learning: supervised learning
	Multilayer perceptron (MLP)

	Organization of the work

	Methods
	Training the model
	Training and validation
	Confusion matrix

	External resources
	Pretrained models
	Full repository
	Datasets

	Diabetes detection
	6-feature model
	1-feature model
	3-feature model

	Predicting In-Hospital Surgery Complication
	Heart failure prediction model
	NPM respository

	Results and Discussion
	Diabetes detection
	model 1: predicting with six features
	model 2: predicting with just one feature
	model 3: predicting with age, gender and body mass index

	Predicting Surgical In-Hospital Complication
	Heart Failure Prediction
	In summary

	References

	Supplementary Material
	Evidence-based medicine by machine learning
	Models in medicine: mechanical vs. clinical judgement
	Mathematical models applied to medicine
	Artificial intelligence as a prediction machine
	On the importance of JavaScript as a computer language in machine learning
	Diabetes and Smoking history
	Details on the hypothesis test

